<u> MS211 - Cálculo</u> Numérico

Aula 20 – Método dos Quadrados Mínimos: Caso Discreto em \mathbb{R}^N e Caso Contínuo.

Marcos Eduardo Valle Matemática Aplicada IMECC - Unicamp

Introdução

Na aula anterior, vimos o problema do ajuste de curvas pelo método dos quadrados mínimos para o caso discreto.

Introdução

Na aula anterior, vimos o problema do ajuste de curvas pelo método dos quadrados mínimos para o caso discreto.

Especificamente, dada uma tabela

e funções bases $g_1,\dots,g_M:\mathbb{R} \to \mathbb{R}$ escolhidas *a priori*, a função

$$\varphi(\mathbf{x}) = \alpha_1 g_1(\mathbf{x}) + \alpha_2 g_2(\mathbf{x}) + \ldots + \alpha_M g_M(\mathbf{x}),$$

que minimiza a soma dos quadrados dos desvios é obtida resolvendo o sistema linear $\mathbf{A}\alpha=\mathbf{b},$ em que

$$a_{ij} = \sum_{k=1}^K g_i(x_k)g_j(x_k)$$
 e $b_i = \sum_{k=1}^K y_kg_i(x_k), \quad \forall i,j=1,\ldots,M.$

Caso Discreto em \mathbb{R}^N

De forma mais geral, dada uma tabela

considere funções bases $g_1, \ldots, g_M : \mathbb{R}^N \to \mathbb{R}$ escolhidas a priori.

Caso Discreto em \mathbb{R}^N

De forma mais geral, dada uma tabela

considere funções bases $g_1, \ldots, g_M : \mathbb{R}^N \to \mathbb{R}$ escolhidas a priori.

Defina a função $\varphi:\mathbb{R}^{\textit{N}}\to\mathbb{R}$ pela equação

$$\varphi(\mathbf{x}) = \alpha_1 g_1(\mathbf{x}) + \alpha_2 g_2(\mathbf{x}) + \ldots + \alpha_M g_M(\mathbf{x}),$$

para
$$\mathbf{x} = [x_1, x_2, ..., x_N]^T \in \mathbb{R}^N$$
.

Tal como no caso anterior, os parâmetros α_1,\dots,α_M que minimizam a soma dos quadrados dos desvios

$$J(\alpha_1, \alpha_2, \dots, \alpha_M) = \sum_{k=1}^K (y_k - \varphi(\mathbf{x}_k))^2,$$

em que $\mathbf{x}_k = [x_{1k}, x_{2k}, \dots, x_{Nk}]^T$, para todo $k = 1, \dots, K$, é obtida resolvendo o sistema linear $\mathbf{A}\alpha = \mathbf{b}$, em que

$$a_{ij} = \sum_{k=1}^K g_i(\mathbf{x}_k) g_j(\mathbf{x}_k)$$
 e $b_i = \sum_{k=1}^K y_k g_i(\mathbf{x}_k), \quad \forall i, j = 1, \dots, M.$

Tal como no caso anterior, os parâmetros α_1,\ldots,α_M que minimizam a soma dos quadrados dos desvios

$$J(\alpha_1, \alpha_2, \dots, \alpha_M) = \sum_{k=1}^K (y_k - \varphi(\mathbf{x}_k))^2,$$

em que $\mathbf{x}_k = [x_{1k}, x_{2k}, \dots, x_{Nk}]^T$, para todo $k = 1, \dots, K$, é obtida resolvendo o sistema linear $\mathbf{A}\alpha = \mathbf{b}$, em que

$$a_{ij} = \sum_{k=1}^K g_i(\mathbf{x}_k) g_j(\mathbf{x}_k)$$
 e $b_i = \sum_{k=1}^K y_k g_i(\mathbf{x}_k), \quad \forall i, j = 1, \dots, M.$

Em termos gerais, note que simplesmente substituímos o escalar x_k pelo vetor $\mathbf{x}_k = [x_{1k}, \dots, x_{Nk}]^T$.

Considere a tabela de pontos

e a função

$$\varphi(\mathbf{x}, \mathbf{y}) = \alpha_1 + \alpha_2 \mathbf{x} + \alpha_3 \mathbf{y} + \alpha_4 \mathbf{x} \mathbf{y}.$$

Em outras palavras, temos que

$$\varphi(x,y) = \alpha_1 g_1(x,y) + \alpha_2 g_2(x,y) + \alpha_3 g_3(x,y) + \alpha_4 g_4(x,y).$$

em que

$$g_1(x,y) = 1$$
, $g_2(x,y) = x$, $g_3(x,y) = y$ e $g_4(x,y) = xy$,

são as funções base.

