Auto-Associative Memories Based on Complete Inf-Semilattices and Conditionally Complete L-Groups

Presented by Majid Ali Supervised by Prof.Dr. Peter Sussner

Mathematical Imaging and Computational Intelligence Group
Department of Applied Mathematics, IMECC
University of Campinas

References

- H.J.A.M. Heijmans and R. Keshet, "' Inf-semilattice approach to self-dual Morphology"' journal of Mathematical Imaging and vision (2002).
- R. Keshet. ' Mathematical morphology on complete semilattices and its applications to Image Processing" Funamentae Informatica, (2000).
- P. Sussner and C. R. Medeiros ' An introuduction to Morphological Associative Memories in Complete Lattices and Inf-semilattices" World Congress on Computational intelligence (2012).

Organization of this talk

(1) Introduction On Complete Inf-semilattices
(2) MAMs in cisls based on Conditionally Complete I-Groups
(3) Characterizations of fixed points
(4) Further Research Issues

Some Basic Definitions

- Let \mathcal{L} be a partially ordered set (poset) and let $\{x, y\}, X$, $\left\{x_{j}: j \in J\right\} \subseteq \mathcal{L}$.
- $x \wedge y, \wedge X, \wedge_{j \in J} x_{j}$ denote the infimum of these sets.
- $x \vee y, \bigvee X, \bigvee_{j \in J} x_{j}$ denote the supremum of these sets.
- A poset \mathcal{L} is an inf-semilattice if $\exists x \wedge y \in \mathcal{L} \forall x, y \in \mathcal{L}$. If, in addition, $\exists x \vee y \in \mathcal{L} \forall x, y \in \mathcal{L}$ then \mathcal{L} is a lattice.
- An inf-semilattice \mathcal{L} is complete if $\exists \wedge X \in \mathcal{L} \forall \emptyset \neq X \subseteq \mathcal{L}$. A lattice \mathcal{L} is complete if $\exists \wedge X, \bigvee X \in \mathcal{L}$ for all $X \subseteq \mathcal{L}$.
- A lattice \mathcal{L} is conditionally complete if $\wedge X$ and $\bigvee X$ exist for all bounded $X \subseteq \mathcal{L}$.
- If \mathcal{L} is a (complete) lattice or an inf-semilattice then \mathcal{L}^{n} is also a (complete) lattice or an inf-semilattice, respectively.

Erosions and Openings on Inf-semilattice

An operator \mathcal{E} in Inf-semilattice \mathcal{L} is an erosion \Leftrightarrow for non empty collection $\left\{x_{i}\right\} \subseteq \mathcal{L}$:

$$
\mathcal{E}\left(\bigwedge_{i} x_{i}\right)=\bigwedge_{i} \mathcal{E}\left(x_{i}\right)
$$

Propositions [1]

- Erosion in Inf- semilattices are increasing, i.e $X \leq Y \Rightarrow \mathcal{E}(X) \leq \mathcal{E}(Y)$.
- If $\left\{\mathcal{E}_{i}\right\}$ is a non- empty collection of erosions on a complete inf-semilattice \mathcal{L}, then the operator \mathcal{E} defined by $\mathcal{E}(x) \triangleq \bigwedge_{i} \mathcal{E}_{i}(x)$ for all $x \in \mathcal{L}$ is also an erosion.

Opening

An operator γ on inf-semilattice \mathcal{L} is an algebraic opening \Leftrightarrow it is idempotent $(\gamma \gamma=\gamma)$, increasing, and anti-extensive $(\gamma(x) \leq \boldsymbol{x})$.

Definition

In a complete inf-semilattice \mathcal{L}, the morphological openings $\gamma_{\mathcal{E}}$ associated to an erosion \mathcal{E} is defined for any $x \in \mathcal{L}$ by

$$
\gamma_{\epsilon}(x) \triangleq \bigwedge\{y \in \mathcal{L}: \mathcal{E}(x) \leq \mathcal{E}(y)\}
$$

Since this set is non-empty, so the infimum of a non-empty set is always exist and unique in complete Inf-semilattice.

Proposition

(1) For any erosion \mathcal{E} in a complete inf-semilattice $\mathcal{L}, \mathcal{E} \gamma_{\mathcal{E}}=\mathcal{E}$.
(2) The morphological opening in an complete inf-semilattice is an algebraic opening.

Examples of Complete Inf-Semilattice

Difference Semilattices:

A Set \mathcal{L} is called difference semilattice;

- It is composed of functions $f: E \rightarrow R$, where E is an Euclidean space and $R=\mathbb{R}$ or \mathbb{Z}.
- It is associated with the partial ordering \preceq, i.e $\forall f, g$ given by

$$
f \preceq g \Leftrightarrow \forall x \begin{cases}g(x) \geq f(x) \geq 0 & \text { if } g(x) \geq 0 \\ g(x) \leq f(x) \leq 0 & \text { if } g(x)<0\end{cases}
$$

Geometrically

It is the concatenation of two chains $\left(\mathbb{R}_{-}, \geq\right)$and $\left(\mathbb{R}_{+}, \leq\right)$.

