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Introduction

Some Basic Definitions

Let L be a partially ordered set (poset) and let {x , y}, X ,
{xj : j ∈ J} ⊆ L.

x ∧ y ,
∧

X ,
∧

j∈J xj denote the infimum of these sets.
x ∨ y ,

∨
X ,
∨

j∈J xj denote the supremum of these sets.

A poset L is an inf-semilattice if ∃ x ∧ y ∈ L ∀x , y ∈ L. If, in
addition, ∃ x ∨ y ∈ L ∀ x , y ∈ L then L is a lattice.
An inf-semilattice L is complete if ∃

∧
X ∈ L ∀ ∅ 6= X ⊆ L. A lattice

L is complete if ∃
∧

X ,
∨

X ∈ L for all X ⊆ L.
A lattice L is conditionally complete if

∧
X and

∨
X exist for all

bounded X ⊆ L.
If L is a (complete) lattice or an inf-semilattice then Ln is also a
(complete) lattice or an inf-semilattice, respectively.
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Introduction

Erosions and Openings on Inf-semilattice
An operator E in Inf-semilattice L is an erosion⇔ for non empty
collection {xi} ⊆ L :

E

(∧
i

xi

)
=
∧

i

E (xi)

Propositions [1]
Erosion in Inf- semilattices are increasing, i.e
X ≤ Y ⇒ E(X ) ≤ E(Y ).

If {Ei} is a non- empty collection of erosions on a complete
inf-semilattice L, then the operator E defined by E(x)

∆
=
∧

i Ei (x)
for all x ∈ L is also an erosion.

Opening
An operator γ on inf-semilattice L is an algebraic opening⇔ it is
idempotent (γγ = γ), increasing, and anti-extensive (γ(x) ≤ x) .
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Introduction

Definition
In a complete inf-semilattice L, the morphological openings γE
associated to an erosion E is defined for any x ∈ L by

γε(x)
∆
=
∧
{y ∈ L : E(x) ≤ E(y)}

Since this set is non-empty, so the infimum of a non-empty set is
always exist and unique in complete Inf-semilattice.

Proposition
1 For any erosion E in a complete inf-semilattice L, EγE = E .
2 The morphological opening in an complete inf-semilattice is an

algebraic opening.
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Introduction

Examples of Complete Inf-Semilattice

Difference Semilattices:
A Set L is called difference semilattice;

It is composed of functions f : E → R, where E is an Euclidean
space and R = Ror Z.
It is associated with the partial ordering �, i.e ∀ f ,g given by

f � g ⇔ ∀x

{
g(x) ≥ f (x) ≥ 0 if g(x) ≥ 0
g(x) ≤ f (x) ≤ 0 if g(x) < 0

Geometrically

It is the concatenation of two chains (R−,≥) and (R+,≤).

0

The least element 0 is the function 0(x) = 0.
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Introduction

Examples of Complete Inf-Semilattice

Consider a complex plane C as an (infinite) union of chains
Cα =

{
reiα |r ≥ 0

}
ordered by the magnitude of the modulus.

Thus, given two elements w , z ∈ C, we have

w � z ⇔

{
argw = argz
|w | ≤ |z|

The family of all finite subsets of an infinite set E provided with the
set inclusion as partial ordering.
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Introduction

Infimum and Supremum operation on CISL

Infimum
For any f and g in L, the

c
is given by

(
f
k

g
)

(x) =


min {f (x),g(x)} if f (x), g(x) ≥ 0
max {f (x),g(x)} if f (x), g(x) ≤ 0
0 otherwise

supremum

For any f and g in L, the
b

is given by

(
f
j

g
)

(x) =


max {f (x),g(x)} if f (x), g(x) ≥ 0
min {f (x),g(x)} if f (x), g(x) ≤ 0
Non existent , otherwise
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Introduction

Definitions
let (L,≤) be a lattice. An element r ∈ L is called reference element if
for every two elements x , y ∈ L we have

x ∧ r = y ∧ r and x ∨ r = y ∨ r ⇐⇒ x = y .

