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Introduction

Neural networks are machine learning models inspired by biological
neural networks.

Applications of neural networks include computer vision, physics,
control, pattern recognition, economics, and many applications in
the medical field.

Vector-valued neural networks (VvNNs) extend traditional
real-valued neural network models by assuming the components of
the variables are vectors instead of scalars.

Vector-valued NNs are specially designed for tasks involving
multi-channel data like color images.
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Dense or Fully Connected Layers

This talk addresses the approximation capability of fully connected
single-hidden layer VvNNs.

Dense layers, also known as fully connected layers, are the building
block of several NN architectures, such as the famous multi-layer
perceptron (MLP) network.

Dense layers are composed of several parallel neurons, each
receiving inputs through synaptic connections.

Dense layers process data through a linear combination of its inputs
by the synaptic weights (trainable parameters), to which a scalar
bias term is added.

A non-linear activation function can be applied to yield the neuron’s
output.
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Consider an algebra V. A dense layer is defined as follows.

Let x1, . . . , xN ∈ V denote the inputs, the output of the i th neuron
yi ∈ V in a dense layer is given by

yi = ψ
(
sj
)
, with si =

 N∑
j=1

wijxj

+ bi (1)

where wij ∈ V denotes the weight associated with the j th input
variable, bi ∈ V is the bias term of the i th neuron, and ψ : V → V
represents the activation function.
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From a computational point of view, dense layers are efficiently
implemented using matrix-vector notation.

The output y = (y1, . . . , yM) ∈ VM of a dense layer with M neurons
in parallel is determined by the equation

y = ψ(s), with s = xW + b, (2)

where x = (x1, . . . , xN) ∈ VM is the input vector, W = (wij) ∈ VN×M

is the matrix containing the synaptic weights, b = (b1, . . . ,bM) ∈ VM

is the bias vector, and ψ : VM → VM is a vector-valued multivariate
activation function.

Except for the output layer, the vector-valued activation function ψ is
usually defined component-wise:

[ψ(s)]i = ψ(si), ∀i = 1, . . . ,M, (3)

where ψ : V → V.
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Single Hidden-Layer MLP Network

In mathematical terms, a vector-valued dense layer describes a
function D : VN → VM .

A vector-valued multilayer perception (V-MLP) N with K layers is
given by the composition of dense layers as follows:

N = DK ◦ . . . ◦ D1. (4)

Despite being computationally expensive due to the numerous
parameters, dense layers are widely used since they support the
universal approximation theorem.

Briefly, the universal approximation theorem says that the set of
neural networks is dense in the set of all continuous functions over a
compact set.
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Approximation Capability of the MLP network

As far as we know, the starting point of the approximation theory for
neural networks was the universal approximation theorem by
Cybenko (1989).

Cybenko’s universal approximation theorem was generalized to
real-valued MLP models with any non-constant bounded activation
function (Hornik, 1991).

Recently, many researchers addressed the approximation
capabilities of neural networks, including deep and shallow models
based on piece-wise linear activation functions (Petersen and
Voigtlaender, 2018).
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Theorem 1 (Universal Approximation Theorem (Pinkus, 1999))

Consider a compact K ⊂ RN and let ψ : R → R be a continuous
non-polynomial function. The class of all real-valued neural
networks defined by

H =
{
NR = D2 ◦ D1 : D1 : RN → RQ,D2 : RQ → R,Q ∈ N

}
.

is dense in C(K ), the set of all real-valued continuous functions on K .

In other words, given a real-valued continuous-function fR : K → R
and ϵ > 0, there is a single hidden-layer MLP network given by

NR(x) = ψ (xW1 + b1)w2 + b2,

such that
|fR(x)−NR(x)| < ϵ, ∀x ∈ K .
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Complex-valued MLP (C-MLP)

The structure of a complex-valued MLP (C-MLP) is equivalent to that
of a real-valued MLP, except that input and output signals, weights,
and biases are complex numbers instead of real values.

Additionally, the activation functions are complex-valued functions
ψ : C → C.