The least element 0 is the function $0(x)=0$.

Examples of Complete Inf-Semilattice

- Consider a complex plane \mathbb{C} as an (infinite) union of chains $\mathbb{C}_{\alpha}=\left\{r e^{i \alpha} \mid r \geq 0\right\}$ ordered by the magnitude of the modulus.
Thus, given two elements $w, z \in \mathbb{C}$, we have

$$
w \preceq z \Leftrightarrow\left\{\begin{array}{l}
\arg w=\arg z \\
|w| \leq|z|
\end{array}\right.
$$

- The family of all finite subsets of an infinite set E provided with the set inclusion as partial ordering.

Infimum and Supremum operation on CISL

Infimum

For any f and g in \mathcal{L}, the 人 is given by

$$
(f \text { 人 } g)(x)= \begin{cases}\min \{f(x), g(x)\} & \text { if } f(x), g(x) \geq 0 \\ \max \{f(x), g(x)\} & \text { if } f(x), g(x) \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

supremum

For any f and g in \mathcal{L}, the \curlyvee is given by

$$
(f \curlyvee g)(x)= \begin{cases}\max \{f(x), g(x)\} & \text { if } f(x), g(x) \geq 0 \\ \min \{f(x), g(x)\} & \text { if } f(x), g(x) \leq 0 \\ \text { Non existent, } & \text { otherwise }\end{cases}
$$

Definitions

let (\mathcal{L}, \leq) be a lattice. An element $r \in \mathcal{L}$ is called reference element if for every two elements $x, y \in \mathcal{L}$ we have

$$
x \wedge r=y \wedge r \text { and } x \vee r=y \vee r \Longleftrightarrow x=y
$$

Let \mathcal{L} be a lattice and $r \in \mathcal{L}$ a fixed element. Define the binary relation \preceq_{r} on $\mathcal{L} \times \mathcal{L}$ by

$$
x \preceq_{r} y \text { If }\left\{\begin{array}{l}
r \wedge y \leq r \wedge x \\
r \vee y \geq r \vee x
\end{array}\right.
$$

Examples of Complete Inf-Semilattice

Reference Semilattices

Another example of complete inf semilattice, called reference semilattice, consists of real functions. A reference semilattice \mathcal{L}, the partial ordering \preceq_{r} is defined by

$$
f \preceq_{r} g \Leftrightarrow \forall x \begin{cases}g(x) \geq f(x) \geq r(x), & \text { if } g(x) \geq r(x) \\ g(x) \leq f(x) \leq r(x), & \text { if } g(x)<r(x)\end{cases}
$$

Infimum
For any f and g in \mathcal{L}, the $人$ is given by

$$
(f \text { 人 } g)(x)= \begin{cases}\min \{f(x), g(x)\} & \text { if } f(x), g(x) \geq r(x) \\ \max \{f(x), g(x)\} & \text { if } f(x), g(x) \leq r(x) \\ r(x) & \text { otherwise }\end{cases}
$$

Gemotrically representation

Figure: The black line repersent Infimum.

supremum

For any f and g in \mathcal{L}, the \curlyvee is given by

$$
(f \curlyvee g)(x)= \begin{cases}\max \{f(x), g(x)\} & \text { if } f(x), g(x) \geq r(x) \\ \min \{f(x), g(x)\} & \text { if } f(x), g(x) \leq r(x) \\ \text { Non existent, } & \text { otherwise }\end{cases}
$$

Adjunctions on Complete infsemilattice
An operator $\mathcal{E}: \mathcal{L} \rightarrow \mathcal{M}$ ，where both \mathcal{L} and \mathcal{M} are cisl＇s is an erosion if

$$
\mathcal{E}\left(人_{i \in I} x_{i}\right)=人_{i \in I} \mathcal{E}\left(x_{i}\right) .
$$

for all nonempty collection $\left\{x_{i}\right\}$ ．
The set $\mathcal{M}[\mathcal{E}]$ defined by

$$
\mathcal{M}[\mathcal{E}]=\{y \in \mathcal{M} \mid \exists x \in \mathcal{L}: y \preceq \mathcal{E}(x)\}
$$

Thus dilation $\delta=\Delta(\mathcal{E})$ is defined by

$$
\delta(y)=人\{x \in \mathcal{L} \mid y \preceq \mathcal{E}(x)\}, y \in \mathcal{M}[\mathcal{E}] .
$$

Then the pair (\mathcal{E}, δ) is an adjunction on from \mathcal{L} to $\mathcal{M}[\mathcal{E}]$ ．

Proposition

Let \mathcal{L}, \mathcal{M} be cisl's and \mathcal{N} a poset. Assume that $\mathcal{E}_{1}: \mathcal{L} \rightarrow \mathcal{M}$ and $\mathcal{E}_{2}: \mathcal{M} \rightarrow \mathcal{N}$ are erosions, and that $\mathcal{E}=\mathcal{E}_{2} \mathcal{E}_{1}$. Then \mathcal{E} is an erosion from \mathcal{L} into \mathcal{N} and
(1) $\mathcal{N}[\mathcal{E}] \subseteq \mathcal{N}\left[\mathcal{E}_{2}\right]$;
(2) $\Delta\left(\mathcal{E}_{2}\right)$ maps $\mathcal{N}[\mathcal{E}]$ into $\mathcal{M}\left[\mathcal{E}_{1}\right]$;
(3) $\Delta\left(\mathcal{E}_{1}\right) \Delta\left(\mathcal{E}_{2}\right)=\Delta(\mathcal{E})$ on $\mathcal{N}[\mathcal{E}]$.

