Aula 7 Aritmética com Números *Fuzzy*.

MS580 - Introdução à Teoria Fuzzy

Marcos Eduardo Valle

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Nas aulas anteriores, vimos que um número $fuzzy A \in \mathbb{R}_{\mathcal{F}}$ pode ser escrito de forma única como uma família de intervalos fechados e limitados $\{[A]^{\alpha} = [a_I^{\alpha}, a_S^{\alpha}] : \alpha \in [0, 1]\}.$

Na aula de hoje, veremos como as operações intervalares podem ser usadas para definir operações aritméticas com números *fuzzy*.

A aritmética intervalar foi desenvolvida, principalmente nos anos 60 por Ramon E. Moore, para trabalhar com limites de erros de arredondamento ou de medida.

Por exemplo, Arquimedes estimou que $223/71 \le \pi \le 22/7$. Portanto, pode-se considerar o intervalo [223/71, 22/7] como uma aproximação para π .

Aritmética Intervalar

De um modo geral, uma operação \star , que pode ser a adição, subtração, multiplicação ou divisão, é definida da seguinte forma:

Definição 1 (Operação Intervalar)

Sejam $A = [a_I, a_S]$ e $B = [b_I, b_S]$ intervalos fechados e \star uma operação de números reais. Define-se o intervalo fechado

$$A \star B = \{x \star y : a_l \leq x \leq a_S, b_l \leq y \leq b_S\},\$$

exceto para a divisão quando $0 \in B$.

Teorema 2

Sejam $A = [a_I, a_S]$ e $B = [b_I, b_S]$ intervalos fechados, então:

- (a) $A + B = [a_I + b_I, a_S + b_S].$
- (b) $A B = [a_I b_S, a_s b_I].$
- (c) $A \cdot B = [\min P, \max P]$, em que

$$P = \{a_lb_l, a_lb_S, a_Sb_l, a_Sb_S\}.$$

(d)
$$A/B = [a_l, a_S] \cdot \left[\frac{1}{b_S}, \frac{1}{b_l}\right] \text{ se } 0 \notin B.$$

Note que um número real r pode ser visto como um intervalo degenerado [r, r].

Se $r \in \mathbb{R}$ e $A = [a_I, a_S]$, então

$$r + A = [r + a_I, r + a_S],$$

е

$$r \cdot A = \begin{cases} [ra_I, ra_S], & r \ge 0 \\ [ra_S, ra_I], & r < 0. \end{cases}$$

Se ambos *A* e *B* são intervalos degenerados, obtemos as operações usuais com números reais.

Exemplo 3

Determine A + B, A - B, $A \cdot B$ e A/B para os intervalos fechados A = [-1, 2] e B = [5, 6].

Exemplo 3

Determine A + B, A - B, $A \cdot B$ e A/B para os intervalos fechados A = [-1, 2] e B = [5, 6].

Resposta:

$$A + B = [4, 8],$$

 $A - B = [-7, -3],$
 $A \cdot B = [-6, 12],$

е

$$A/B = [-1/5, 2/5].$$

Operações com Números Fuzzy

Definição 4 (Operação *Fuzzy*)

Sejam A e B números fuzzy e \star uma operação aritmética para intervalos fechados. O número fuzzy $A \star B$ é definido de modo que

$$[\mathbf{A} \star \mathbf{B}]^{\alpha} = [\mathbf{A}]^{\alpha} \star [\mathbf{B}]^{\alpha}, \quad \forall \alpha \in [0, 1].$$

Como $[A]^{\alpha}$ e $[B]^{\alpha}$ são intervalos fechados, $[A]^{\alpha} \star [B]^{\alpha}$ é também um intervalo fechado.

Sobretudo, $[A \star B]^{\alpha}$ satisfaz as condições de Ralescu-Negoita. Logo, $A \star B$ é também um número *fuzzy*.

Exemplo 5 (Adição)

Determine A + B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Exemplo 5 (Adição)

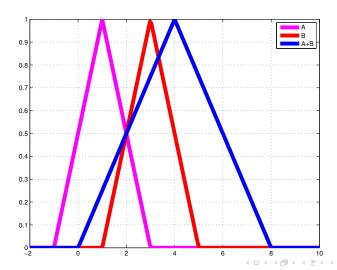
Determine A + B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Resposta: Temos que $[A+B]^{\alpha}=[4\alpha,8-4\alpha],\,\forall \alpha\in[0,1].$ Logo,

$$A + B = \begin{cases} x/4, & 0 < x \le 4, \\ (8 - x)/4, & 4 < x < 8, \\ 0, & \text{caso contrário.} \end{cases}$$

Exemplo 5 (Adição)

Determine A + B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).



