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Introduction

Some definitions on Morphological Operators

Erosion and Dilation

let L and M be complete lattices and ε, δ : L→M:
1 ε is called an (algebraic) erosion if ∀ J, ∀ xj ∈ L:

ε(
∧
j∈J

xj) =
∧
j∈J

ε(xj) .

2 δ is called an (algebraic) dilation if ∀, J, ∀ xj ∈ L:

δ(
∨
j∈J

xj) =
∨
j∈J

δ(xj) .

Marcos, Majid (Unicamp) Sparsely Connected AMs FLINS 2015 4 / 29



Introduction

Some definitions on Morphological Operators

Adjunctions
Consider ε : L→M and δ : M→ L where L and M are complete
lattices.

1 The pair (ε, δ) is called an adjunction (fromL to M) iff :

δ(x) ≤ y ⇔ x ≤ ε(y)∀x ∈ L, y ∈M.

In this case, ε and δ are said to be adjoint.
2 If ε and δ are adjoint then ε is an erosion and δ is a dilation.
3 Let (ε, δ) be an adjunction then the following relation hold;

ε (x) =
∨
{y ∈M : δ (y) ≤ x}

δ (y) =
∧
{x ∈ L : y ≤ ε(x)}
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Sparsely Connected ALMs

Sparsely Connected Autoassociative Lattice Memories

Autoassociative Memories

Given a set
{

x1...xk}, an AM is a mapping A such that A
(
xξ
)

= xξ.
Furthermore, A

(
x̃ξ
)

= xξ for noise or incomplete version x̃ξ of xξ .

Characteristics

1 They exhibit optimal absolute storage capacity.
2 They exhibit one step convergence when employed with feedback.
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Sparsely Connected ALMs

Sparsely Connected Autoassociative Lattice Memories

Definition

Given a fundamental memory set
{

x1, ...., xp} ⊆ Vn, the partial order
define on V is used in the set S ⊆ N × N where N = {1,2, ..,n}.

S =
{

(i , j) : xξ
i ≤ xξ

j ,∀ξ = 1,2, ...,p
}

(1)

Supremum and infimum operations on SCALM

LetM andW be the mapping on χ = Vn defined as follows: for x ∈ χ

[M (x)]i =
∧{

xj : (i , j) ∈ S
}
∀i ∈ N (2)

[W (x)]i =
∨{

xj : (j , i) ∈ S
}
∀i ∈ N (3)
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Sparsely Connected ALMs

Example of the SCALM

a

d

cb
k

Hasse diagram

V = {a,b, c,d}
represent complete
lattice with b ∨ c = d
and b ∧ c = a.

Example
Fundamental memory
x1 = [d ,b, c, c], x2 = [d , c,a,b] and
x3 = [b,a, c,d ] ∈ V4

S =
{(1,1), (2,1), (2,2), (3,3), (3,4), (4,4)}.
Input pattern x = [c,b, c,a].
Output patterns :
M(x) = [x1, x1∧x2, x3∧x4, x4] = [c,a,a,a]

W(x) = [x1∨x2, x2, x3, x3∨x4] = [d ,b, c, c].
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Sparsely Connected ALMs

Properties of the SCALM

1 SCALMs exhibit optimal absolute storage capacity.
2 They exhibit one step convergence when employed with feedback.
3 They are correspond to single layer feedforward neural network.
4 Computational point view, the number of synaptic junctions ofM

andW usually decreases (considerably) as the number of
fundamental memories increase.

5 The pattern recalled byW represents the smallest fixed point of
the model that is greater than or equal to the input pattern.

6 They are require less computational efforts.
7 They have large number of spurious memories.
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Sparsely Connected ALMs

Erosion, Dilation and Adjunction on SCALMs

Erosion and Dilation

Given a fundamental memory set
{

x1, ...., xp}, the SCALMsM andW
given by (1), (2) and (3) respectively.

1 An erosion is defined by for all subset X ⊆ χ":

M
(∧

X
)

=
∧

x∈X

M (x) .

2 A dilation is given by for all subset X ⊆ χ":

W
(∨

X
)

=
∨

x∈X

W (x) .
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Sparsely Connected ALMs

Adjunction on SCALMs

Adjunction

Consider the pair (M,W) is an adjunction on χ, i.e the following
relation hold for all x , y ∈ χ.