Proof.

We write $\delta_{i}=\Delta\left(\mathcal{E}_{i}\right)$ for $i=1,2$ and $\delta=\Delta(\mathcal{E})$.
(1) $z \in \mathcal{N}[\mathcal{E}] \Rightarrow z \preceq \mathcal{E}_{2} \mathcal{E}_{1}(x)$ for some $x \in \mathcal{L} . \Rightarrow z \in \mathcal{N}\left[\mathcal{E}_{2}\right]$.
(2) $z \in \mathcal{N}[\mathcal{E}]$ means $z \preceq \mathcal{E}_{2} \mathcal{E}_{1}(x)$ for some $x \in \mathcal{L}$, Furthermore

$$
\delta_{2}(z)=人\left\{y \in \mathcal{M} \mid z \preceq \mathcal{E}_{2}(y)\right\},
$$

we derive that $\delta_{2}(z) \preceq \mathcal{E}_{1}(x) \Rightarrow \delta_{2}(z) \in \mathcal{M}\left[\mathcal{E}_{1}\right]$.
(1) For $x \in \mathcal{L}$ and $z \in \mathcal{N}[\mathcal{E}]$ we have,

$$
\begin{aligned}
z \preceq \mathcal{E}_{2} \mathcal{E}_{1}(x) & \Leftrightarrow \delta_{2}(z) \preceq \mathcal{E}_{1}(x)\left[\text { since } z \in \mathcal{N}\left[\mathcal{E}_{2}\right] \text { by }(i)\right] \\
& \Leftrightarrow \delta_{1} \delta_{2}(z) \preceq x\left[\operatorname{since} \delta_{2}(z) \in \mathcal{M}\left[\mathcal{E}_{1}\right] \text { by }(i i)\right]
\end{aligned}
$$

We used that $\left(\mathcal{E}_{2}, \delta_{2}\right)$ forms an adjunction between \mathcal{M} and $\mathcal{N}\left[\mathcal{E}_{2}\right]$, and that $\left(\mathcal{E}_{1}, \delta_{1}\right)$ is an adjunction between \mathcal{L} and $\mathcal{M}\left[\mathcal{E}_{1}\right]$. On the other hand,

$$
z \preceq \mathcal{E}_{2} \mathcal{E}_{1}(x)=\mathcal{E}(x) \Leftrightarrow \delta(z) \preceq x .
$$

This gives that $\delta=\delta_{1} \delta_{2}$ on $\mathcal{N}[\mathcal{E}]$.

Proposition

If $\left(\mathcal{E}, \delta_{1}\right)$ and $\left(\mathcal{E}, \delta_{2}\right)$ are adjunctions between \mathcal{L} and $\mathcal{M}[\mathcal{E}]$, then $\delta_{1}=\delta_{2}$ Proof For all $x \in \mathcal{M}[\mathcal{E}]$

$$
\delta_{1}(x) \preceq \delta_{1}(x) \Leftrightarrow x \preceq \mathcal{E} \delta_{1}(x) \Leftrightarrow \delta_{2}(x) \preceq \delta_{1}(x) \text {.Similarly } \delta_{1}(x) \preceq \delta_{2}(x) .
$$

Example

Let $\mathcal{L}=\mathcal{M}=\mathcal{N}=[-3,3]$ and define $\mathcal{E}_{1}=\mathcal{E}_{2}$ as in Fig. We have $\mathcal{M}\left[\mathcal{E}_{1}\right]=[-2,2]$ and $\mathcal{N}[\mathcal{E}]=[-1,1]$.

Figure: Composition of two erosions.

Invariance properties on CISL

consider the cisl $\mathcal{T}=\mathbb{R}_{0}$ with partial ordering \preceq_{0}. Define the family of mappings $\rho_{\nu}, \nu \in \mathbb{R}$ on \mathbb{R}_{0}.

$$
\rho_{\nu}(t)= \begin{cases}t+\nu & \text { if } t, t+\nu>0 \\ t-\nu & \text { if } t, t-\nu<0 \\ 0 & \text { otherwise }\end{cases}
$$

Proposition

The family ρ_{ν} satisfying the following properties
(1) $\rho_{0}=i d$
(2) $\rho_{\omega} \rho_{\nu}=\rho_{\nu+\omega}$ if $\nu, \omega \geq 0$
(3) $\rho_{-\omega} \rho_{-\nu}=\rho_{-\nu-\omega}$ if $\nu, \omega \geq 0$
(4) $\rho_{-\omega} \rho_{\nu}=\rho_{\nu-\omega}$ if $\nu, \geq \omega \geq 0$

