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Extreme Learning Machines

Extreme learning machines (ELMs) are well-established (shallow)
feedforward neural networks (Huang et al., 2004).

ELMs are fully connected MLP networks in which all hidden
parameters are randomly initialized and fixed.

A least-squares optimization problem performs training only on the
output layer parameters.

The ELMs maintain the approximation capability while drastically
decreasing the training’s computational complexity.

Complex-valued and quaternion-valued ELMs have been developed
by Lu et al. (2019); Lv and Zhang (2018); Minemoto et al. (2017);
Zhu et al. (2021).
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Vector-valued Extreme Learning Machines (V-ELM)

Consider a single-hidden layer feedforward neural network on a
finite-dimensional algebra V.

The parameters of the single hidden layer with Q neurons are
represented by a matrix W ∈ VN×Q.

Given a vector-valued row input x = [x1, . . . , xN ] ∈ VN , the
feed-forward step through the hidden layer yields

h = ψ(xW ) ∈ VQ,

where ψ : V → V is a split activation function.

The output layer parameters are arranged in a matrix M ∈ VQ×M .
The output of the V-ELM is given by

y = hM ∈ VM .

Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 3 / 27



Training an V-ELM network

Consider a training set

T = {(xi , t i) : i = 1, . . . ,K} ⊂ VN × VM .

Organize the training elements as rows in matrices X ∈ VK×N and
T ∈ VK×M .

The hidden layer parameters are randomly generated and fixated:

wij = α

n∑
i=1

(randni)ei ,

where α is a scaling factor, randni yields a random number drawn
from a normal distribution with mean 0 and variance 1, and
E = {e1, . . . ,en} is an ordered basis for V.
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The parameters of the output layer are determined by solving the
vector-valued least squares problem

min{∥HM − T∥F : M ∈ VK×Q} =⇒ M = φ−1
(
ML(H)†φ(T )

)
,

where H = ψ(XW ) is the hidden layer output matrix of the neural
network.
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Computational Experiments

We conducted two experiments: one featuring a time-series
prediction task and one involving color image auto-encoding.

We considered the real-valued ELM and four-dimensional
hypercomplex-valued ELM models.

For comparison purposes, we considered neural networks with a
similar total number of trainable parameters.

A real-valued ELM with an input signal of dimension N(R), Q(R)

neurons in the hidden layer, and output of dimension M(R), has

TNP(R) = (Q(R) + 1)M(R), (1)

while a 4D hypercomplex-valued ELM has

TNP(V) = 4(Q(V) + 1)M(V). (2)
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Besides the real numbers, we considered seven 4D hypercomplex
algebras:
• Cayley-Dickson algebras: R[+1,+1], R[+1,−1], R[−1,+1], and
R[−1,−1] ≃ Q.

• Tessarines T.
• Hyperbolic quaternions Y.
• Klein four-group K.

The Cayley-Dickson algebra R[−1,−1] corresponds to quaternions
while R[−1,+1] is equivalent to coquaternions.

Furthermore, we have R[+1,−1] ≡ Cl(1,1) and
R[+1,+1] ≡ Cl(2,0), where Cl(p,q) denotes a Clifford algebra.
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Times Series Prediction

For the time series prediction task, we considered the Lorenz
system given by 

dx
dt = σ(y − x),
dy
dt = x(ρ− z)− y ,
dz
dt = xy − βz,

with σ = 10, β = 8/3, and ρ = 28.

A total of 4.000 consecutive positions were generated using a
fourth-order Runge-Kutta method.

The first 300 positions have been used for training, while the
remaining 3.700 positions have been used for testing.
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We used 3 consecutive positions as input for a model to predict the
next position:
• R-ELM:

◦ Inputs: (xt−2, yt−2, zt−2, xt−1, yt−1, zt−1, xt , yt , zt) ∈ R9,
◦ Output: (xt+1, yt+1, zt+1) ∈ R3.

• H-ELM:
◦ Inputs:

(xt−2i + yt−2j + zt−2k︸ ︷︷ ︸
pt−2

, xt−1i + yt−1j + zt−1k︸ ︷︷ ︸
pt−1

, xt i + yt j + ztk︸ ︷︷ ︸
pt

) ∈ V3,

◦ Output: (xt+1i + yt+1j + zt+1k︸ ︷︷ ︸
pt+1

) ∈ V.

