Aula 4 Igualdade e Inclusão *Fuzzy*.

MS580 - Introdução à Teoria Fuzzy

Marcos Eduardo Valle

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Igualdade e Inclusão de Conjuntos Fuzzy

Definição 1 (Igualdade e Inclusão de Conjuntos *Fuzzy*)

Considere dois conjuntos *fuzzy A* e *B*, definidos no mesmo universo de discurso *U*.

▶ Dizemos que A e B são iguais se possuem a mesma função de pertinência, ou seja,

$$A(u) = B(u), \forall u \in U.$$

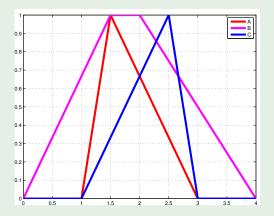
Dizemos que A é um subconjunto de B, denotado A ⊆ B, se

$$A(u) \leq B(u), \quad \forall u \in U,$$

ou seja, para qualquer $u \in U$, o grau de pertinência A(u) é menor que o grau de pertinência B(u).

Note que A = B se e somente se $A \subseteq B$ e $B \subseteq A$.

Considere conjuntos *fuzzy* de \mathbb{R} com funções de pertinência: A(u; 1, 1.5, 3), B(u; 0, 1.5, 2, 4) e C(u; 1, 2.5, 3).



Note que $A \subseteq B$ porém $A \not\subseteq C$ e $B \not\subseteq C$.

A igualdade e a inclusão *fuzzy* remetem a teoria clássica no seguinte sentido:

- ► Um conjunto fuzzy A é ou não é igual a B.
- Um conjunto fuzzy A ou está incluso ou não está incluso em B.

Na teoria *fuzzy*, podemos atribuir um grau de pertinência para a veracidade das afirmações:

- ► A é igual a B.
- ► A é subconjunto B.

Medida de Inclusão Fuzzy

Uma medida de inclusão *fuzzy* estende a afirmação "A é um subconjunto de B" para conjuntos *fuzzy*.

Definição 3 (Medida de Inclusão *Fuzzy*)

Uma função $Inc_{\mathcal{F}}:\mathcal{F}(U)\times\mathcal{F}(U)\to[0,1]$ é uma medida de inclusão fuzzy se

$$Inc_{\mathcal{F}}(A,B) = \begin{cases} 1, & A \subseteq B, \\ 0, & A \not\subseteq B, \end{cases}$$

para quaisquer conjuntos *crisp* $A, B \subseteq U$.

Na teoria clássica, tem-se $A \subseteq B$ se a proposição

$$p: \forall u \in U, u \in A \rightarrow u \in B$$
,

é verdadeira.

Em termos da função característica, tem-se

$\chi_A(u)$	$\chi_B(u)$	$\chi_A(u) \rightarrow \chi_B(u)$
0	0	1
0	1	1
1	0	0
1	1	1

que é a tabela verdade da implicação.

Assim, tem-se $A \subseteq B$ se e somente se

$$\inf_{u \in U} \left[\chi_A(u) \to \chi_B(u) \right] = 1.$$

Implicação Fuzzy

Definição 4 (Implicação Fuzzy)

Uma aplicação $I:[0,1]\times[0,1]\to[0,1]$, também denotada por $I(a,b)=a\to b$, decrescente no primeiro argumento e crescente no segundo é uma implicação *fuzzy* se satisfaz I(0,0)=I(0,1)=I(1,1)=1 e I(1,0)=0.

Observe que a implicação *fuzzy* satisfaz a tabela verdade da implicação clássica!

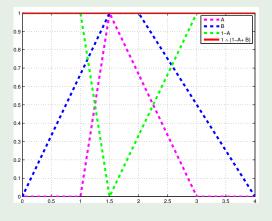
A implicação *fuzzy* é usada da seguinte forma para definir uma classe de medidas de inclusão *fuzzy*:

$$Inc_{\mathcal{F}}(A,B) = \inf_{u \in U} \Big[A(u) \to B(u) \Big].$$

Exemplo 5 (Implicação de Lukasiewicz)

$$I_L(a,b) = 1 \wedge (1-a+b) = \min\{1, 1-a+b\}.$$

Para os conjuntos fuzzy A e B mostrados abaixo,

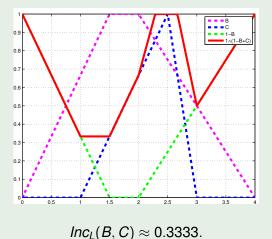


$$Inc_L(A, B) = 1.$$

Exemplo 5 (Implicação de Lukasiewicz)