Vertical Translation

Denote $\mathcal{F}_{r}(E, \mathcal{T})$ is the set of all functions $x: E \rightarrow \mathcal{T}$ provided with cisl ordering \preceq_{r}; here $r: E \rightarrow \mathcal{T}$. where $\mathcal{T}=\mathbb{R}_{0}$ or \mathbb{Z}_{0}. We define $\rho_{\nu}: \mathcal{F}_{r} \rightarrow \mathcal{F}_{r}$ by point wise application $\rho_{\nu}(x)(p)=\rho_{\nu}(x(p))$

$$
\rho_{\nu}(x(p))= \begin{cases}x(p)+\nu & \text { if } x(p), x(p)+\nu>r(p) \\ x(p)-\nu & \text { if } x(p), x(p)-\nu<r(p) \\ r(p) & \text { otherwise } .\end{cases}
$$

- The conditions $x(p)>r(p)$ and $x(P)<r(p)$ within the definition of ρ_{ν} are not closed under the reference cisl.
- The out put values corresponding to the above conditions do not necessarily converge to $r(p)$. As $x(p) \rightarrow r(p)$

Vertical Translation Geometrically

Figure: Vertical translation for $\nu>0$ and $\nu<0$.

Morphology on Semilattices

Vertical Translation

To obtain an erosion also for continuous, we define translation in this form

$$
\rho_{\nu}^{\epsilon}(x)(p)= \begin{cases}{\left[x 人 \rho_{\nu}(x)\right](p)} & \text { if } r(p)-\epsilon \prec x(p) \prec r(p)+\epsilon \\ \rho_{\nu}(x(p)) & \text { Otherwise }\end{cases}
$$

where $人$ represent the infimum of reference semilattice, and ϵ is some positive constant.

Proposition

The "translation" $\rho_{\nu}^{\epsilon}(x)$ is an erosion on \mathcal{F}_{r}.

Proof

Checking all possible situations leads us to the following logic table

Conditions	(1)	(2)	(1)=(2)
	$\left[\rho_{\nu}^{\epsilon}\left(\lambda_{i \in I} x_{i}\right)\right](p)$	$\left[\chi_{i \in I} \rho_{\nu}^{\epsilon}\left(x_{i}\right)\right](p)$	
$\chi_{i \in I} x_{i}(p) \geq r(p)+\epsilon$	$\rho_{\nu}\left(\chi_{i} x_{i}(p)\right)$	$\lambda_{i \in I} \rho_{\nu}\left(x_{i}(p)\right)$	true
$\lambda_{i} x_{i}(p) \leq r(p)-\epsilon$	$\rho_{\nu}\left(\lambda_{i} x_{i}(p)\right)$	$\lambda_{i} \rho_{\nu}\left(x_{i}(p)\right)$	true
$r(p)+\epsilon>\lambda_{i} x_{i}(p)>r(p)$	$\rho_{\nu}^{\epsilon}\left({ }_{1}{ }_{i} x_{i}(p)\right)$	$人_{i} \rho_{\nu}^{e}\left(x_{i}(p)\right)$	true
$r(p)-\epsilon<\lambda_{i} x_{i}(p)<r(p)$	$\rho_{\nu}^{\epsilon}\left(\chi_{i} x_{i}(p)\right)$	$人_{i} \rho_{\nu}^{\epsilon}\left(x_{i}(p)\right)$	true
$\lambda_{i} x_{i}(p)=r(p)$	r (p)	r (p)	true

Lemmas

（1）For any p and positive ϵ, X 人 $\rho_{\nu}^{\epsilon}(X)=X$ 人 $\rho_{\nu}(X)$ ．
（2）The operator X 人 $\rho_{\nu}(X)$ is an erosion，both in discrete and continuous cases．

Proof

The operator X 人 $\rho_{\nu}^{\epsilon}(X)$ is an erosion，since it consists of the infimum of two erosions．The identity operator and ρ_{ν}^{ϵ} ．Therefore，according to Proposition［1］，X 人 $\rho_{\nu}(X)$ is also an erosion．

Lattice Ordered Group

- A lattice that also represents a group such that every group translation $x \mapsto a+x+b$ is isotone is called an l-group.
- An l-group \mathbb{F} such that \mathbb{F} is a conditionally complete lattice is called a conditionally complete l-group.
- A complete lattice \mathbb{G} such that $\mathbb{F}=\mathbb{G} \backslash\{\bigvee \mathbb{G}, \bigwedge \mathbb{G}\}$ forms an l-group is called a complete l-group extension.

Definitions

Let \mathbb{F} be a conditionally complete l-group.
(1) If $\mathbb{F}^{+}=\{x \in \mathbb{F}: 0 \leq x\}$ then $\left(\mathbb{F}^{+}, \leq\right)$is a cisl.
(2) The positive and negative parts of $x \in \mathbb{F}$ are resp. $x^{+}=x \vee 0$ and $x^{-}=-(x \wedge 0)$
(8) These expression are equivalent. (i) $x \wedge y=0$ (ii) $x+y=x \vee y$ (iii) $x=(x-y)^{+}$and $y=(x-y)^{-}$.