Exemplo 6 (Subtração)

Determine A - B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Exemplo 6 (Subtração)

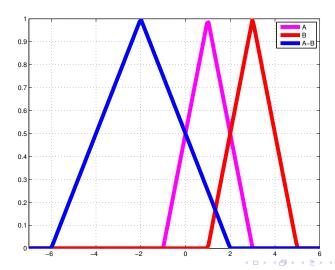
Determine A - B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Resposta: Temos que $[A - B]^{\alpha} = [4\alpha - 6, 2 - 4\alpha]$, $\forall \alpha \in [0, 1]$. Logo,

$$A - B = \begin{cases} (x+6)/4, & -6 < x \le -2, \\ (2-x)/4, & -2 < x < 2, \\ 0, & \text{caso contrário.} \end{cases}$$

Exemplo 6 (Subtração)

Determine A - B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).



Exemplo 7 (Subtração)

Determine A - A para o número fuzzy triangular A(x; -1, 1, 3).

Exemplo 7 (Subtração)

Determine A - A para o número fuzzy triangular A(x; -1, 1, 3).

Resposta: Temos que $[A - A]^{\alpha} = [4\alpha - 4, -4\alpha + 4]$, $\forall \alpha \in [0, 1]$. Logo,

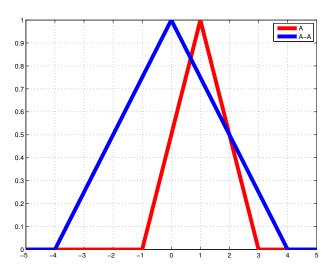
$$A - A = \begin{cases} 1 + x/4, & -4 < x \le 0, \\ 1 - x/4, & 0 < x < 4, \\ 0, & \text{caso contrário.} \end{cases}$$

Observe que $A - A \neq [0, 0]$.

Logo, -A não é o inverso aditivo de A.

Exemplo 7 (Subtração)

Determine A - A para o número fuzzy triangular A(x; -1, 1, 3).



Exemplo 8 (Multiplicação)

Determine $A \cdot B$ para os números *fuzzy* triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Exemplo 8 (Multiplicação)

Determine $A \cdot B$ para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Resposta: Temos que

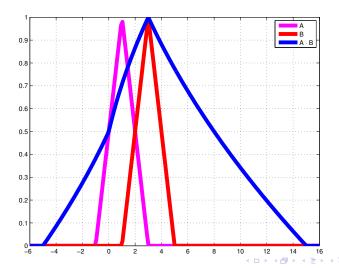
$$[A \cdot B]^{\alpha} = \begin{cases} [-4\alpha^2 + 12\alpha - 5, 4\alpha^2 - 16\alpha + 15], & \alpha \in [0, 0.5], \\ [4\alpha^2 - 1, 4\alpha^2 - 16\alpha + 15], & \alpha \in (0.5, 1]. \end{cases}$$

Logo,

$$A \cdot B = \begin{cases} \frac{3 - \sqrt{4 - x}}{2}, & -5 \le x < 0, \\ \frac{\sqrt{1 + x}}{2}, & 0 \le x < 3, \\ \frac{4 - \sqrt{1 + x}}{2}, & 3 \le x < 15, \\ 0, & \text{caso contrário.} \end{cases}$$

Exemplo 8 (Multiplicação)

Determine $A \cdot B$ para os números *fuzzy* triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).



Exemplo 9 (Divisão)

Determine A/B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Exemplo 9 (Divisão)

Determine A/B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

Resposta: Temos que

$$[A/B]^{\alpha} = \begin{cases} [(2\alpha - 1)/(2\alpha + 1), (3 - 2\alpha)/(2\alpha + 1)], & \alpha \in [0, 0.5], \\ [(2\alpha - 1)/(5 - 2\alpha), (3 - 2\alpha)/(2\alpha + 1)], & \alpha \in (0.5, 1]. \end{cases}$$

Logo,

$$A/B = \begin{cases} \frac{x+1}{2-2x}, & -1 \le x < 0, \\ \frac{5x+1}{2x+2}, & 0 \le x < 1/3, \\ \frac{3-x}{2x+2}, & 1/3 \le x < 3, \\ 0, & \text{caso contrário.} \end{cases}$$

Exemplo 9 (Divisão)

Determine A/B para os números fuzzy triangulares A(x; -1, 1, 3) e B(x; 1, 3, 5).