Let L be a lattice and r ∈ L a fixed element. Define the binary relation
�r on L × L by

x �r y If

{
r ∧ y ≤ r ∧ x
r ∨ y ≥ r ∨ x
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Introduction

Examples of Complete Inf-Semilattice

Reference Semilattices
Another example of complete inf semilattice, called reference
semilattice, consists of real functions. A reference semilattice L, the
partial ordering �r is defined by

f �r g ⇔ ∀x

{
g(x) ≥ f (x) ≥ r(x), if g(x) ≥ r(x)

g(x) ≤ f (x) ≤ r(x), if g(x) < r(x)

Infimum
For any f and g in L, the

c
is given by

(
f
k

g
)

(x) =


min {f (x),g(x)} if f (x), g(x) ≥ r(x)

max {f (x),g(x)} if f (x), g(x) ≤ r(x)

r(x) otherwise
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Introduction

Gemotrically representation

Figure: The black line repersent Infimum.

supremum

For any f and g in L, the
b

is given by

(
f
j

g
)

(x) =


max {f (x),g(x)} if f (x), g(x) ≥ r(x)

min {f (x),g(x)} if f (x), g(x) ≤ r(x)

Non existent , otherwise
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Introduction

Adjunctions on Complete infsemilattice
An operator E : L →M, where both L andM are cisl’s is an erosion if

E(
k

i∈I

xi) =
k

i∈I

E(xi) .

for all nonempty collection {xi}.
The setM[E ] defined by

M[E ] = {y ∈M|∃x ∈ L : y � E(x)}

Thus dilation δ = ∆(E) is defined by

δ(y) =
k
{x ∈ L |y � E(x)} , y ∈M[E ].

Then the pair (E , δ) is an adjunction on from L toM[E ].
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Introduction

Proposition
Let L,M be cisl’s and N a poset. Assume that E1 : L →M and
E2 :M→N are erosions, and that E = E2E1. Then E is an erosion
from L into N and

1 N [E ] ⊆ N [E2];
2 ∆(E2) maps N [E ] intoM[E1];
3 ∆(E1)∆(E2) = ∆(E) on N [E ].

Proof.
We write δi = ∆(Ei) for i = 1,2 and δ = ∆(E).

1 z ∈ N [E ]⇒ z � E2E1(x) for some x ∈ L.⇒ z ∈ N [E2].

2 z ∈ N [E ] means z � E2E1(x) for some x ∈ L, Furthermore

δ2(z) =
k
{y ∈M|z � E2(y)} ,

we derive that δ2(z) � E1(x)⇒ δ2(z) ∈M[E1].
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Introduction

1 For x ∈ L and z ∈ N [E ] we have,

z � E2E1(x) ⇔ δ2(z) � E1(x) [since z ∈ N [E2] by (i)]

⇔ δ1δ2(z) � x [sinceδ2(z) ∈M[E1] by (ii)]

We used that (E2, δ2) forms an adjunction betweenM and N [E2],
and that (E1, δ1) is an adjunction between L andM[E1]. On the
other hand,

z � E2E1(x) = E(x)⇔ δ(z) � x .

This gives that δ = δ1δ2 on N [E ].

Proposition

If (E , δ1) and (E , δ2) are adjunctions between L andM[E ], then δ1 = δ2
Proof For all x ∈M[E ]

δ1(x) � δ1(x)⇔ x � Eδ1(x)⇔ δ2(x) � δ1(x).Similarly δ1(x) � δ2(x).
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Introduction

Example

Let L =M = N = [−3,3] and define E1 = E2 as in Fig. We have
M[E1] = [−2,2] and N [E ] = [−1,1].

3

2

1

0

−1

−2

−3 E1 E2

Figure: Composition of two erosions.
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Introduction

Invariance properties on CISL

consider the cisl T = R0 with partial ordering �0. Define the family of
mappings ρν , ν ∈ R on R0.

ρν (t) =


t + ν ift , t + ν > 0
t − ν ift , t − ν < 0
0 otherwise.

Proposition
The family ρν satisfying the following properties

1 ρ0 = id
2 ρωρν = ρν+ω if ν, ω ≥ 0
3 ρ−ωρ−ν = ρ−ν−ω if ν, ω ≥ 0
4 ρ−ωρν = ρν−ω if ν,≥ ω ≥ 0
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Introduction

Vertical Translation

Denote Fr (E , T ) is the set of all functions x : E → T provided with cisl
ordering �r ; here r : E → T . where T = R0 or Z0.
We define ρν : Fr → Fr by point wise application ρν(x)(p) = ρν (x(p))

ρν (x(p)) =


x(p) + ν ifx(p), x(p) + ν > r(p)

x(p)− ν ifx(p), x(p)− ν < r(p)

r(p) otherwise.