Note that the logistic function can be generalized to complex
parameters using Euler’s formula ex i = cos(x) + i sin(x) as follows
for all x ∈ C:

σ(x) =
1

1 + e−x .

However, the universal approximation property is generally not valid
for C-MLP with such activation function(Arena et al., 1998).
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Fortunately, the universal approximation theorem holds for C-MLP
networks with split activation functions(Arena et al., 1998).

A complex-valued split activation function ψC : C → C is defined as
follows using a real-valued function ψ : R → R:

ψ(x) = ψ(x0) + ψ(x1)i , ∀x = x0 + x1i ∈ C.
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Quaternion-Valued MLPs (Q-MLP)

In a similar way, Arena et al. (1997) also defined quaternion-valued
MLP (Q-MLP) by replacing the real input and output, weights and
biases, with quaternion numbers.

They then proceeded to prove that Q-MLPs with a single hidden
layer and split sigmoid activation function

ψ(x) = ψ(x0)+ψ(x1)i+ψ(x2)j+ψ(x3)k , ∀x = x0+x1i+x2j+x3k ∈ Q,
(5)

are universal approximators in the set of continuous
quaternion-valued functions.
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Hyperbolic-valued MLPs (U-MLP)

In 2000, Buchholz and Sommer introduced an MLP based on
hyperbolic numbers, obtaining the so-called hyperbolic multilayer
perceptron (U−MLP).

This network equipped with a split logistic activation function is also
a universal approximator (Buchholz and Sommer, 2000).

Buchholz and Sommer provided experiments highlighting that the
U-MLP can learn tasks with underlying hyperbolic properties much
more accurately and efficiently than C-MLP and real-valued MLP
networks.
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Clifford MLPs (Cℓ-MLP)

In 2001, Buchholz and Sommer worked with a class of neural
networks based on Clifford algebras (Buchholz and Sommer, 2001,
2008).

They found that the universal approximation property holds for MLPs
based on non-degenerate Clifford algebra.

In addition, they pointed out that degenerate Clifford algebras may
lead to models without universal approximation capability.

Although Buchholz and Sommer considered sigmoid activation
functions, Clifford MLPs are also universal approximators with the
split relu activation function.

Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 13 / 20



Univeral Approximation Theorem for V-MLPs

In the previous pages, we presented universal approximation
theorems from the literature for some single hidden layer V-MLP
networks.

In the following, we generalize the universal approximation theorem
for a finite-dimensional non-degenerate algebra V.

Let E = {e1, . . . ,en} be a basis for an algebra V. A split activation
function ψ : V → V is derived from a real function ψR : R → R as
follows:

ψ(x) =
n∑

i=1

ψR(xi)ei , ∀x =
n∑

i=1

xiei ∈ V.

The activation function can be the split relu or a split sigmoid
function.
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Theorem 2 (Universal Approx. Theorem for V-MLP Networks)

Consider a finite-dimensional non-degenerate algebra V and let
K ⊂ VN be a compact set. Also, consider a continuous real-valued
non-polynomial function ψR : R → R such that limλ→−∞ ψR(λ) = 0
and let ψV : V be the split function derived from ψR. The class

H =
{
NV = D2 ◦ D1 : D1 : VN → VQ,D2 : VQ → V,Q ∈ N

}
.

is dense in the set C(K ) of all continuous functions on K . In other
words, given a continuous function fV : K → V and ϵ > 0, there
exists a V-MLP network NV : VN → V given by

NV(x) = ψ (xW1 + b1)w2 + b2,

such that
|fV(x)−NV(x)| < ϵ, ∀x ∈ K . (6)
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Concluding Remarks

The universal approximation theorem for single-hidden layer V-MLP
networks serves many purposes, including:
1. It consolidates the results regarding the universal approximation

property of many well-known algebras, thus eliminating the need
to prove this property for each algebra individually.

2. Many algebras that have not had this result proven are now
directly known as the basis for neural networks with universal
approximation property. That is the case for octonions, for
example.

3. This result further promotes the use of vector-valued networks.

Now, we are studying the approximation capabilities of vector-valued
dense networks like the ResNet (Lin and Jegelka, 2018).

Thanks for your attention!
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