Usando as fórmulas anteriores, temos que:

$$a_{11} = \sum_{k=1}^{5} g_1(x_k, y_k)g_1(x_k, y_k)$$

$$= (1)(1) + (1)(1) + (1)(1) + (1)(1) + (1)(1) = 5,$$

$$a_{12} = \sum_{k=1}^{5} g_1(x_k, y_k)g_2(x_k, y_k)$$

$$= (1)(-1) + (1)(-1) + (1)(0) + (1)(1) + (1)(1) = 0,$$

$$a_{13} = \sum_{k=1}^{5} g_1(x_k, y_k)g_3(x_k, y_k)$$

$$= (1)(-1) + (1)(+1) + (1)(0) + (1)(-1) + (1)(1) = 0,$$

$$a_{14} = \sum_{k=1}^{5} g_1(x_k, y_k)g_3(x_k, y_k)$$

$$= (1)(1) + (1)(-1) + (1)(0) + (1)(-1) + (1)(1) = 0.$$

Prosseguindo, obtemos o sistema linear

$$\mathbf{A}\alpha = \mathbf{b}$$
,

em que

$$\mathbf{A} = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 4.23 \\ -7.02 \\ -5.92 \\ 0.86 \end{bmatrix}.$$

cuja solução é

$$\alpha_1 = 0.85, \quad \alpha_2 = -1.75, \quad \alpha_3 = -1.48 \quad \text{e} \quad \alpha_4 = 0.21.$$

Logo, temos a função

$$\varphi(x,y) = 0.85 - 1.75x - 1.48y + 0.21xy.$$

Ajuste de Curvas – Caso Contínuo

O problema de ajuste de curvas pelo método dos quadrados mínimos também pode ser aplicado para o caso contínuo.

Problema de Ajuste de Curvas - Caso Contínuo

Considere uma função f contínua em um intervalo [a,b]. Escolhidas funções contínuas g_1,g_2,\ldots,g_M , chamadas **funções base**, desejamos encontrar coeficientes α_1,\ldots,α_M de modo que

$$\varphi(\mathbf{x}) = \alpha_1 \mathbf{g}_1(\mathbf{x}) + \alpha_2 \mathbf{g}_2(\mathbf{x}) + \ldots + \alpha_M \mathbf{g}_M(\mathbf{x}),$$

forneça a melhor aproximação de f em [a, b].

Ajuste de Curvas – Caso Contínuo

O problema de ajuste de curvas pelo método dos quadrados mínimos também pode ser aplicado para o caso contínuo.

Problema de Ajuste de Curvas - Caso Contínuo

Considere uma função f contínua em um intervalo [a,b]. Escolhidas funções contínuas g_1,g_2,\ldots,g_M , chamadas **funções base**, desejamos encontrar coeficientes α_1,\ldots,α_M de modo que

$$\varphi(\mathbf{X}) = \alpha_1 g_1(\mathbf{X}) + \alpha_2 g_2(\mathbf{X}) + \ldots + \alpha_M g_M(\mathbf{X}),$$

forneça a melhor aproximação de f em [a, b].

Observe que no caso contínuo φ deve aproximar f em [a, b] e não num conjunto discreto de pontos x_1, x_2, \ldots, x_K .

Formulação Matemática

No problema de quadrados mínimos — caso contínuo, a notação $\varphi \approx f$ em [a,b] significa que a área sob a curva do quadrado dos desvios é mínima, ou seja,

$$J(\alpha_1,\ldots,\alpha_M)=\int_a^b(\varphi(x)-f(x))^2dx,$$

é mínimo.

Formulação Matemática

No problema de quadrados mínimos — caso contínuo, a notação $\varphi \approx f$ em [a,b] significa que a área sob a curva do quadrado dos desvios é mínima, ou seja,

$$J(\alpha_1,\ldots,\alpha_M)=\int_a^b(\varphi(x)-f(x))^2dx,$$

é mínimo.

Tal como no caso discreto, devemos encontrar os pontos críticos de J, ou seja, escolher $\alpha_1, \ldots, \alpha_M$ de modo que

$$\frac{\partial J}{\partial \alpha_j} = 0, \quad \forall j = 1, \dots, M.$$

Pela regra da cadeia, a derivada parcial é

$$\frac{\partial J}{\partial \alpha_j} = 2 \int_a^b \left(\alpha_1 g_1(x) + \ldots + \alpha_M g_M(x) - f(x) \right) g_j(x) dx.$$

Pela regra da cadeia, a derivada parcial é

$$\frac{\partial J}{\partial \alpha_j} = 2 \int_a^b \Big(\alpha_1 g_1(x) + \ldots + \alpha_M g_M(x) - f(x) \Big) g_j(x) dx.$$

Dessa forma, devemos ter

$$\int_a^b \Big(\alpha_1 g_1(x) + \ldots + \alpha_M g_M(x) - f(x)\Big) g_j(x) dx = 0,$$

ou ainda,

$$\int_a^b \alpha_1 g_1(x) g_j(x) dx + \ldots + \int_a^b \alpha_M g_M(x) g_j(x) dx = \int_a^b f(x) g_j(x) dx,$$

para todo $j = 1, \dots, M$.

