Hypercomplex-valued Neural Networks

Part 1 - Introduction and Basic Concepts.

NAlVA
POLISH NATIONAL AGENCY FOR ACADEMIC EXCHANGE

Marcos Eduardo Valle

 Universidade Estadual de Campinas (Unicamp) Campinas, Brazil.
Aims and Goals:

Introduce a broad class of hypercomplex-valued neural networks.

Why a broad class of hypercomplex-valued neural networks?

Neural networks (NNs) have demonstrated outstanding results in several application areas, including image detection and classification.

- Hypercomplex-valued neural networks showed competitive or superior performance but with fewer parameters than their equivalent neural networks defined on real numbers.
- The advantages of hypercomplex-valued NNs include reducing the number of parameters and treating multiple values as a single entity.

A search on Scopus on February 2022 by "neural network" combined with an additional hypercomplex algebra search term:
Hypercomplex algebra additional search term \# Documents

"complex number" OR "complex valued"	1,855
"quaternion"	704
"Clifford"	121
"hypercomplex"	80
"octonion"	22
"hyperbolic number" OR "hyperbolic valued"	18
"Bicomplex"	8
"Cayley-Dickson"	5
"tessarines"	1
"coquaternion"	1
"Klein four-group"	1

Although some documents appeared in more than one search, it is clear that complex and quaternion-valued models dominate the research on HvNNs.

Aims and goals:

Most research focuses on networks based on complex numbers and quaternions.

Alternative algebras can result in efficient hypercomplex-valued NNs!
The following presents a general framework for hypercomplex algebras.

- On the one hand, we will be able to work with a broad class of hypercomplex-valued neural networks.
- On the other hand, we will not be able to explore specific properties (like the geometric properties of Clifford algebras) of the hypercomplex algebra.

Addition and Multiplication are Key Concepts

Addition and multiplication are core concepts for developing hypercomplex-valued models.

For example, dense and convolutional layers are described by the following equations, respectively:

$$
\begin{equation*}
y_{i}=\varphi\left(s_{i}+b_{i}\right), \quad \text { with } \quad s_{i}=\sum_{j=1}^{N} w_{i j} x_{j}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{J}(p, k)=\varphi((\mathbf{I} * \mathbf{F})(p, k)+b(k)), \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
(\mathbf{I} * \mathbf{F})(p, k)=\sum_{c=1}^{c} \sum_{q \in G} \mathbf{I}(p+S(q), c) \mathbf{F}(q, c, k) \tag{3}
\end{equation*}
$$

Basic Concepts on Algebra

Definition 1 (Algebra - Schafer (1961))

An algebra \mathbb{V} over a field \mathbb{F} is a vector space over \mathbb{F} with an additional bilinear operation called multiplication.

In the following, we focus on algebras over the field of real numbers; that is, we only consider $\mathbb{F}=\mathbb{R}$.

As a bilinear operation, the multiplication of $x, y \in \mathbb{V}$, denoted by the juxtaposition $x y$, satisfies

$$
\begin{equation*}
(x+y) z=x z+y z \quad \text { and } \quad z(x+y)=z x+z y, \quad \forall x, y, z \in \mathbb{V} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(x y)=(\alpha x) y=x(\alpha y), \quad \forall \alpha \in \mathbb{R} \quad \text { and } \quad x, y \in \mathbb{V} . \tag{5}
\end{equation*}
$$

Finite-Dimensional Vector Algebra

We will be only concerned with finite dimensional vector spaces. In other words, we assume that \mathbb{V} is a vector space of dimension n, i.e., $\operatorname{dim}(\mathbb{V})=n$.

Let $\mathcal{E}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an ordered basis for \mathbb{V}. Given $x \in \mathbb{V}$, there is an unique n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{n} x_{i} e_{i} \tag{6}
\end{equation*}
$$

The scalars x_{1}, \ldots, x_{n} are the coordinates of x relative to the ordered basis \mathcal{E}.