Constructing the cisls $\mathbb{F}_{0}=(\mathbb{F}, \preceq)$ and $\mathbb{F}_{r}=\left(\mathbb{F}, \preceq_{r}\right)$

Definitions

(1) A pair of operators ψ^{+}, ψ^{-}is called disjointness-preserving if $x \wedge y=0$ implies that $\psi^{+}(x) \wedge \psi^{-}(y)=0 \forall x, y \in \mathbb{F}^{+}$.
(3) $r \in \mathbb{F}$ is called a reference element if $\forall x, y \in \mathbb{F}$:

$$
(x-r)^{+}=(y-r)^{+} \text {and }(x-r)^{-}=(y-r)^{-} \Leftrightarrow x=y .
$$

(0) Let " \preceq " and " \preceq " be defined as follows $\forall x, y, r \in \mathbb{F}$:

$$
\begin{aligned}
& x \preceq y \Leftrightarrow x^{+} \leq y^{+} \text {and } x^{-} \leq y^{-}, \\
& x \preceq r y \Leftrightarrow(x-r)^{+} \leq(y-r)^{+} \text {and }(x-r)^{-} \leq(y-r)^{-} .
\end{aligned}
$$

(9) Define a new operator ψ on (\mathbb{F}, \preceq) is given by

$$
\psi(x)=\psi^{+}\left(x^{+}\right)-\psi^{-}\left(x^{-}\right) .
$$

The cisls $\mathbb{F}_{0}=(\mathbb{F}, \preceq)$ and $\mathbb{F}_{r}=\left(\mathbb{F}, \preceq_{r}\right)$

Facts

$\left(\mathbb{F}^{+}, \leq\right), \mathbb{F}_{0}=\left(\mathbb{F}, \underline{)}\right.$) are cisls and $人_{i \in I} x_{i}=\bigwedge_{i \in I} x_{i}^{+}-\bigwedge_{i \in I} x_{i}^{-}$.
Commutative Diagram
$x \mapsto x+r$ and $x \mapsto x-r$ represent cisl isomorphisms. We have

$$
\begin{aligned}
& \mathbb{F}_{r} \xrightarrow{\psi} \mathbb{F}_{r} \\
& x \longmapsto x-r \downarrow \quad \uparrow x \longmapsto x+r \\
& \mathbb{F}_{0} \longrightarrow \mathbb{F}_{0}
\end{aligned}
$$

proposition

If ψ^{+}, ψ^{-}are disjointness preserving, then the following holds.
(1) If ψ^{+}, ψ^{-}are increasing on (\mathbb{F}^{+}, \leq), then ψ is increasing on (\mathbb{F}, \preceq).
(2) If $\psi^{+}=\psi^{-}$then ψ is self dual, i.e, $\psi(-x)=-\psi(x)$.
(3) If ψ^{+}, ψ^{-}are anti-extensive on \mathbb{F}^{+}, then ψ is anti-extensive on (\mathbb{F}, \preceq).
(4) If ψ^{+}, ψ^{-}are idempotent then ψ is also idempotent.

Max Product, Min Product, and Conjugate
Let \mathbb{F} be a conditional complete l-group. Let $A \in \mathbb{F}^{m \times n}$ e $B \in \mathbb{F}^{n \times p}$.

- $C=A \boxtimes B$ - max product of A and $B: c_{i j}=\bigvee_{k=1}^{n}\left(a_{i k}+b_{k j}\right)$.
- $D=A \boxtimes B$ - min product of A and $B: d_{i j}=\bigwedge_{k=1}^{n}\left(a_{i k}+b_{k j}\right)$
- A^{*} - conjugate of $A: A^{*}=-A^{T}$

Max product, Min product with reference function

Max product, Min product
Let \mathbb{G} be a complete \mathbb{L}-group extension. Let $A \in \mathbb{G}^{m \times p}$ and $B \in \mathbb{G}^{p \times n}$.
(1) The max-product of A and B is given by

$$
C=A \boxtimes{ }_{r} B \Longleftrightarrow c_{i j}=\bigvee_{\xi=1}^{p} r\left(a_{i \xi}+b_{\xi j}\right)
$$

(2) The min-product of A and B is given by

$$
C=A \boxtimes{ }_{r} B \Longleftrightarrow c_{i j}=\widehat{\beta=1}_{p} r\left(a_{i \xi} \dot{+} b_{\xi j}\right) .
$$

In this case we assume that $\mathbb{G}=\mathbb{R} \cup\{-\infty,+\infty\}$

Autoassociative Lattice Memories

Autoassociative Memories
Given a set $\left\{x^{1} \ldots x^{k}\right\}$, an AM is a mapping \mathcal{A} such that $\mathcal{M}\left(x^{\xi}\right)=x^{\xi}$. Furthermore, $\mathcal{M}\left(\widetilde{x}^{\xi}\right)=x^{\xi}$ for noise or incomplete version \widetilde{x}^{ξ} of x^{ξ}.

Characteristics
(1) They exhibit optimal absolute storage capacity.
(2) They exhibit one step convergence when employed with feedback.