Equações Normais

Alternativamente, podemos escrever

$$\begin{cases} \left(\int_{a}^{b} g_{1}(x)g_{1}(x)dx\right)\alpha_{1} + \ldots + \left(\int_{a}^{b} g_{M}(x)g_{1}(x)dx\right)\alpha_{M} &= \int_{a}^{b} f(x)g_{1}(x)dx, \\ \left(\int_{a}^{b} g_{1}(x)g_{2}(x)dx\right)\alpha_{1} + \ldots + \left(\int_{a}^{b} g_{M}(x)g_{2}(x)dx\right)\alpha_{M} &= \int_{a}^{b} f(x)g_{2}(x)dx, \\ &\vdots \\ \left(\int_{a}^{b} g_{1}(x)g_{M}(x)dx\right)\alpha_{1} + \ldots + \left(\int_{a}^{b} g_{M}(x)g_{M}(x)dx\right)\alpha_{M} &= \int_{a}^{b} f(x)g_{M}(x)dx, \end{cases}$$

que é um sistema linear com M equações e incógnitas $\alpha_1, \ldots, \alpha_M$.

Equações Normais

Alternativamente, podemos escrever

$$\begin{cases} \left(\int_a^b g_1(x)g_1(x)dx\right)\alpha_1 + \ldots + \left(\int_a^b g_M(x)g_1(x)dx\right)\alpha_M &= \int_a^b f(x)g_1(x)dx, \\ \left(\int_a^b g_1(x)g_2(x)dx\right)\alpha_1 + \ldots + \left(\int_a^b g_M(x)g_2(x)dx\right)\alpha_M &= \int_a^b f(x)g_2(x)dx, \\ &\vdots \\ \left(\int_a^b g_1(x)g_M(x)dx\right)\alpha_1 + \ldots + \left(\int_a^b g_M(x)g_M(x)dx\right)\alpha_M &= \int_a^b f(x)g_M(x)dx, \end{cases}$$

que é um sistema linear com M equações e incógnitas $\alpha_1, \ldots, \alpha_M$.

O sistema linear acima é chamado sistema das equações normais.

Em termos matriciais, o sistema das equações normais pode ser escrito como

$$\mathbf{A}\alpha = \mathbf{b}$$

em que $\mathbf{A}=(a_{ij})\in\mathbb{R}^{M\times M}$, $\alpha=(\alpha_j)\in\mathbb{R}^M$ e $\mathbf{b}=(b_i)\in\mathbb{R}^M$, com

$$a_{ij} = \langle g_i, g_j \rangle = \int_a^b g_i(x)g_j(x)dx,$$

е

$$b_i = \langle f, g_i \rangle = \int_a^b f(x)g_i(x)dx,$$

para todo $i, j = 1, \ldots, M$.

Em termos matriciais, o sistema das equações normais pode ser escrito como

$$\mathbf{A}\alpha = \mathbf{b}$$

em que $\mathbf{A}=(a_{ij})\in\mathbb{R}^{M\times M}$, $\alpha=(\alpha_j)\in\mathbb{R}^M$ e $\mathbf{b}=(b_i)\in\mathbb{R}^M$, com

$$a_{ij} = \langle g_i, g_j \rangle = \int_a^b g_i(x)g_j(x)dx,$$

е

$$b_i = \langle f, g_i \rangle = \int_a^b f(x)g_i(x)dx,$$

para todo $i, j = 1, \dots, M$.

Pode-se mostrar que a solução das equações normais, quando **A** é não-singular, é o mínimo global de $J(\alpha_1, \ldots, \alpha_M)$.

Encontre a reta que melhor aproxima $f(x) = 4x^3$ em [0, 1].

Encontre a reta que melhor aproxima $f(x) = 4x^3$ em [0, 1].

Resposta: A reta que melhor se aproxima é formulada como o problema de quadrados mínimos $\varphi \approx f$ em que

$$\varphi(\mathbf{x}) = \alpha_1 \mathbf{x} + \alpha_2 = \alpha_1 \mathbf{g}_1(\mathbf{x}) + \alpha_2 \mathbf{g}_1(\mathbf{x}),$$

em que $g_1(x) = x$ e $g_2(x) = 1$ para todo $x \in [0, 1]$.

Encontre a reta que melhor aproxima $f(x) = 4x^3$ em [0, 1].

