Lista de Exercícios - Funções Trigonométricas

Algumas Identidades Trigonométricas:

$$\operatorname{tg} x = \frac{\operatorname{sen} x}{\operatorname{cos} x}, \quad \operatorname{cotg} x = \frac{\operatorname{cos} x}{\operatorname{sen} x}, \quad \operatorname{sec} x = \frac{1}{\operatorname{cos} x}, \quad \operatorname{e} \quad \operatorname{cosec} x = \frac{1}{\operatorname{sen} x}$$

Exercício 1. Determine o período e esboce o gráfico das seguintes funções:

(a)
$$f(x) = 4\cos(x)$$
.

(b)
$$f(x) = 2 - \sin(x)$$
.

(c)
$$f(x) = 3\cos\left(\frac{x}{2}\right)$$
.

(d)
$$f(x) = 5 + \cos(x)$$
.

(e)
$$f(x) = 2 \operatorname{tg}(x)$$
.

(f)
$$f(x) = 3\cos\left(x - \frac{\pi}{3}\right)$$
.

(g)
$$f(x) = \cos(x) + \sin(x)$$
.

Exercício 2. Dados sen x = -3/4 e $\cos x = -\sqrt{7}4$, com $\pi < x < 3\pi/2$, calcule $\operatorname{tg}(x)$.

Exercício 3. Determine o valor de k de modo que se verifiquem as seguintes equações:

(a)
$$sen(x) = \frac{2k-1}{3}$$
.

(b)
$$\cos(x) = \frac{4k+1}{2}$$
.

Exercício 4. Determine o período da função: $f(x) = tg(x - \pi/4)$.

Exercício 5. Sejam $x,y\in\mathbb{R}$. Se $x+y=\pi/2$ e $x-y=\pi/6$, calcule o valor de t, sendo

$$t = \frac{\sin x + \sin y}{\cos x - \cos y}.$$

Exercício 6. Determine o valor da expressão:

$$y = \cos\left(-\frac{9\pi}{2}\right) - 3\operatorname{tg} 3\pi + \operatorname{sen}\left(-\frac{5\pi}{2}\right).$$

Exercício 7. Dado sen $x = \sqrt{a-2}$ e $\cos x = a-1$, determine a.

Exercício 8. Quais são os valores de a para que se tenha, simultaneamente, sen x = a e $\cos x = a\sqrt{3}$.

Exercício 9. Demonstre as seguintes identidades trigonométricas:

(a)
$$\operatorname{sen} x \operatorname{cosec} x = 1$$
.

(b)
$$\cos x \operatorname{tg} x = \sin x$$
.

(c)
$$\operatorname{tg} x + \operatorname{cotg} x = \operatorname{tg} x \operatorname{cosec}^2 x$$
.

(d)
$$(1 - tg^2 x)(1 - sen^2 x) = 1$$
.

(e)
$$1 + tg^2 x = tg^2 x \csc^2 x$$
.

(f)
$$\frac{\cos x}{\sec x} + \frac{\sin x}{\csc x} = 1$$
.

(g)
$$tg^2 x + \cos^2 x = \sec^2 x - \sin^2 x$$
.

(h)
$$\cot^2 x + 1 = \csc^2 x$$
.

(i)
$$\operatorname{tg} x \operatorname{sen} 2x = 2 \operatorname{sen}^2 x$$
.

(j)
$$\sin 2x \cot g x = \cos 2x + 1$$
.

(k)
$$1 + \operatorname{tg} x \operatorname{tg} 2x = \sec 2x$$
.

Exercício 10. Sabendo que

$$\cos^2 x = \frac{1}{\operatorname{tg}^2 x + 1}$$
 e $\cos^2 x = 1 - \sin^2 x$,

expresse sen x em função de $\operatorname{tg} x$.

Exercício 11. Mostre que a seguinte equação é válida para todo $x \in \mathbb{R}$:

$$(\operatorname{sen} x + \operatorname{tg} x)(\cos x + \cot x) = (1 - \operatorname{sen} x)(1 + \cos x).$$

Exercício 12. Calcule sen 2x, sabendo que $\operatorname{tg} x + \operatorname{cotg} x = 3$.

Exercício 13. Sabendo que tg 2t = 1, determine tg t.

Exercício 14. Resolva as seguintes equações trigonométricas:

(a)
$$tg 3x = 1$$
.

(b)
$$tg 2x = -1$$
.

(c)
$$\csc 2x = -\sqrt{2}$$
.

(d)
$$\sec 2x = 2$$
.

(e)
$$2 \operatorname{sen}^2 x = \operatorname{sen} x$$
.

(f)
$$2 \sin^2 x + \cos x = 1$$
.

$$(g) \cos^2 x = 1 - \sin x.$$

$$(h) \cos 2x - \cos^2 x = 0.$$

(i)
$$2 \operatorname{sen} x \cos x = \frac{\sqrt{2}}{2}$$
.

(j)
$$\sin 5x = \sin 2x$$
.

(k)
$$\cos x = \cos(5\pi/2 - 2x)$$
.

(1)
$$\operatorname{tg} 2x = \operatorname{cotg} 3x$$
.

(m)
$$sen(x - 2\pi/3) = cos 2x$$
.

(n)
$$tg(x + \pi/3) + cotg(\pi/2 - 3x) = 0$$
.

(o)
$$\sin 2x + \sin 6x = 2 \sin 4x$$
.

(p)
$$tg 3x = sen 6x$$
.

(q)
$$2\cos^2 x + \cos 5x - 1 = 0$$
.

(r)
$$sen(x + \pi/6) + cos(x + \pi/3) = 1 + cos 2x$$
.

- (s) $tg(\pi/4 + x) = 1 + sen 2x$.
- (t) $sen(\pi/4 + 3x/2) = 2sen(\pi/4 x/2)$.

Exercício 15. Resolva as seguintes inequações trigonométricas no intervalo $0 \le x \le 2\pi$:

- (a) $\sin x \ge -1/2$.
- (b) $\cos x \le 1/2$.
- (c) tg x > 1.
- (d) $\cos x > \sqrt{3}/2$.
- (e) $\sin x \ge -\sqrt{2}/2$.
- (f) tg x < 1.
- (g) $\cos x > -1$.
- (h) $\cos x < \sqrt{2}/2$.
- (i) $\sin^2 x \le 1 \cos x$.
- (j) $\sin 2x + \cos 2x \le 1$.
- (k) $\sin 2x > \cos x$.