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Introduction

The Hopfield network is a recurrent neural network model that
played an essential role in the 1980s and the subsequent
developments in neural networks.

Applications of the Hopfield network include implementing
associative memories and solving optimization problems, among
others (Hassoun, 1995).

Despite the advancement of deep learning, Hopfield networks
remain an active field of research (Krotov and Hopfield, 2020; Liang
et al., 2022; Ramsauer et al., 2020).
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Research on Hopfield networks with hypercomplex values also
remains an important research topic with significant contributions in
the last years (Kobayashi, 2020a,b).

In the following, we briefly review the mathematical aspects of the
Hopfield network.

Hypercomplex-valued versions of the Hopfield networks are
presented subsequently de Castro and Valle (2020).
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Discrete-Time Hopfield Neural Network

The Hopfield network is a recurrent neural network with McCulloch
and Pitts neurons (Hopfield, 1982).

Consider a network with N fully connected neurons. Let wij and θi be
the j th synaptic connection and the threshold of the i-th neuron.

Let xi(t) ∈ {−1,+1} be the state of the i-th neuron in discrete time t .

The dynamics of the Hopfield network is described by the equation

xi(t + 1) =

{
sgn(hi(t)), hi(t) ̸= 0,
xi(t), otherwise,

(1)

where

hi(t) =
N∑

j=1

wijxj(t)− θi , ∀i = 1, . . . ,N. (2)
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Update and Convergence

Hopfield network neurons can be updated synchronously (parallel)
or asynchronously (sequential).

Theorem 1 (Convergence (Hopfield, 1982))

The Hopfield network, operating asynchronously, produces a
convergent sequence if the synaptic weights satisfy wii = 0 and
wji = wij for all i , j = 1, . . . ,N.

The theorem is proved by showing that E : {−1,+1}N → R given by

E(x) = −1
2

xT Wx + θT x. (3)

is an energy or Lyapunov function, that is, E is bounded from below
and x(t + 1) ̸= x(t) implies E(x(t + 1)) < E(x(t)).

The Hopfield network can implement associative memories or solve
optimization problems!
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Complex-valued Hopfield Network

Jankowski et al. (1996) presented a complex version of the Hopfield
network using the complex-valued signum function.

The complex-valued signum function is defined as follows: Given a
positive integer K > 1, called resolving factor, set ∆θ = π/K and

D = {z ∈ C \ {0} : arg(z) ̸= (2k − 1)∆θ,∀k = 1, ldots,K}.

The complex-valued signum function
csgn : D → S = {1,22i∆θ, . . . ,e2(K−1)i∆θ} is

csgn(z) =


1, 0 ≤ arg(z) < ∆θ,

e2i∆θ, ∆θ < arg(z) < 3∆θ,
...

...
1, (2K − 1)∆θ < arg(z) < 2π.
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Complex-valued signum function

Geometrical interpretation of the complex-valued signum function:

Source: Rodolfo Lobo (2021).
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Dynamics of Complex-Valued Hopfield Network

The dynamics of the complex-valued Hopfield network is given by

zi(t + 1) =

{
csgn(hi(t)), hi(t) ∈ D,

zi(t), otherwise,
(4)

where

hi(t) =
N∑

j ̸=i

wijzj(t), ∀i = 1, . . . ,N. (5)

Theorem 2 (Convergence)

The complex-valued Hopfield network, operating asynchronously,
produces a convergent sequence if the synaptic weights satisfy
wii ≥ 0 and wji = w̄ij for all i , j = 1, . . . ,N.
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Hyperbolic-valued Hopfield Network

Inspired by the complex-valued network, Kobayashi (2018b, 2019,
2020b) presented a version of the Hopfield network with hyperbolic
numbers.

The dynamics of the hyperbolic-valued Hopfield network is given by

zi(t + 1) =

{
csgn(hi(t)), hi(t) ∈ D,

zi(t), otherwise,
(6)

where

hi(t) =
N∑

j=1

wijzj(t).
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Theorem 3 (Convergence)

The hyperbolic-valued Hopfield network, operating asynchronously,
produces a convergent sequence if the synaptic weights satisfy
Re(wii) ≥ |Im(wii)| and wji = wij .

The energy function of the hyperbolic-valued Hopfield network is

E(z) = −1
2

N∑
i=1

N∑
j=1

Re(ziwijzj).

Computational experiments showed that the hyperbolic-valued
Hopfield network has better noise tolerance than the Hopfield
network with complex values (Kobayashi, 2020b).
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Quaternion-Valued Hopfield Networks

Quaternion-valued versions of the Hopfield network have also been
developed in recent decades (Isokawa et al., 2013; Kobayashi,
2017; Valle, 2014).