A MAM on the cisl $\left(\mathbb{F}^{n}, \preceq\right)$

Notations

Let \mathbb{F} be a conditionally complete l-group and $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \in \mathbb{F}^{n}$. Let $X^{+}=\left[\left(\mathbf{x}^{1}\right)^{+}, \ldots,\left(\mathbf{x}^{k}\right)^{+},\left(\mathbf{x}^{1}\right)^{-}, \ldots,\left(\mathbf{x}^{k}\right)^{-}\right] \in \mathbb{F}^{n \times 2 k}$ (the ξ th column is $\left(\mathbf{x}^{\xi}\right)^{+}$and the $(\xi+k)$ th column is $\left.\left(\mathbf{x}^{\xi}\right)^{-}\right)$.

Theorem

If $M_{X X}^{+}$denotes the matrix $M_{X^{+} X^{+}} \in \mathbb{F}^{n \times n}$ then an anti-extensive and disjointness-preserving erosion on the cisl $\left(\mathbb{F}^{n}\right)^{+}$is given by

$$
\mathcal{M}_{X X}^{+}(\mathbf{x})=M_{X X}^{+} \boxtimes \mathbf{x} \forall \mathbf{x} \in\left(\mathbb{F}^{n}\right)^{+}
$$

The erosion $\mathcal{M}_{X X}^{+}$on the cisl $\left(\left(\mathbb{F}^{n}\right)^{+}, \leq\right)$yields an anti-extensive erosion $\mathcal{M}_{X X}$ on the cisl $\left(\mathbb{F}^{n}, \preceq\right)$ that is given as follows:

$$
\mathcal{M}_{X X}(\mathbf{x})=M_{X X}^{+} \boxtimes \mathbf{x}^{+}-M_{X X}^{+} \boxtimes \mathbf{x}^{-} \forall \mathbf{x} \in \mathbb{F}^{n}
$$

Definition of fixed point
A vector $\mathbf{x} \in \mathbb{F}^{n}$ is called a fixed point of $\mathcal{M}_{X X} \Longleftrightarrow \mathcal{M}_{X X}(\mathbf{x})=\mathbf{x}$. Denote the set of finite fixed points of $\mathcal{M}_{X X}$ by using the symbols $F\left(\mathcal{M}_{X X}\right)$. The following Corollary represent that the absolute storage capacity of $\mathcal{M}_{X X}$ is unlimited.

Corollary

Let $X^{+} \in \mathbb{F}^{n \times 2 k}$. The set $F\left(\mathcal{M}_{X X}\right)$ consist of all

$$
\mathbf{y}=\mathcal{M}_{X X}(\mathbf{x})=M_{X X}^{+} \boxtimes \mathbf{x}^{+}-M_{X X}^{+} \boxtimes \mathbf{x}^{-}
$$

such that $\mathbf{x} \in \mathbb{F}^{n}$. This Implies that $\mathbf{y} \preceq \mathbf{x}$

A MAM on the cisl $\left(\mathbb{F}^{n}, \preceq\right)$

Lemma

Suppose $X \in \mathbb{F}^{n \times k}$. The matrix $M_{\chi x}^{+}$has a zero diagonal and non negative entries. If $\mathbf{x}, \mathbf{y} \in \mathbb{F}^{n}$ are fixed points of $\mathcal{M}_{X X}$, then $-\mathbf{x}, \mathbf{x} \curlywedge \mathbf{y}$, $\mathbf{x} \curlyvee \mathbf{y}$ (same side of reference) are fixed points of $\mathcal{M}_{X X}$.
proof

$$
\begin{aligned}
\mathcal{M}_{X X}(-\mathbf{x}) & =M_{X X}^{+} \boxtimes(-\mathbf{x})^{+}-M_{X X}^{+} \boxtimes(-\mathbf{x})^{-} \\
& =M_{X X}^{+} \boxtimes \mathbf{x}^{-}-M_{X X}^{+} \boxtimes \mathbf{x}^{+} \\
& =\mathbf{x}^{-}-\mathbf{x}^{+}=-\left(\mathbf{x}^{+}-\mathbf{x}^{-}\right)=-\mathbf{x}
\end{aligned}
$$

Characterizations of fixed points

$$
\begin{aligned}
\mathcal{M}_{x x}(\mathbf{x} \text { 人 } \mathbf{y}) & =M_{x X}^{+} \boxtimes(\mathbf{x} \wedge \mathbf{y})^{+}-M_{x x}^{+} \boxtimes(\mathbf{x} \wedge \mathbf{y})^{-} \\
& =M_{x x}^{+} \boxtimes\left(\mathbf{x}^{+} \wedge \mathbf{y}^{+}\right)-M_{x x}^{+} \boxtimes\left(\mathbf{x}^{-} \vee \mathbf{y}^{-}\right) \\
& =\left(M_{x x}^{+} \boxtimes \mathbf{x}^{+}\right) \wedge\left(M_{x x}^{+} \boxtimes \mathbf{y}^{+}\right)-\left(M_{x x}^{+} \boxtimes \mathbf{x}^{-}\right) \vee\left(M_{x X}^{+} \boxtimes \mathbf{y}^{-}\right. \\
& =\mathbf{x}^{+} \wedge \mathbf{y}^{+}-\mathbf{x}^{-} \vee \mathbf{y}^{-}=(\mathbf{x} \wedge \mathbf{y})^{+}-(\mathbf{x} \wedge \mathbf{y})^{-}=\mathbf{x} \text { 人 } \mathbf{y}=\mathbf{z}
\end{aligned}
$$