Resposta: A reta que melhor se aproxima é formulada como o problema de quadrados mínimos $\varphi \approx f$ em que

$$\varphi(\mathbf{X}) = \alpha_1 \mathbf{X} + \alpha_2 = \alpha_1 \mathbf{g}_1(\mathbf{X}) + \alpha_2 \mathbf{g}_0(\mathbf{X}),$$

em que $g_1(x) = x$ e $g_2(x) = 1$ para todo $x \in [0, 1]$. Portanto,

$$a_{11} = \langle g_1, g_1 \rangle = \int_a^b x^2 dx = \frac{1}{3} x^3 \Big|_0^1 = \frac{1}{3},$$

$$a_{12} = \langle g_1, g_2 \rangle = \int_a^b x dx = \frac{1}{2} x^2 \Big|_0^1 = \frac{1}{2} = a_{21},$$

$$a_{22} = \langle g_2, g_2 \rangle = \int_a^b 1 dx = x \Big|_0^1 = 1.$$

Além disso,

$$b_1 = \langle f, g_1 \rangle = \int_a^b 4x^4 dx = \frac{4}{5} x^5 \Big|_0^1 = \frac{4}{5},$$

$$b_2 = \langle f, g_2 \rangle = \int_a^b 4x^3 dx = \frac{4}{4} x^4 \Big|_0^1 = 1.$$

Dessa forma, temos o sistema linear

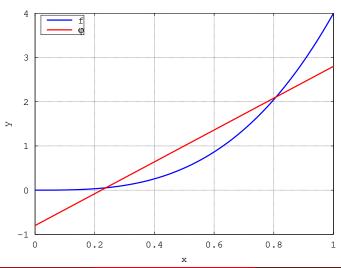
$$\underbrace{\begin{bmatrix}\frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & 1\end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix}\alpha_1 \\ \alpha_2\end{bmatrix}}_{\boldsymbol{\alpha}} = \underbrace{\begin{bmatrix}\frac{4}{5} \\ 1\end{bmatrix}}_{\mathbf{b}},$$

cuja solução é

$$\alpha^* = \begin{bmatrix} \frac{18}{5} & -\frac{4}{5} \end{bmatrix}^T$$
.

Logo, a reta que melhor se aproxima de $f(x) = 4x^3$ em [0, 1] é

$$\varphi(x)=\frac{18}{5}x-\frac{4}{5}.$$



Na aula de hoje, apresentamos duas variações do método dos quadrados mínimos:

Na aula de hoje, apresentamos duas variações do método dos quadrados mínimos:

• Caso discreto em \mathbb{R}^N – usado para encontrar $\varphi: \mathbb{R}^N \to \mathbb{R}$, com

$$\varphi(\mathbf{x}) = \alpha_1 g_1(\mathbf{x}) + \alpha_2 g_2(\mathbf{x}) + \ldots + \alpha_M g_M(\mathbf{x}),$$

que melhor se ajusta a uma tabela, i.e, $\varphi(\mathbf{x}_k) \approx y_k$, $k = 1, \dots, K$.

Na aula de hoje, apresentamos duas variações do método dos quadrados mínimos:

• Caso discreto em \mathbb{R}^N – usado para encontrar $\varphi: \mathbb{R}^N \to \mathbb{R}$, com

$$\varphi(\mathbf{x}) = \alpha_1 g_1(\mathbf{x}) + \alpha_2 g_2(\mathbf{x}) + \ldots + \alpha_M g_M(\mathbf{x}),$$

que melhor se ajusta a uma tabela, i.e, $\varphi(\mathbf{x}_k) \approx y_k$, $k = 1, \dots, K$.

Caso contínuo – usado para encontrar uma função

$$\varphi(\mathbf{x}) = \alpha_1 g_1(\mathbf{x}) + \alpha_2 g_2(\mathbf{x}) + \ldots + \alpha_M g_M(\mathbf{x}),$$

que melhor se aproxima de uma certa função f em [a,b].

Na aula de hoje, apresentamos duas variações do método dos quadrados mínimos:

• Caso discreto em \mathbb{R}^N – usado para encontrar $\varphi: \mathbb{R}^N \to \mathbb{R}$, com

$$\varphi(\mathbf{X}) = \alpha_1 g_1(\mathbf{X}) + \alpha_2 g_2(\mathbf{X}) + \ldots + \alpha_M g_M(\mathbf{X}),$$

que melhor se ajusta a uma tabela, i.e, $\varphi(\mathbf{x}_k) \approx y_k$, $k = 1, \dots, K$.

Caso contínuo – usado para encontrar uma função

$$\varphi(\mathbf{X}) = \alpha_1 g_1(\mathbf{X}) + \alpha_2 g_2(\mathbf{X}) + \ldots + \alpha_M g_M(\mathbf{X}),$$

que melhor se aproxima de uma certa função f em [a, b].

Em ambos os casos, os coeficientes $\alpha_1, \dots, \alpha_M$ são obtidos resolvendo um sistema linear $\mathbf{A}\alpha = \mathbf{b}$.

Muito grato pela atenção!