Like complex and hyperbolic networks, the quaternion-valued
Hopfield network is given by

qi(t + 1) =

{
φ(hi(t)), hi(t) ∈ D,

qi(t), otherwise,
(7)

where hi(t) =
∑N

j ̸=i wijqj(t) and φ : D → S is an appropriate
activation function.
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Continuous-valued Activation Function

The continuous-valued activation function σ : D → S is given by

σ(q) =
q
|q|

,

on what
D = Q \ {0} and S = {z ∈ Q : |q| = 1}.

This activation function appears as an alternative to the multi-state
quaternionic activation function developed by Isokawa et al. (2013).
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Twin-Multistate Activation Function

The twin-multistate activation function, introduced by Kobayashi
(Kobayashi, 2017), is defined using the complex-valued signum
function and the relation i j = k .

Specifically, a quaternion can be written as:

q = q0 + q1i + q2j + q3k = (q0 + q1i) + (q2 + q3i)j = z0 + z1j ,

where z0 and z1 are complex numbers.

Using the complex-valued signum function, the twin-multistate
activation function is defined by

tsgn(q) = csgn(z0) + csgn(z1)j .
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Convergence of Quaternion-valued Hopfield Nets

Like the complex-valued Hopfield network, quaternionic Hopfield
networks satisfy the following theorem:

Theorem 4 (Convergence)

The quaternion-valued Hopfield network, with the continuous-valued
function or the twin complex-valued signum function, operating
asynchronously, produces a convergent sequence if the synaptic
weights satisfy wii ≥ 0 and wji = w̄ij for all i , j = 1, . . . ,N.

Besides the quaternion-valued models, Hopfield networks based on
commutative quaternions (Isokawa et al., 2010) and the Klein
four-group (Kobayashi, 2020a) have also been proposed and
investigated.
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Hypercomplex-valued Hopfield Networks

Motivated by Hopfield networks’ developments, we proposed a
broad framework for hypercomplex-valued models (de Castro and
Valle, 2020)

We begin by generalizing the conjugate operation:

Definition 5 (Reverse Involution)

Let H be a hypercomplex algebra. An operator η : H → H is a
reverse involution if the following holds for all x , y ∈ H and α ∈ R:

η
(
η(x)

)
= x , (involution)

η(xy) = η(y)η(x), (anti-homomorphism)
η(αx + y) = αη(x) + η(y). (linear)
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Example 6 (Natural Conjugation)

The natural conjugation of a hypercomplex number
x = x0 + x1i1 + · · ·+ xnin, denoted by x̄ and defined by

x̄ = x0 − x1i1 − . . .− xnin,

is an example of reverse involution in hypercomplex algebras, such
as complex numbers and quaternions.

Example 7 (Trivial Reverse Involution)

The identity η(x) = x is a reverse involution if the multiplication is
commutative. In this case, it is called trivial reverse involution.
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Symmetric Bilinear Form and B-Function

A reverse involution is used for defining the symmetric bilinear form
B : H×H → R given by the equation

B(x , y) = Re {η(x)y} , ∀x , y ∈ H.

Note that B establishes a relationship between x and y , taking into
account the algebraic properties of multiplication and the reverse
involution η.

Definition 8 (B-Function)

A hypercomplex-valued function ϕ : D ⊂ H → S ⊂ H is a B-function
if

B(ϕ(x), x) > B(s, x), ∀x ∈ D,∀s ∈ S \ {ϕ(x)} .
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Real-part Associative Hypercomplex Algebras

Definition 9 (Real-part Associative Hypercomplex Algebras)

A hypercomplex algebra H equipped with a reverse involution η is a
real-part associative hypercomplex algebra (Re-AHA) if the following
identity holds for all x , y , z:

Re {(xy)z − x(yz)} = 0.

In particular, we say that a Re-AHA is positive semi-definite (or
non-negative definite) if the symmetric bilinear form B satisfies

B(x , x) ≥ 0, ∀x ∈ H.

The Cayley-Dickson algebras, with natural conjugation, are
examples of Re-AHAs.
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Visual interpretation of hypercomplex algebras:

Source: Castro and Valle (2020).
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Hypercomplex-Valued Hopfield Neural Networks

Let H be a Re-AHA and ϕ : D → S be a B-function with S a compact
subset of H.

Let wij ∈ H be the j th hypercomplex synaptic weight of the i th neuron
of a Hopfield network with hypercomplex values with N neurons.