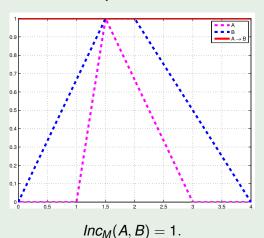
$$I_L(a,b) = 1 \wedge (1-a+b) = \min\{1, 1-a+b\}.$$

Para os conjuntos fuzzy B e C mostrados abaixo,



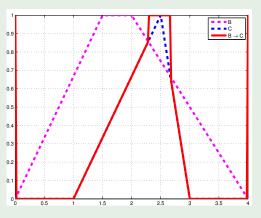
Exemplo 6 (Implicação de Gödel)

$$I_M(a,b) = egin{cases} 1, & a \leq b, \\ b, & ext{caso contrário.} \end{cases}$$



Exemplo 6 (Implicação de Gödel)

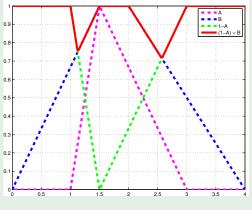
$$I_M(a,b) = \begin{cases} 1, & a \leq b, \\ b, & \text{caso contrário.} \end{cases}$$



$$Inc_M(B,C)=0.$$

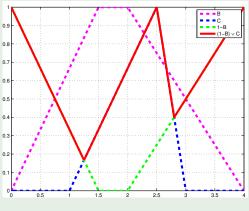
Exemplo 7 (Implicação de Kleene-Dienes)

$$I_K(a,b) = (1-a) \lor b = \max\{1-a,b\}.$$



Exemplo 7 (Implicação de Kleene-Dienes)

$$I_K(a,b) = (1-a) \lor b = \max\{1-a,b\}.$$



 $Inc_K(B,C)\approx 0.1733.$

Apesar de fornecer uma medida para a veracidade da afirmação "A é um subconjunto de B" quando A e B são conjuntos fuzzy, as medidas de inclusão fuzzy ainda apresentam um retrocesso à teoria clássica.

Exemplo 8

Considere conjuntos clássicos

$$A = \{1, 2, 3\}, \quad B = \{1, 2, 4, 5\} \quad \text{e} \quad C = \{4, 5, 6\}.$$

Note que nenhum conjunto está contido no outro. Além disso, sendo A, B e C conjuntos clássicos, tem-se

$$Inc_{\mathcal{F}}(A,B) = Inc_{\mathcal{F}}(A,C) = 0,$$

para qualquer medida de inclusão fuzzy.

Contudo, podemos esperar que *A* está mais contido em *B* do que em *C*. As medidas *subsethood* capturam essa ideia.

Medida Subsethood

Definição 9 (Medida subsethood)

Uma aplicação $S: \mathcal{F}(U) \times \mathcal{F}(U) \to [0,1]$ é uma medida subsethood se satisfaz

- (a) S(A, B) = 1 se $A \subseteq B$.
- (b) $S(U, \emptyset) = 0$.
- (c) Se $A \subseteq B \subseteq C$, então

$$S(C,A) \leq S(B,A)$$
 e $S(C,A) \leq S(C,B)$.

Exemplo 10

As medidas de inclusão Inc_L e Inc_M são também medidas subsethood.

Pode-se definir medidas *subsethood* através das seguintes equações:

$$S^{\cap}(A,B) = egin{cases} 1, & A = \emptyset, \\ rac{Card(A \cap B)}{Card(A)}, & ext{caso contrário.} \end{cases}$$
 $S^{\cup}(A,B) = egin{cases} 1, & A \cup B = \emptyset, \\ rac{Card(B)}{Card(A \cup B)}, & ext{caso contrário.} \end{cases}$

Exemplo 11

Se
$$A=\{1,2,3\},\,B=\{1,2,4,5\}$$
 e $C=\{4,5,6\},$ então
$$S^\cap(A,B)=2/3\quad \text{e}\quad S^\cap(A,C)=0.$$

Analogamente,

$$S^{\cup}(A,B) = 4/5$$
 e $S^{\cap}(A,C) = 1/2$.