If the component of \mathbf{x}, and \mathbf{y} have same side with reference zero.
Then the supremum is exist. Otherwise the supremum does not exist.

$$
\begin{aligned}
\mathcal{M}_{x x}(\mathbf{x} \curlyvee \mathbf{y}) & =M_{x x}^{+} \boxtimes(\mathbf{x} \vee \mathbf{y})^{+}-M_{x x}^{+} \boxtimes(\mathbf{x} \vee \mathbf{y})^{-} \\
& =M_{x x}^{+} \boxtimes\left(\mathbf{x}^{+} \vee \mathbf{y}^{+}\right)-M_{x x}^{+} \boxtimes\left(\mathbf{x}^{-} \wedge \mathbf{y}^{-}\right) \\
& =\left(M_{x x}^{+} \boxtimes \mathbf{x}^{+}\right) \vee\left(M_{x x}^{+} \boxtimes \mathbf{y}^{+}\right)-\left(M_{x x}^{+} \boxtimes \mathbf{x}^{-}\right) \wedge\left(M_{x x}^{+} \boxtimes \mathbf{y}^{-}\right. \\
& \left.=\mathbf{x}^{+} \vee \mathbf{y}^{+}-\left(\mathbf{x}^{-} \wedge \mathbf{y}^{-}\right)=(\mathbf{x} \vee \mathbf{y})^{+}-(\mathbf{x} \vee \mathbf{y})^{-}=\mathbf{x}^{-}\right) \mathbf{y}
\end{aligned}
$$

Lemma

If \mathbf{x}_{1} and $\mathbf{x}_{2} \in\left(\mathbb{F}^{n}\right)^{+}$are disjoint fixed points of M_{X}^{+}, then $\mathbf{x}_{1}-\mathbf{x}_{2} \in \mathbb{F}^{n}$ are also fixed points of $\mathcal{M}_{X X}$.

Proof

Suppose \mathbf{x}_{1} and $\mathbf{x}_{2} \in\left(\mathbb{F}^{n}\right)^{+}$are disjoint fixed points of $M_{X X}^{+}$.

$$
\begin{aligned}
\mathcal{M}_{X X}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) & =M_{X X}^{+} \boxtimes\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{+}-M_{X X}^{+} \boxtimes\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{-} \\
& =M_{X X}^{+} \boxtimes \mathbf{x}_{1}-M_{X X}^{+} \boxtimes \mathbf{x}_{2}=\mathbf{x}_{1}-\mathbf{x}_{2}
\end{aligned}
$$

Characterizations of fixed points

Theorem

(1) If \mathbf{x} is a fixed point translated by positive constant a, then $\mathcal{M}_{X X}(a+\mathbf{x}) \longrightarrow \mathcal{M}_{X X}(\mathbf{x})=\mathbf{x}$.
(2) If \mathbf{x} is a fixed point translated by negative constant a, then

$$
\mathcal{M}_{X X}(a+\mathbf{x})=(a+\mathbf{x}) .
$$

Proof

(1) For $a>0$

$$
\begin{aligned}
\mathcal{M}_{X x}(a+\mathbf{x}) & =M_{X x}^{+} \boxtimes(a+\mathbf{x})^{+}-M_{X x}^{+} \boxtimes(a+\mathbf{x})^{-} \\
& \cong \mathbf{x}^{+}-\mathbf{x}^{-}=\mathbf{x} .
\end{aligned}
$$

$$
\text { since }(\mathbf{x})^{+} \leq(a+\mathbf{x})^{+} \Longleftrightarrow\left(x_{j}\right)^{+} \leq\left(a+x_{j}\right)^{+} \forall j=1: n
$$

$$
\begin{gathered}
\wedge_{j=1}^{n}\left(m_{i j}+\left(x_{j}\right)^{+}\right) \leq \wedge_{j=1}^{n}\left(m_{i j}+\left(x_{j}+a\right)^{+}\right) \\
\wedge_{j=1}^{n}\left(m_{i j}+\left(x_{j}+a\right)^{+}\right)= \begin{cases}0=\left(x_{k}\right)^{+} & \text {if }\left(a+x_{k}\right)^{+}=0 \\
\left(x_{s}\right)^{+} & \text {if }\left(a+x_{s}\right)^{+}=\left(x_{s}\right)^{+} \\
m_{t j}=\left(x_{t}\right)^{+} & \text {if }\left(a+x_{t}\right)^{+}>\left(x_{t}\right)^{+} \text {where } t \neq j\end{cases} \\
\left(x_{i}\right)^{+}=\bigcap_{j=1}^{n}\left(m_{i j}+\left(x_{j}\right)^{+}\right) \leq \bigwedge_{j=1}^{n}\left(m_{i j}+\left(x_{j}+a\right)^{+}\right) \cong\left(x_{i}\right)^{+} \\
\Longleftrightarrow M_{\overline{ \pm} \boxtimes}^{ \pm}(a+\mathbf{x})^{+} \cong \mathbf{x}^{+} .
\end{gathered}
$$