W(y) ≤χ x ⇔ y ≤χM(x).

The relation betweenM andW as follows for every input pattern
x ∈ χ.

M(x) =
∨
{y ∈ χ :W(y) ≤χ x} ,

W(x) =
∧
{y ∈ χ : x ≤χM(y)} ,
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Sparsely Connected ALMs

The Opening and Closing on SCALMs

The SCALMsM andW constitute an opening and closing
respectively.

OpeningM
M is increasing i.e (x ≤χ y ⇒M(x) ≤χM(y)).
M is idempotent i.eM2 =M.
M is anti-extensive i.e (M(x) ≤χ x ∀x ∈ χ).

ClosingW
W are increasing and idempotent.
W is extensive i.e x ≤χ W(x)∀x ∈ χ.
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Sparsely Connected ALMs

Invariance Domain ofM andW

Invariance Domain
Invariance domain is the collection of all fixed points of ψ, i.e

Inv (ψ) = {x ∈ χ : ψ(x) = x} .

Inv(M) is sup-closed.

Mathematically as, for every pattern x ∈ χ.

M (x) =
∨
{y ∈ Inv(M) : y ≤χ x}

Inv(W) is inf-closed.

Mathematically as,

W (x) =
∧
{y ∈ Inv(W) : x ≤χ y}
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SCALMs VS Gray-Scal AMMs

Lattice based operations from Minimax algebra

Max product, Min product

Let V be a complete L-group extension. Let A ∈ Vm×p and B ∈ Vp×n.

1 The max-product of A and B is given by

C = A ∨� B ⇐⇒ cij =

p∨
ξ=1

(
aiξ + bξj

)
.

2 The min-product of A and B is given by

C = A ∧� B ⇐⇒ cij =

p∧
ξ=1

(
aiξ+́bξj

)
.

In this case we assume that V = R ∪ {−∞,+∞}

Marcos, Majid (Unicamp) Sparsely Connected AMs FLINS 2015 14 / 29



SCALMs VS Gray-Scal AMMs

Gray-scale AMMs

Definitions of WXX and MXX ∈ Vn×n

For X = [x1, . . . ,xp] ∈ Vn×p

[WXX ]ij =

p∧
ξ=1

(
xξ

i +́(xξ
j )∗
)
. (4)

[MXX ]ij =

p∨
ξ=1

(
xξ

i + (xξ
j )∗
)
. (5)

Gray-scale AMMsMXX andWXX

Given x ∈ χ, the outputs ofMXX andWXX are resp. calculated in
terms of a dilation and an erosion:

MXX (x) = MXX ∧� x , WXX (x) = WXX ∨� x .
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SCALMs VS Gray-Scal AMMs

Relationship between the gray-scal AMMs and the
SCALMs

Theorem

Given a set
{

x1, ..., xp}, the SCALMsM andW given by (1), (2) and
(3). So there exist unique synaptic weight matrices M and W ∈ Vn×n

such that
M(x) = M ∧� x , W(x) = W ∨� x .

for any input pattern x ∈ χ.

These two matrices can be obtained from synaptic weight matrices
MXX and WXX given by 5 and 4 as for all i , j ∈ N:

mij = T+
(
[MXX ]ij

)
wij = T−

(
[WXX ]ij

)
.
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SCALMs VS Gray-Scal AMMs

Relationship between the gray-scal AMMs and the
SCALMs

where T+ : V→ V and T− : V→ V are threshold operators given by

T+(x) =

{
0 if x ≤ 0

+∞ otherwise
T−(x) =

{
0 if x ≥ 0
−∞ otherwise

Its means that SCALMsM andW can be obtained from the gray-scale
AMMsMXX andWXX by thresholding their synaptic weight matrices.
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SCALMs VS Gray-Scal AMMs

Consequences of the previous Theorem

1 MXX (x) ≤M(x) andW(x) ≤ WXX (x).
2 Inv(MXX ) ⊆ I and Inv(WXX ) ⊆ I.
3 Invariance domains IXX ⊆ I.

The Invariance domain I of the SCALMs include all the fixed
points of the gray-scale AMMsMXX andWXX .