The state of the Hopfield network at time t is represented by a vector

x(t) = [x1(t), . . . , xN(t)]T ∈ SN ,

where
xi(t) = xi0(t) + xi1(t)i1 + . . .+ xin(t)in,

corresponds to the state of the i th neuron.
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Given an initial state (input vector)

x(0) = [x1(0), . . . , xN(0)]T ∈ SN ,

a hypercomplex-valued Hopfield network (HvHN) defines the
sequence {x(t)}t≥0 by the equation

xi(t +∆t) =

{
ϕ
(
hi(t)

)
, hi(t) ∈ D,

xi(t), otherwise,

where

hi(t) =
N∑

j=1

wijxj(t),

is the activation potential of the i th neuron at time t .

Neurons are usually updated either synchronously or
asynchronously.
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Dynamics of the HvHNs

Theorem 10 (Dynamics of the HvHNs)

The sequence of states produced by a hypercomplex-valued
Hopfield network is convergent in asynchronous mode if the synaptic
weights satisfy

wij = η(wji)

and one of the following cases occurs:
• wii = 0 for all i ∈ {1, . . . ,N}.
• wii is a non-negative real number for all i ∈ {1, . . . ,N} and H is a

non-negative definite Re-AHA.

The proof of this theorem is given by de Castro and Valle (2020).
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Briefly, the proof follows by showing that

E(x) = −1
2

N∑
i=1

N∑
j=1

Re
{
η(xi)(wijxj)

}
= −1

2

N∑
i=1

N∑
j=1

B(xi ,wijxj),

is an energy function of the hypercomplex-valued Hopfield network.

In other words, E : SN → R is bounded and decreasing along any
non-stationary trajectory, i.e, the inequality

∆E = E(x(t +∆t))− E(x(t)) < 0,

holds whenever x(t +∆t) ̸= x(t).
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Example - Complex-Valued Multistate Hopfield Nets

Consider the complex numbers C with the natural conjugation.

Note that
B(z1, z2) = |z1||z2| cos |θ1 − θ2|,

where z1 = |z1|eiθ1 and z2 = |z2|eiθ2 are such that 0 ≤ |θ1 − θ2| ≤ π.

In particular, B(z, z) = |z|2 ≥ 0. Thus, C with the natural conjugation
is a positive semi-definite Re-AHN.

Furthermore, the complex-valued signum function csgn : D → S is a
B-function.

The complex-valued multistate Hopfield neural network with f ≡ csgn
yields a convergent sequence if wij = w̄ji and wii ≥ 0.
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Tessarine-Valued Hopfield Network

The tessarines T, introduced in 1849 by James Cockle and later by
Corrado Segre as the bicomplex numbers (Cerroni, 2017), is a
commutative four-dimension hypercomplex algebra characterized by
the multiplication table

T i j k
i −1 k −j
j k 1 i
k −j i −1

Consider the tessarines T with the reverse-involution

η(x) = x0 − x1i + x2j − x3k , ∀x = x0 + x1i + x2j + x3k .

Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 25 / 36



In this case, T is a positive semi-definite Re-AHA and the symmetric
bilinear form is

BT(x , y) = x0y0 + x1y1 + x2y2 + x3y3, ∀x , y ∈ T.

A tessarine x = x0 + x1i1 + · · ·+ xnin can also be written as

x = (x0 + x1i) + (x2 + x3i)j = z0 + z1j ,

where z0 = x0 + x1i ∈ C and z1 = x2 + x3i ∈ C.

Using such identity, we can show that the twin-multistate activation
function is a B-function in this algebra.
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Thus, the tessarine-valued multistate Hopfield neural network yields
a convergent sequence in an asynchronous update mode if
wij = η(wji) and wii ≥ 0 for all i , j = 1, . . . ,N.

The theory presented in this paper provides a unified mathematical
explanation for the stability analysis of many hypercomplex-valued
neural networks such as the one detailed by Isokawa et al. (2010);
Kobayashi (2018a).

More examples are given in de Castro and Valle (2020).
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Concluding Remarks

In this talk, we presented a general framework for
hypercomplex-valued Hopfield networks.

These models, operating in asynchronous mode, produce a
convergent sequence of states under certain conditions in the
hypercomplex algebra and synaptic weights.

This result is significant for implementing associative memories
using hypercomplex-valued Hopfield networks. It is also necessary
for solving optimization problems.
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Future Research

Besides the discrete-time model, the real-valued continuous-time
Hopfield neural network is given by (Hassoun and Watta, 1997):

C
dui

dt
= αiui +

n∑
j=1

wijxj − θi , with xi = ϕ(ui), ∀i = 1, . . . ,N. (8)

The continuous-time Hopfield network always settles at equilibrium if
wij = wji and the function ϕ is smooth and monotonically increasing
(Hopfield, 1984).

Can we extend this result for a broad class of hypercomplex
algebras?

Thanks for your attention!
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