Lista 4 - Composta e Inversa de Transformações Lineares

Considere as seguintes transformações lineares no plano:

a)
$$L_1(x,y) = (2x - y, -3x + y)$$
,

b)
$$L_2(x,y) = (x+y, x-y)$$
,

c)
$$L_3(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$$
,

d)
$$L_4(x,y) = \left(\frac{4x+y}{5}, \frac{3x+2y}{5}\right)$$
,

e)
$$L_5(x,y) = (-y,x),$$

f)
$$L_6(x,y) = (x+y,0)$$
,

g)
$$L_7(x,y) = (x-y, y-x)$$
,

h)
$$L_8(x,y) = (2x - y, \frac{y}{2} - x).$$

Exercício 1. Determine as matrizes associadas e esboçe no plano a figura determinada pela aplicação das transformações lineares L_1 – L_8 sobre o quadrado com vértices (0,0), (1,0), (0,1) e (1,1).

Exercício 2. Sejam $L,T:\mathbb{R}^2\to\mathbb{R}^2$ duas transformações lineares. Use a definição de transformação linear para mostrar que a composta $T\circ L:\mathbb{R}^2\to\mathbb{R}^2$, definida como T(L(u)) para todo $u\in\mathbb{R}^2$, é também uma transformação linear.

Exercício 3. Determine as seguintes compostas de transformações lineares:

- a) $L_1 \circ L_2$,
- b) $L_2 \circ L_3$,
- c) $L_3 \circ L_2$,
- d) $L_1 \circ L_3$,
- e) $L_1 \circ L_4$,
- f) $L_4 \circ L_1$,
- g) $L_2 \circ L_5$,
- h) $L_5 \circ L_6$,
- i) $L_6 \circ L_5$,
- j) $L_6 \circ L_7$,
- k) $L_7 \circ L_6$,
- 1) $L_6 \circ L_8$.

Determine também a matriz das transformações lineares compostas. Estabeleça uma relação entre as matrizes das transformações lineares com a matriz da composta.

Exercício 4. Sejam $L,T:\mathbb{R}^2\to\mathbb{R}^2$ transformações lineares. Podemos afirmar que $L\circ T=T\circ L$? Justifique sua resposta.

Definição 1. O determinante de uma matriz $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ é o número real determinado pela equação:

$$\det(A) = ad - bc.$$

Exercício 5. Calcule o determinante das matrizes associadas as transformações lineares L_1 – L_8 .

Exercício 6. Verifique que as transformações lineares L_1 – L_5 são bijeções e determine suas inversas.

Exercício 7. Mostre que as transformações lineares L_6 – L_8 não são injetoras.

Definição 2. Dada uma transformação linear $L: \mathbb{R}^2 \to \mathbb{R}^2$, o conjunto de todos os vetores u do plano tais que L(u) = 0 é chamado núcleo de L e denotado por $\mathcal{N}(L)$. Em termos matemáticos, temos

$$\mathcal{N}(L) = \{ u \in \mathbb{R}^2 : L(u) = 0 \}.$$

Exercício 8. Mostre que $\mathcal{N}(L_6) = \{(x, y) \in \mathbb{R}^2 : x = -y\}.$

Exercício 9. Mostre que $\mathcal{N}(L_8) = \{(x,y) \in \mathbb{R}^2 : y = 2x\}.$

Exercício 10. Mostre que $\mathcal{N}(L_2) = \{0\}$, ou seja, u = 0 é o único vetor tal que $L_2(u) = 0$.

Exercício 11. Determine o núcleo de L_5 e L_7 .