Similarly $\quad M_{\chi x}^{ \pm} \boxtimes(a+\mathbf{x})^{-} \cong \mathbf{x}^{-}$.
(2) If $a<0$

$$
\begin{aligned}
\mathcal{M}_{X X}(a+\mathbf{x}) & =M_{x x}^{+} \boxtimes(a+\mathbf{x})^{+}-M_{X X}^{+} \boxtimes(a+\mathbf{x})^{-} \\
& =(a+\mathbf{x})^{+}-(a+\mathbf{x})^{-}=(a+\mathbf{x}) .
\end{aligned}
$$

Since $(\mathbf{x})^{+}=M_{X X}^{+} \boxtimes(\mathbf{x})^{+} \geq(a+\mathbf{x})^{+} \geq M_{X X}^{+} \boxtimes(a+\mathbf{x})^{+}$. The pattern $M_{X X}^{+} \boxtimes(a+\mathbf{x})^{+}$is a fixed point of $M_{X X}^{+}$. Also $M_{X X}^{+} \boxtimes(a+\mathbf{x})^{+}$is the greatest fixed point, which is less than or equal to $(a+\mathbf{x})^{+}$, so they must be $M_{X X}^{+} \boxtimes(a+\mathbf{x})^{+}=(a+\mathbf{x})^{+}$. Similarly $M_{X X}^{+} \boxtimes(a+\mathbf{x})^{-}=(a+\mathbf{x})^{-}$.

Example

$$
X^{+}=\left[\begin{array}{llll}
0 & 0 & 1 & 3 \\
2 & 0 & 0 & 2 \\
0 & 0 & 5 & 4 \\
0 & 6 & 6 & 0 \\
3 & 4 & 0 & 0 \\
7 & 1 & 0 & 0
\end{array}\right] M_{X X}^{+}=\left[\begin{array}{llllll}
0 & 1 & 0 & 3 & 3 & 3 \\
2 & 0 & 2 & 2 & 2 & 2 \\
4 & 5 & 0 & 4 & 5 & 5 \\
6 & 6 & 6 & 0 & 6 & 6 \\
4 & 4 & 4 & 3 & 0 & 3 \\
7 & 5 & 7 & 7 & 4 & 0
\end{array}\right]
$$

Since $\mathbf{x}=[-3-2-4641]^{t}$ is a fixed point of $\mathcal{M}_{X X}$. Here $\mathcal{M}_{X X}(1+\mathbf{x})=\mathbf{x}$ and $\mathcal{M}_{X X}(-1+\mathbf{x})=-1+\mathbf{x}$

$$
1+\left[\begin{array}{c}
-3 \\
-2 \\
-4 \\
6 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-3 \\
-5 \\
7 \\
5 \\
1
\end{array}\right],-1+\left[\begin{array}{c}
-3 \\
-2 \\
-4 \\
6 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
-3 \\
5 \\
3 \\
0
\end{array}\right]
$$

An AM with Varying Reference Element

Notations
Let $\rho: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be a "reference function". Consider $X_{\rho}^{+} \in \mathbb{F}^{n \times 2 k}$ given by $\left[\left(\mathbf{x}^{1}-\rho\left(\mathbf{x}^{1}\right)\right)^{+}, \ldots,\left(\mathbf{x}^{k}-\rho\left(\mathbf{x}^{k}\right)\right)^{+},\left(\mathbf{x}^{1}-\rho\left(\mathbf{x}^{1}\right)\right)^{-}, \ldots,\left(\mathbf{x}^{k}-\rho\left(\mathbf{x}^{k}\right)\right)^{-}\right]$.

Theorem
If $M_{X X}^{\rho}$ denotes the matrix $M_{X_{\rho}^{+} X_{\rho}^{+}} \in \mathbb{F}^{n \times n}$ then we define:

$$
\mathcal{M}_{\rho}(\mathbf{x})=M_{X X}^{\rho} \boxtimes(\mathbf{x}-\rho(\mathbf{x}))^{+}-M_{X X}^{\rho} \boxtimes(\mathbf{x}-\rho(\mathbf{x}))^{-}+\rho(\mathbf{x})
$$

For all $X \in \mathbb{F}^{n \times k}, \mathbf{x} \in \mathbb{F}^{n}$ we have:

$$
\mathcal{M}_{\rho}\left(\mathbf{x}^{\xi}\right)=\mathbf{x}^{\xi} \forall \xi=1, \ldots, k
$$

Image recalled by the Median filter and \mathcal{M}_{ρ}

Figure:

Further Research Issues

- To choose of ρ in application of \mathcal{M}_{ρ}
- To Show any minimax combination of input pattern is a fixed point.
- To produced a new Auto associative memory model for Commutative complete lattice ordered double Monoid.