In computational applications, $x \in \mathbb{V}$ is given by its coordinates relative to the ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$. In other words, x is usually written as a vector in R^{n}.

Given an ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$, the mapping $\varphi: \mathbb{V} \rightarrow \mathbb{R}^{n}$ given by

$$
\varphi(x)=\left[\begin{array}{c}
x_{1} \tag{7}\\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n}, \quad \forall x \in \mathbb{V}
$$

yields an isomorphism between \mathbb{V} and \mathbb{R}^{n}.
The absolute value $x \in \mathbb{V}$ with respect to the basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ is the Euclidean norm of $\varphi(x)$:

$$
\begin{equation*}
|x|:=\|\varphi(x)\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}} \tag{8}
\end{equation*}
$$

Remark:

The absolute value of x given by (8) is not an invariant; it depends on the basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$.

Multiplication Table

Given an ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{V}, the multiplication is completely determined by the n^{3} parameters $p_{i j k} \in \mathbb{R}$ which appear in the products

$$
\begin{equation*}
e_{i} e_{j}=\sum_{k=1}^{n} p_{i j k} e_{k}, \quad \forall i, j=1, \ldots, n \tag{9}
\end{equation*}
$$

The products in (9) can be arranged in the multiplication table:

	e_{1}	e_{j}	e_{n}
		\vdots	
e_{i}	\cdots	$\sum_{k=1}^{n} p_{i j k} e_{k}$	\cdots
		\vdots	

Commutative Algebras

Definition 2 (Commutative Algebra)

An algebra \mathbb{V} is commutative if

$$
\begin{equation*}
x y=y x, \quad \forall x, y \in \mathbb{V} \tag{10}
\end{equation*}
$$

The properties of an algebra can be derived from the same property from the basis elements.

Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ be an ordered basis for an algebra \mathbb{V}. The algebra is commutative if and only if

$$
e_{i} e_{j}=e_{j} e_{i}, \quad \forall i, j=1, \ldots, n
$$

From the multiplication table, an algebra is commutative if

$$
p_{i j k}=p_{j i k}, \quad \forall i, j, k=1, \ldots, n
$$

Associative Algebra

Definition 3 (Associative Algebra)

An algebra \mathbb{V} is associative if

$$
\begin{equation*}
(x y) z=x(y z), \quad \forall x, y, z \in \mathbb{V} \tag{11}
\end{equation*}
$$

Let $\mathcal{E}=\left\{\boldsymbol{e}_{1}, \ldots, e_{n}\right\}$ be an ordered basis for an algebra \mathbb{V}. The algebra is associative if and only if

$$
\left(e_{i} e_{j}\right) e_{k}=e_{i}\left(e_{j} e_{k}\right), \quad \forall i, j=1, \ldots, n
$$

Therefore, an algebra is associative if

$$
\sum_{\mu=1}^{n} p_{i j \mu} p_{k \mu \nu}=\sum_{\mu=1}^{n} p_{j k \mu} p_{i \mu \nu}, \quad \forall i, j, k, \nu=1, \ldots, n
$$

Hypercomplex Algebra

A hypercomplex algebra, denoted by \mathbb{H}, is a finite-dimensional algebra in which the product has a two-sided identity (Catoni et al., 2008; Kantor and Solodovnikov, 1989).

A hypercomplex algebra \mathbb{H} is equipped with an (unique) element e_{0} such that

$$
x e_{0}=e_{0} x=x, \quad \forall x \in \mathbb{V}
$$

Identity is usually the first element of the ordered basis. Thus, $\mathcal{E}=\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ is an ordered basis of an hypercomplex algebra and $\operatorname{dim}(\mathbb{H})=n+1$.