The conditions x(p) > r(p) and x(P) < r(p) within the definition of
ρν are not closed under the reference cisl.
The out put values corresponding to the above conditions do not
necessarily converge to r(p). As x(p)→ r(p)
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Introduction

Vertical Translation Geometrically

Figure: Vertical translation for ν > 0 and ν < 0.
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Introduction

Morphology on Semilattices

Vertical Translation
To obtain an erosion also for continuous, we define translation in this
form

ρεν (x) (p) =

{
[x

c
ρν (x)](p) if r(p)− ε ≺ x(p) ≺ r(p) + ε

ρν (x(p)) Otherwise

where
c

represent the infimum of reference semilattice, and ε is some
positive constant.

Sussner, Majid (Unicamp) AMs Based on Cisls FLINS 2015 20 / 40



Introduction

Proposition

The ”translation” ρεν (x) is an erosion on Fr .

Proof
Checking all possible situations leads us to the following logic table

Conditions (1) (2) (1)=(2)
[ρεν
(c

i∈I xi
)
](p) [

c
i∈I ρ

ε
ν (xi)](p)c

i∈I xi(p) ≥ r(p) + ε ρν (
c

i xi(p))
c

i∈I ρν (xi(p)) truec
i xi(p) ≤ r(p)− ε ρν (

c
i xi(p))

c
i ρν (xi(p)) true

r(p) + ε >
c

i xi(p) > r(p) ρεν (
c

i xi(p))
c

i ρ
ε
ν (xi(p)) true

r(p)− ε <
c

i xi(p) < r(p) ρεν (
c

i xi(p))
c

i ρ
ε
ν (xi(p)) truec

i xi(p) = r(p) r(p) r(p) true
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Introduction

Lemmas
1 For any p and positive ε, X

c
ρεν (X ) = X

c
ρν (X ).

2 The operator X
c
ρν (X ) is an erosion, both in discrete and

continuous cases.

Proof
The operator X

c
ρεν (X ) is an erosion, since it consists of the infimum

of two erosions. The identity operator and ρεν . Therefore, according to
Proposition[1], X

c
ρν (X ) is also an erosion.
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Introduction

Lattice Ordered Group
A lattice that also represents a group such that every group
translation x 7→ a + x + b is isotone is called an l-group.
An l-group F such that F is a conditionally complete lattice is
called a conditionally complete l-group.
A complete lattice G such that F = G \ {

∨
G,
∧

G} forms an
l-group is called a complete l-group extension.

Definitions
Let F be a conditionally complete l-group.

1 If F+ = {x ∈ F : 0 ≤ x} then (F+,≤) is a cisl.
2 The positive and negative parts of x ∈ F are resp. x+ = x ∨ 0 and

x− = −(x ∧ 0)

3 These expression are equivalent. (i) x ∧ y = 0 (ii) x + y = x ∨ y
(iii) x = (x − y)+ and y = (x − y)− .
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Introduction

Constructing the cisls F0 = (F,�) and Fr = (F,�r)

Definitions
1 A pair of operators ψ+, ψ− is called disjointness-preserving if

x ∧ y = 0 implies that ψ+(x) ∧ ψ−(y) = 0 ∀x , y ∈ F+.
2 r ∈ F is called a reference element if ∀x , y ∈ F:

(x − r)+ = (y − r)+ and (x − r)− = (y − r)− ⇔ x = y .

3 Let “�” and “�r ” be defined as follows ∀ x , y , r ∈ F:
x � y ⇔ x+ ≤ y+ and x− ≤ y−,
x �r y ⇔ (x − r)+ ≤ (y − r)+ and (x − r)− ≤ (y − r)−.

4 Define a new operator ψ on (F,�) is given by

ψ(x) = ψ+(x+)− ψ−(x−).
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Introduction

The cisls F0 = (F,�) and Fr = (F,�r)

Facts

(F+,≤), F0 = (F,�) are cisls and
c

i∈I xi =
∧

i∈I x+
i −

∧
i∈I x−i .

Commutative Diagram
x 7→ x + r and x 7→ x − r represent cisl isomorphisms. We have

Fr
ψ //

x 7−→ x − r
��

Fr

F0
ψ0

// F0

x 7−→ x + r
OO
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Introduction

proposition

If ψ+, ψ− are disjointness preserving, then the following holds.
1 If ψ+, ψ− are increasing on (F+,≤), then ψ is increasing on (F,�).
2 If ψ+ = ψ− then ψ is self dual, i.e, ψ(−x) = −ψ(x).