Advantage of SCALMs
1 Less Computational effort and consumed much less memory

space.
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SCALMs VS Gray-Scal AMMs

Noise tolerance of grayScale MAMs and SCALMs

Geometrically

x̌ξ xξ x̂ξ

WXX (x̌ξ) WXX (x̂ξ)

W(x̌ξ) WXX (x̂ξ)

IXX : −∞

I : −∞ : +∞

: +∞
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Computational experiment

Original Color Images

Consider the following images of size 384× 256.

Figure: Fundamental memories.Marcos, Majid (Unicamp) Sparsely Connected AMs FLINS 2015 20 / 29



Computational experiment

SCALMs defined on the RGB color models

Ordering schemes

Marginal RGB Ordering.
(
≤M

RGB

)

u ≤M
RGB µ⇔


ur ≤ µr ,

ug ≤ µg , and
ub ≤ µb, .

Lexicographical RGB Ordering.
(
≤L

RGB

)
u ≤L

RGB µ⇔


ur < µr , or
ur = µr , and ug < µg , or
ur = µr , ug = µg ,and ub ≤ µb.
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Computational experiment

SCALMs defined on the RGB color models

Reduce the excessive dependence of the first component by
creating equivalence groups.

Ordering schemes

α- modulus lexicographical RGB ordering.
(
≤α

RGB

)

u ≤α
RGB µ⇔



⌊ur
α

⌋
<
⌊µr
α

⌋
, or⌊ur

α

⌋
=
⌊µr
α

⌋
, and ug < µg , or⌊ur

α

⌋
=
⌊µr
α

⌋
, ug = µg ,and ub < µb or⌊ur

α

⌋
=
⌊µr
α

⌋
, ug = µg ,ub = µb,and ur ≤ µr .

Note: α ∈ (0,1] and u = (ur ,ug ,ub), µ = (µr , µg , µb) ∈ VRGB.
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Computational experiment

Lexicographical Ordering on the Karhunen-Loeve
Color System

Karhunen-Loeve Transform (KLT)
let u1, ...,um denote the color values of RGB images.

column vector mean m ∈ R3 and covariance matrix C ∈ R3×3.

m =
1
n

n∑
i=1

ui and C =
1
n

(
n∑

i=1

uiuT
i

)
−mmT .

Given a u ∈ VRGB, the corresponding element v ∈ VKLT is given
by

v = Q(u −m) ⇐⇒ u = QT v + m by inverse transform.

where Q = [q1,q2,q3]T denotes orthogonal matrix.
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Computational experiment

Lexicographical Ordering on the Karhunen-Loeve
Color System

Lexicographical order on KLT system

Given two points u and µ ∈ VRGB and the corresponding points
v = (v1, v2, v3) and ν = (ν1, ν2, ν3) on the KLT system.

Define u ≤L
KLT µ⇔ v ≤L

KLT ν in the lexicographical ordering i,e

u ≤L
KLT µ⇔


v1 < ν1, or
v1 = ν1, and v2 < ν2, or
v1 = ν1, v2 = ν2,and v3 ≤ ν3.
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Computational experiment

Noisy Images

We introduced the following types of noise:
1 Impulsive noise with probabilities pn = 0.1,pr = pg = pb = 0.25.
2 Gaussian noise (mean 0 and variance 0.01).

Figure: Images ‘parrots‘ and ‘caps‘ corrupted by impulsive and Gaussian
noise
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Computational experiment

Experiment of SCALMs for the reconstruction of color
images

Image recalled by the SCALMsWM
RGB (first row) andMM

RGB (Second
row).

Figure: 3. WM
RGB andMM

RGB polluted with white and black colors.

Marcos, Majid (Unicamp) Sparsely Connected AMs FLINS 2015 26 / 29



Computational experiment

Image recalled by the SCALMsWL
RGB (first row) andML

RGB Second
row.

Figure: 4. WL
RGB andML

RGB have been contaminated with white and black,
and caps has polluted with red and cyan.
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Computational experiment

Image recalled by the SCALMsWα
RGB (first row) andMα

RGB Second
row.

Figure: 5. Very similar Lexicographical order. Here α = 20/255

Marcos, Majid (Unicamp) Sparsely Connected AMs FLINS 2015 28 / 29



Computational experiment

Image recalled by the SCALMsWL
KLT (first row) andML

KLT Second row.

Figure: 6. WL
KLT andML

KLT have been contaminated with black and white
color.
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