We often consider the canonical basis $\tau=\left\{1, \boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{n}\right\}$. Thus, a hypercomplex number is given by

$$
\begin{equation*}
x=x_{0}+x_{1} \boldsymbol{i}_{1}+\ldots+x_{n} \boldsymbol{i}_{n} \tag{12}
\end{equation*}
$$

The multiplication table of a hypercomplex algebra with respect to the canonical basis $\tau=\left\{1, \boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{n}\right\}$ is

Thus, we have

$$
p_{0 j k}=p_{i 0 k}= \begin{cases}1, & i=k \text { or } j=k \\ 0, & \text { otherwise }\end{cases}
$$

Example - Quaternions

Quaternions, introduced by Hamilton in the late 19th, are hypercomplex numbers that generalize real and complex numbers.

Using the canonical basis $\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$, a quaternion is given by

$$
x=x_{0}+x_{1} \boldsymbol{i}+x_{2} \boldsymbol{j}+x_{3} \boldsymbol{k}
$$

Quaternions are effective mathematical tools for describing 3D rotations.

They have also been effectively used to develop neural networks (Arena et al., 1997; Parcollet et al., 2020).

The multiplication table of quaternions is

	1	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}
1	1	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}
\boldsymbol{i}	\boldsymbol{i}	-1	\boldsymbol{k}	$-\boldsymbol{j}$
\boldsymbol{j}	\boldsymbol{j}	$-\boldsymbol{k}$	-1	\boldsymbol{i}
\boldsymbol{k}	\boldsymbol{k}	\boldsymbol{j}	$-\boldsymbol{i}$	-1

Because $\boldsymbol{i} \boldsymbol{j}=\boldsymbol{k}$ and $\boldsymbol{j} \boldsymbol{i}=-\boldsymbol{k}$, the multiplication of quaternions is non-commutative.

The multiplicative inverse of any quaternion $x \neq 0$ is

$$
x^{-1}=\frac{\bar{x}}{x \bar{x}}
$$

where $\bar{x}=x_{0}-x_{1} \boldsymbol{i}-x_{2} \boldsymbol{j}-x_{3} \boldsymbol{k}$ is the conjugate of x.

Product and Bilinear Forms

Using the distributive law and the multiplication table, the product of $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{j=1}^{n} y_{j} e_{j}$ satisfies

$$
\begin{aligned}
x y & =\left(\sum_{i=1}^{n} x_{i} e_{i}\right)\left(\sum_{j=1}^{n} y_{j} e_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j}\left(e_{i} e_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j}\left(\sum_{k=1}^{n} p_{i j k} e_{k}\right)=\sum_{k=1}^{n}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} p_{i j k}\right) e_{k}
\end{aligned}
$$

Because the product is bilinear, the function $\mathcal{B}_{k}: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\mathcal{B}_{k}(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} p_{j k}, \quad \forall k=1, \ldots, n, \tag{13}
\end{equation*}
$$

is a bilinear form.

Proposition 1

Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ be an ordered basis of an algebra \mathbb{V}. The multiplication of $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{j=1}^{n} y_{j} e_{j}$ satisfies

$$
\begin{equation*}
x y=\sum_{k=1}^{n} \mathcal{B}_{k}(x, y) \boldsymbol{e}_{k}, \tag{14}
\end{equation*}
$$

where $\mathcal{B}_{k}: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is a bilinear form whose matrix representation in the ordered basis \mathcal{E} is

$$
B_{k}=\left[\begin{array}{cccc}
p_{11 k} & p_{12 k} & \ldots & p_{1 n k} \tag{15}\\
p_{21 k} & p_{22 k} & \ldots & p_{2 n k} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1 k} & p_{n 2 k} & \ldots & p_{n n k}
\end{array}\right] \in \mathbb{R}^{n \times n}, \quad \forall k=1, \ldots, n .
$$

Thus, we have $\mathcal{B}_{k}(x, y)=\varphi(x)^{T} B_{k} \varphi(y)$.