Cardinalidade de Conjuntos Fuzzy

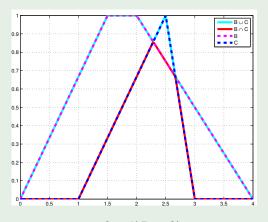
Se $U = \{u_1, u_2, \dots, u_n\}$ é um universo de discurso finito, então a cardinalidade de um conjunto *fuzzy* $A \in \mathcal{F}(U)$ é definida através da equação

$$Card(A) = \sum_{i=1}^{n} A(u_i).$$

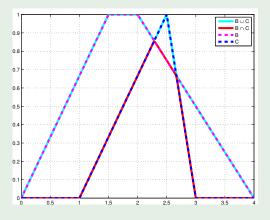
No caso geral, define-se

$$Card(A) = \int_{U} A(u)du,$$

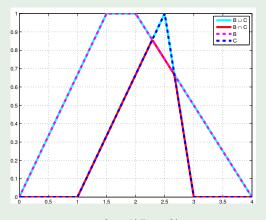
uma vez que a integral acima faz sentido.



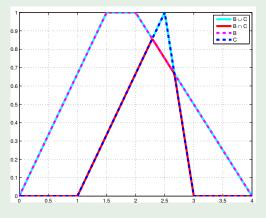
$$S^{\cap}(B,C) = \frac{Card(B \cap C)}{Card(B)} \approx 0.4232$$



$$S^{\cup}(B,C) = \frac{Card(C)}{Card(B \cup C)} \approx 0.4352.$$



$$S^{\cap}(C,B) = \frac{Card(B \cap C)}{Card(C)} \approx 0.9523$$



$$S^{\cup}(C,B) = \frac{Card(B)}{Card(B \cup C)} \approx 0.9792.$$

Medida de Similaridade Fuzzy

Uma medida de similaridade *fuzzy* avalia o quanto dois conjuntos *fuzzy* são iguais.

Definição 13 (Medida de Similaridade *Fuzzy*)

Uma aplicação $Sim : \mathcal{F}(U) \times \mathcal{F}(U) \to [0,1]$ é uma medida de similaridade fuzzy se satisfaz

- (a) Sim(A, B) = Sim(B, A).
- (b) $Sim(U, \emptyset) = 0$.
- (c) Sim(A, A) = 1.
- (d) Se $A \subseteq B \subseteq C$ então

$$Sim(A, B) \ge Sim(A, C)$$
 e $Sim(B, C) \ge Sim(A, C)$.

Uma medida de similaridade *fuzzy* é dita **forte** se Sim(A, B) = 1 implica A = B.

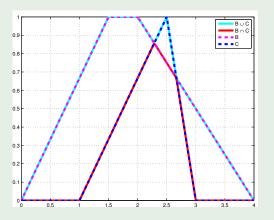
Na teoria clássica, tem-se A = B se, e somente se, $A \subseteq B$ e $B \subseteq A$.

Dada uma medida subsethood e uma norma triangular \triangle , pode-se definir uma medida de similaridade Sim_S como segue

$$Sim_{\mathcal{S}}(A,B) = \mathcal{S}(A,B) \triangle \mathcal{S}(B,A).$$

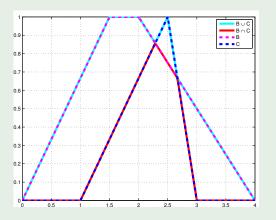
Note que o conectivo "e" é modelado por uma t-norma pois uma conjunção fuzzy pode não ser comutativa. Similarmente, uma medida *subsethood* é usada porque uma medida inclusão *fuzzy* pode violar uma das 4 propriedades da medida de similaridade.

Considere o mínimo e o máximo como t-norma e t-conorma.



$$S^{\cap}(B,C) \approx 0.4232$$
 e $S^{\cap}(C,B) \approx 0.9523$ $Sim_{S^{\cap}}(B,C) = 0.4232$.

Considere o mínimo e o máximo como t-norma e t-conorma.



$$S^{\cup}(B,C)\approx 0.4352$$
 e $S^{\cup}(C,B)\approx 0.9792$ $Sim_{S^{\cup}}(B,C)=0.4352.$