We evaluate the performance of the ELM models using the
prediction gain (Xia et al., 2015).
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We performed a series of tests with

Q(V) ∈ {11,12, . . . ,34,35},

and determined the corresponding number of hidden neurons for the
real-valued ELM, resulting in

Q(R) ∈ {15,16, . . . ,45,47}.

For each Q(V) and Q(R), we trained and tested 100 networks for
each algebra, resulting in a total of 20.000 simulations.

We annotated the best-performing model for each of these
simulations, i.e., the model that yielded the highest prediction gain.

The following shows the frequency with which one model
outperformed all others.
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The probability of an ELM yields the highest prediction gain by the
underlying algebra:

Source: Vieira and Valle (2022).
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The average prediction gain by the total number of parameters:

Source: Vieira and Valle (2022).
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Color Image Auto-Encoding

An auto-encoder can compress a high-dimensional object and
reconstruct it from the compressed information with minimal loss.
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We used the CIFAR-10 dataset: 10,000 images for train and other
10,000 for testing.
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ELM AutoEncoder

Given an input image x ∈ AN (A = R or A = H), we have

h = ψ(xW ) ∈ AQ︸ ︷︷ ︸
Enconder

and y = hM ∈ AN︸ ︷︷ ︸
Decoder

.
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R-ELM: N(R) = 3,072 and Q(R) = 600, TNP(R) = 1,843,200.

A 32 × 32 RGB image is converted to a real-valued vector
x(R) ∈ R3072 concatenating the red, green, and blue channels. Also,
the values are rescaled to [−1,+1].

V-ELM: N(V) = 1,024 and Q(V) = 450, TNP(V) = 1,843,200.

A 32 × 32 RGB image is converted to a hypercomplex-valued vector
x(V) ∈ V1024 by

x (V)
i =

(
2redi

255
− 1

)
i +

(
2greeni

255
− 1

)
j +

(
2bluei

255
− 1

)
k .
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training set samples: original color image and the corresponding
decoded images.

Original image:
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Source: Vieira and Valle (2022).
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training set samples: original color image and the corresponding
decoded images.

Original image:
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Source: Vieira and Valle (2022).
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Test set samples: original color image and the corresponding
decoded images.

Original image:
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Source: Vieira and Valle (2022).
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Test set samples: original color image and the corresponding
decoded images.

Original image:
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Source: Vieira and Valle (2022).
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We used the peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) to compare the auto-encoders.

Train Set Test Set
Algebra PSNR SSIM PSNR SSIM

Real 27.3 ± 2.4 0.91 ± 0.05 26.8 ± 2.6 0.89 ± 0.05
Y 26.4 ± 2.4 0.89 ± 0.05 26.0 ± 2.6 0.88 ± 0.05
K 28.9 ± 2.5 0.93 ± 0.04 28.5 ± 2.7 0.92 ± 0.05
T 28.9 ± 2.5 0.93 ± 0.04 28.5 ± 2.7 0.92 ± 0.05
Q 28.9 ± 2.5 0.93 ± 0.04 28.5 ± 2.7 0.92 ± 0.05

R[−1,+1] 31.0 ± 2.5 0.95 ± 0.03 30.5 ± 2.7 0.95 ± 0.04
R[+1,−1] 31.1 ± 2.5 0.95 ± 0.03 30.6 ± 2.7 0.95 ± 0.04
R[+1,+1] 27.9 ± 2.4 0.92 ± 0.04 27.5 ± 2.6 0.91 ± 0.05

Average PSNR and SSIM rates.
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PSNR rates:
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Source: Vieira and Valle (2022).
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SSIM rates:
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Source: Vieira and Valle (2022).
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Concluding Remarks

This talk addressed vector-valued extreme learning machines.

We implemented seven four-dimensional hypercomplex-valued ELM
models besides the traditional real- valued ELM.

The neural networks have been used for chaotic time series
prediction and an auto-encoding task.

The hypercomplex-valued models outperformed the traditional
real-valued ELM by a noticeable margin on both tasks.

Less known algebras, such as the Cayley-Dickson algebras, may
perform better in some machine learning tasks.

Thanks for your attention!
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