Let \mathbb{H} be a hypercomplex algebra. The matrix representation of the bilinear forms $\mathcal{B}_{k}: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}$ with respect to the canonical basis $\tau=\left\{1, \boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{n}\right\}$ are

$$
B_{0}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & p_{110} & \cdots & p_{1 n 0} \\
\vdots & \vdots & \ddots & \vdots \\
0 & p_{n 10} & \cdots & p_{n n 0}
\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}
$$

and, for $k=1, \ldots, n$,

$$
B_{k}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 1 & \cdots & 0 \\
0 & p_{11 k} & p_{12 k} & \cdots & p_{1 k k} & \cdots & p_{1 n k} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & p_{k 1 k} & p_{j 2 k} & \cdots & p_{k k k} & \cdots & p_{k n k} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & p_{n 1 k} & p_{n 2 k} & \cdots & p_{n k k} & \cdots & p_{n n k}
\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}
$$

Non-Degenerate Algebra

A bilinear form $\mathcal{B}_{k}: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is non-degenerate if its matrix representation B_{k} is non-singular with respect to any ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$.

Definition 4 (Non-degenerate algebra)

An algebra \mathbb{V} is non-degenerate if all the bilinear forms in the coordinates of the multiplication are non-degenerate. Otherwise, we say that the algebra \mathbb{V} is degenerate.

Remark

Non-degenerate algebras play an important role in the approximation capability of hypercomplex-valued (or vector-valued) multi-layer networks.

Matrix Representation of the Product

The multiplication to the left by $a=\sum_{i=1}^{n} a_{i} e_{i}$ yields a linear operator $\mathcal{A}_{L}: \mathbb{V} \rightarrow \mathbb{V}$ defined by

$$
\mathcal{A}_{L}(x)=a x, \quad \forall x \in \mathbb{V}
$$

The matrix representation of \mathcal{A}_{L} relative to an ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ yields a mapping $\mathcal{M}_{L}: \mathbb{V} \rightarrow \mathbb{R}^{n \times n}$ given by

$$
\begin{aligned}
\mathcal{M}_{L}(a) & =\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\varphi\left(a e_{1}\right) & \varphi\left(a e_{2}\right) & \ldots & \varphi\left(a e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\sum_{i=1}^{n} a_{i} p_{i 11} & \sum_{i=1}^{n} a_{i} p_{i 21} & \ldots & \sum_{i=1}^{n} a_{i} p_{i n 1} \\
\sum_{i=1}^{n} a_{i} p_{i 12} & \sum_{i=1}^{n} a_{i} p_{i 22} & \ldots & \sum_{i=1}^{n} a_{i} p_{i n 2} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{n} a_{i} p_{i 1 n} & \sum_{i=1}^{n} a_{i} p_{i 2 n} & \ldots & \sum_{i=1}^{n} a_{i} p_{i n n}
\end{array}\right]
\end{aligned}
$$

Alternatively, we can write

$$
\mathcal{M}_{L}(a)=\sum_{i=1}^{n} a_{i} P_{i:}^{T}, \quad \text { with } \quad P_{i:}^{T}=\left[\begin{array}{cccc}
p_{i 11} & p_{i 21} & \ldots & p_{i n 1} \tag{16}\\
p_{i 12} & p_{i 22} & \ldots & p_{i n 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{i 1 n} & p_{i 2 n} & \ldots & p_{i n n}
\end{array}\right] \text {. }
$$

Using the matrix representation, we have

$$
\begin{equation*}
\varphi(a x)=\mathcal{M}_{L}(a) \varphi(x)=\sum_{i=1}^{n} a_{i} P_{i:}^{T} \varphi(x) \tag{17}
\end{equation*}
$$

for all $a=\sum_{i=1}^{n} a_{i} e_{i} \in \mathbb{V}$ and $x \in \mathbb{V}$.