3 If ψ+, ψ− are anti-extensive on F+, then ψ is anti-extensive on
(F,�).

4 If ψ+, ψ− are idempotent then ψ is also idempotent.

Max Product, Min Product, and Conjugate

Let F be a conditional complete l-group. Let A ∈ Fm×n e B ∈ Fn×p.

C = A ∨� B - max product of A and B: cij =
∨n

k=1(aik + bkj ).

D = A ∧� B - min product of A and B: dij =
∧n

k=1(aik + bkj )

A∗ - conjugate of A: A∗ = −AT
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Introduction

Max product, Min product with reference function

Max product, Min product

Let G be a complete L-group extension. Let A ∈ Gm×p and B ∈ Gp×n.

1 The max-product of A and B is given by

C = A ∨� r B ⇐⇒ cij =

pj

ξ=1
r
(
aiξ + bξj

)
.

2 The min-product of A and B is given by

C = A ∧� r B ⇐⇒ cij =

pk

ξ=1
r
(
aiξ+́bξj

)
.

In this case we assume that G = R ∪ {−∞,+∞}
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Introduction

Autoassociative Lattice Memories

Autoassociative Memories

Given a set
{

x1...xk}, an AM is a mapping A such thatM
(
xξ
)

= xξ.
Furthermore,M

(
x̃ξ
)

= xξ for noise or incomplete version x̃ξ of xξ .

Characteristics

1 They exhibit optimal absolute storage capacity.
2 They exhibit one step convergence when employed with feedback.
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MAMs in cisls

A MAM on the cisl (Fn,�)

Notations

Let F be a conditionally complete l-group and x1, . . . ,xk ∈ Fn. Let
X + = [(x1)+, . . . , (xk )+, (x1)−, . . . , (xk )−] ∈ Fn×2k (the ξth column is
(xξ)+ and the (ξ + k)th column is (xξ)−).

Theorem

If M+
XX denotes the matrix MX +X + ∈ Fn×n then an anti-extensive and

disjointness-preserving erosion on the cisl (Fn)+ is given by

M+
XX (x) = M+

XX ∧� x ∀x ∈ (Fn)+ .

The erosionM+
XX on the cisl ((Fn)+,≤) yields an anti-extensive

erosionMXX on the cisl (Fn,�) that is given as follows:

MXX (x) = M+
XX ∧� x+ −M+

XX ∧� x− ∀x ∈ Fn .
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MAMs in cisls

Definition of fixed point

A vector x ∈ Fn is called a fixed point ofMXX ⇐⇒MXX (x) = x.
Denote the set of finite fixed points ofMXX by using the symbols
F (MXX ). The following Corollary represent that the absolute storage
capacity ofMXX is unlimited.

Corollary

Let X + ∈ Fn×2k . The set F (MXX ) consist of all

y =MXX (x) = M+
XX ∧� x+ −M+

XX ∧� x−

such that x ∈ Fn. This Implies that y � x
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Characterizations of fixed points

A MAM on the cisl (Fn,�)

Lemma

Suppose X ∈ Fn×k . The matrix M+
XX has a zero diagonal and non

negative entries. If x,y ∈ Fn are fixed points ofMXX , then −x, x
c

y,
x

b
y (same side of reference) are fixed points ofMXX .

proof

MXX (−x) = M+
XX ∧� (−x)+ −M+

XX ∧� (−x)−

= M+
XX ∧� x− −M+

XX ∧� x+

= x− − x+ = −
(
x+ − x−

)
= −x

.
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Characterizations of fixed points

Characterizations of fixed points

MXX (x
k

y) = M+
XX ∧� (x ∧ y)+ −M+

XX ∧� (x ∧ y)−

= M+
XX ∧�

(
x+ ∧ y+

)
−M+

XX ∧�
(
x− ∨ y−

)
=

(
M+

XX ∧� x+
)
∧
(
M+

XX ∧� y+
)
−
(
M+

XX ∧� x−
)
∨
(
M+

XX ∧� y−
)

= x+ ∧ y+ − x− ∨ y− = (x ∧ y)+ − (x ∧ y)− = x
k

y = z

If the component of x, and y have same side with reference zero.
Then the supremum is exist. Otherwise the supremum does not exist.

MXX (x
j

y) = M+
XX ∧� (x ∨ y)+ −M+

XX ∧� (x ∨ y)−

= M+
XX ∧�

(
x+ ∨ y+

)
−M+

XX ∧�
(
x− ∧ y−

)
=

(
M+

XX ∧� x+
)
∨
(
M+

XX ∧� y+
)
−
(
M+

XX ∧� x−
)
∧
(
M+

XX ∧� y−
)

= x+ ∨ y+ − (x− ∧ y−) = (x ∨ y)+ − (x ∨ y)− = x
j

y
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Characterizations of fixed points

Lemma

If x1 and x2 ∈ (Fn)+ are disjoint fixed points of M+
XX ,then x1 − x2 ∈ Fn

are also fixed points ofMXX .