Analogously, the multiplication to the right by $a=\sum_{i=1}^{n} a_{i} e_{i}$ yields a linear operator $\mathcal{A}_{R}: \mathbb{V} \rightarrow \mathbb{V}$ defined by

$$
\mathcal{A}_{R}(x)=x a, \quad \forall x \in \mathbb{V}
$$

The matrix of \mathcal{A}_{R} relative to an ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ yields the mapping $\mathcal{M}_{R}: \mathbb{V} \rightarrow \mathbb{R}^{n \times n}$ given by

$$
\mathcal{M}_{R}(a)=\sum_{i=1}^{n} a_{i} P_{: i}, \quad \text { with } \quad P_{: i}=\left[\begin{array}{cccc}
p_{1 i 1} & p_{1 i 2} & \ldots & p_{1 i n} \tag{18}\\
p_{2 i 1} & p_{2 i 2} & \ldots & p_{2 i n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n i 1} & p_{n i 2} & \ldots & p_{\text {nin }}
\end{array}\right] .
$$

Using the matrix representation, we have

$$
\begin{equation*}
\varphi(x a)^{T}=\varphi^{T}(x) \mathcal{M}_{R}(a)=\sum_{i=1}^{n} a_{i} \varphi^{T}(x) P_{: i}, \quad \forall x \in \mathbb{V}, \tag{19}
\end{equation*}
$$

where $a=\sum_{i=1}^{n} a_{i} e_{i} \in \mathbb{V}$.

Example - Quaternions

Consider the quaternions with the canonical basis $\tau=\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$.
The product of $x=x_{0}+x_{1} \boldsymbol{i}+x_{2} \boldsymbol{j}+x_{3} \boldsymbol{k}$ and $y=y_{0}+y_{1} \boldsymbol{i}+y_{2} \boldsymbol{j}+y_{3} \boldsymbol{k}$ satisfies

$$
\varphi(x y)=\left[\begin{array}{cccc}
x_{0} & -x_{1} & -x_{2} & -x_{3} \\
x_{1} & x_{0} & -x_{3} & x_{2} \\
x_{2} & x_{3} & x_{0} & -x_{1} \\
x_{3} & -x_{2} & x_{1} & x_{0}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\mathcal{M}_{L}(x) \varphi(y) .
$$

Note that

$$
\mathcal{M}_{L}(x)=x_{0} P_{0:}+x_{1} P_{1:}+x_{2} P_{2:}+x_{n} P_{n:},
$$

where $P_{0:}=I_{4 \times 4}$ is the identity matrix and
$P_{1:}^{T}=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right], P_{2:}^{T}=\left[\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right], P_{3:}^{T}=\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$

Similarly, we have

$$
\varphi(x y)^{T}=\left[x_{0}, x_{1}, x_{2}, x_{3}\right]^{T}\left[\begin{array}{cccc}
y_{0} & y_{1} & y_{2} & y_{3} \\
-y_{1} & y_{0} & -y_{3} & y_{2} \\
-y_{2} & y_{3} & y_{0} & -y_{1} \\
-y_{3} & y_{2} & -y_{1} & y_{0}
\end{array}\right]=\varphi(x)^{T} \mathcal{M}_{R}(y) .
$$

Note that

$$
\mathcal{M}_{R}(y)=y_{0} P_{: 0}+y_{1} P_{: 1}+y_{2} P_{: 2}+y_{3} P_{: 3},
$$

where $P_{: 0}=\mathbf{I}_{4 \times 4}$ is the identity matrix and
$P_{: 1}=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0\end{array}\right], P_{: 2}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right], P_{: 3}=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right]$.

Parametrized "Hypercomplex" Algebra

Recently, Zhang et al. introduced the so-called parametrized "hypercomplex" algebra (Grassucci et al., 2022; Zhang et al., 2021).

However, a parametrized "hypercomplex" algebra does not necessarily has an identity.

Accordingly, a parametrized "hypercomplex" algebra is defined as follows using the matrix representation of multiplication:

Given matrices $P_{1}, \ldots, P_{n} \in \mathbb{R}^{n \times n}$ and an ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$, the product of a parametrized "hypercomplex" algebra is defined by the equation

$$
\begin{equation*}
x y=\varphi^{-1}\left(\sum_{i=1}^{n} x_{i} P_{i} \varphi(y)\right) \tag{20}
\end{equation*}
$$

Concluding Remarks:

We identify an algebra \mathbb{V} with \mathbb{R}^{n} equipped with a multiplication.

A hypercomplex algebra, denoted by \mathbb{H}, is a finite-dimensional algebra with a two-sided multiplication identity.

Given an ordered basis $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$, the multiplication is characterized by the multiplication table:

$$
\left(e_{i} e_{j}\right)=\sum_{k=1}^{n} p_{i j k} e_{k}, \quad \forall i, j=1, \ldots, n
$$

The multiplication satisfies

$$
x y=\sum_{i=1}^{n} \mathcal{B}_{k}(x, y) e_{k}, \quad \forall x, y \in \mathbb{V}
$$

where $\mathcal{B}_{k}: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ are bilinear forms.

The multiplication of a and x also satisfies

$$
\varphi(a x)=\mathcal{M}_{L}(a) \varphi(x) \quad \text { and } \quad \varphi(x a)^{T}=\varphi(x)^{T} \mathcal{M}_{R}(a), \quad \forall x \in \mathbb{V}
$$

where

$$
\mathcal{M}_{L}(a)=\sum_{i=1}^{n} a_{i} P_{i:}^{T}, \quad \text { with } \quad P_{i:}^{T}=\left[\begin{array}{cccc}
p_{i 11} & p_{i 21} & \ldots & p_{i n 1} \\
p_{i 12} & p_{i 22} & \ldots & p_{i n 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{i 1 n} & p_{i 2 n} & \ldots & p_{i n n}
\end{array}\right]
$$

and

$$
\mathcal{M}_{R}(a)=\sum_{i=1}^{n} a_{i} P_{: i}, \quad \text { with } \quad P_{: i}=\left[\begin{array}{cccc}
p_{1 i 1} & p_{1 i 2} & \ldots & p_{1 i n} \\
p_{2 i 1} & p_{2 i 2} & \ldots & p_{2 i n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n i 1} & p_{n i 2} & \ldots & p_{n i n}
\end{array}\right]
$$

Thanks for your attention!

Acknowledge

These slides are part of a mini-course given during the workshop on hypercomplex-valued neural networks, which took place at the Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Ostrava, Checz Republic, 06-10 February 2023, with the support of

My research on hypercomplex-valued neural networks has been partially supported by:
DTAPESP and QQCNPq

References (1)

P. Arena, L. Fortuna, G. Muscato, and M. G. Xibilia. Multilayer perceptrons to approximate quaternion valued functions. Neural Networks, 10(2):335-342, 3 1997. doi: 10.1016/S0893-6080(96)00048-2.
F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti, and P. Zampetti. The Mathematics of Minkowski Space-Time. Birkhäuser Basel, 2008. doi: 10.1007/978-3-7643-8614-6.
E. Grassucci, A. Zhang, and D. Comminiello. PHNNs: Lightweight Neural Networks via Parameterized Hypercomplex Convolutions. IEEE Transactions on Neural Networks and Learning Systems, pages 1-13, 10 2022. ISSN 2162-237X. doi: 10.1109/TNNLS.2022.3226772. URL
https://ieeexplore.ieee.org/document/9983846/.

References (2)

I. L. Kantor and A. S. Solodovnikov. Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer New York, 1989. doi: 10.1007/978-1-4612-3650-4.
T. Parcollet, M. Morchid, and G. Linarès. A survey of quaternion neural networks. Artificial Intelligence Review, 53(4):2957-2982, 4 2020. doi: 10.1007/s 10462-019-09752-1.
R. Schafer. An Introduction to Nonassociative Algebras. Project Gutenberg, 1961. URL
https://www.gutenberg.org/ebooks/25156.
A. Zhang, Y. Tay, S. Zhang, A. Chan, A. T. Luu, S. C. Hui, and J. Fu. Beyond Fully-Connected Layers with Quaternions:
Parameterization of Hypercomplex Multiplications with $\$ 1 / \mathrm{n} \$$ Parameters. 2 2021. doi: 10.48550/arxiv.2102.08597. URL https://arxiv.org/abs/2102.08597v1.