Proof

Suppose x1 and x2 ∈ (Fn)+ are disjoint fixed points of M+
XX .

MXX (x1 − x2) = M+
XX ∧� (x1 − x2)+ −M+

XX ∧� (x1 − x2)−

= M+
XX ∧� x1 −M+

XX ∧� x2 = x1 − x2
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Characterizations of fixed points

Characterizations of fixed points

Theorem
1 If x is a fixed point translated by positive constant a, then
MXX (a + x) −→MXX (x) = x.

2 If x is a fixed point translated by negative constant a, then
MXX (a + x) = (a + x).

Proof
1 For a > 0

MXX (a + x) = M+
XX ∧� (a + x)+ −M+

XX ∧� (a + x)−

∼= x+ − x− = x.

since (x)+ ≤ (a + x)+ ⇐⇒ (xj)
+ ≤ (a + xj)

+ ∀ j = 1 : n
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Characterizations of fixed points

∧n
j=1
(
mij + (xj)

+
)
≤ ∧n

j=1
(
mij + (xj + a)+

)
n
∧

j=1

(
mij + (xj + a)+

)
=


0 = (xk )+ if(a + xk )+ = 0
(xs)+ if(a + xs)+ = (xs)+

mtj = (xt )
+ if(a + xt )

+ > (xt )
+wheret 6= j

(xi)
+ =

n
∧

j=1

(
mij + (xj)

+
)
≤

n
∧

j=1

(
mij + (xj + a)+

) ∼= (xi)
+

⇐⇒ M±XX ∧� (a + x)+ ∼= x+.

Similarly M±XX ∧� (a + x)− ∼= x−.
(2) If a < 0

MXX (a + x) = M+
XX ∧� (a + x)+ −M+

XX ∧� (a + x)−

= (a + x)+ − (a + x)− = (a + x).
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Characterizations of fixed points

Since (x)+ = M+
XX ∧� (x)+ ≥ (a + x)+ ≥ M+

XX ∧� (a + x)+.
The pattern M+

XX ∧� (a + x)+ is a fixed point of M+
XX . Also

M+
XX ∧� (a + x)+ is the greatest fixed point, which is less than or equal

to (a + x)+, so they must be M+
XX ∧� (a + x)+ = (a + x)+.

Similarly M+
XX ∧� (a + x)− = (a + x)−.
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Characterizations of fixed points

Example

X + =



0 0 1 3
2 0 0 2
0 0 5 4
0 6 6 0
3 4 0 0
7 1 0 0

M+
XX =



0 1 0 3 3 3
2 0 2 2 2 2
4 5 0 4 5 5
6 6 6 0 6 6
4 4 4 3 0 3
7 5 7 7 4 0


Since x = [−3 − 2 − 4 6 4 1]t is a fixed point ofMXX . Here
MXX (1 + x) = x andMXX (−1 + x) = −1 + x

1 +



−3
−2
−4
6
4
1

 =



−4
−3
−5
7
5
1

 ,−1 +



−3
−2
−4
6
4
1

 =



−2
−1
−3
5
3
0


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Characterizations of fixed points

An AM with Varying Reference Element

Notations

Let ρ : Fn → Fn be a “reference function”. Consider X +
ρ ∈ Fn×2k given

by [(x1 − ρ(x1))+, . . . , (xk − ρ(xk ))+, (x1 − ρ(x1))−, . . . , (xk − ρ(xk ))−].

Theorem
If Mρ

XX denotes the matrix MX +
ρ X +

ρ
∈ Fn×n then we define:

Mρ(x) = Mρ
XX ∧� (x− ρ(x))+ −Mρ

XX ∧� (x− ρ(x))− + ρ(x) ,

For all X ∈ Fn×k ,x ∈ Fn we have:

Mρ(xξ) = xξ ∀ξ = 1, . . . , k ,
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Characterizations of fixed points

Image recalled by the Median filter andMρ

Figure:
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Conclusion

Further Research Issues
To choose of ρ in application ofMρ

To Show any minimax combination of input pattern is a fixed point.
To produced a new Auto associative memory model for
Commutative complete lattice ordered double Monoid.
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