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Aims and Goals:

Introduce a broad class of hypercomplex-valued neural networks.

Why a broad class of hypercomplex-valued neural networks?

Neural networks (NNs) have demonstrated outstanding results in
several application areas, including image detection and
classification.
• Hypercomplex-valued neural networks showed competitive or

superior performance but with fewer parameters than their
equivalent neural networks defined on real numbers.

• The advantages of hypercomplex-valued NNs include reducing
the number of parameters and treating multiple values as a single
entity.
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A search on Scopus on February 2022 by “neural network”
combined with an additional hypercomplex algebra search term:

Hypercomplex algebra additional search term # Documents
“complex number” OR “complex valued” 1,855

“quaternion” 704
“Clifford" 121

“hypercomplex” 80
“octonion” 22

“hyperbolic number” OR “hyperbolic valued” 18
“Bicomplex” 8

“Cayley-Dickson” 5
“tessarines” 1

“coquaternion” 1
“Klein four-group” 1

Although some documents appeared in more than one search, it is
clear that complex and quaternion-valued models dominate the
research on HvNNs.
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Aims and goals:

Most research focuses on networks based on complex numbers and
quaternions.

Alternative algebras can result in efficient hypercomplex-valued NNs!

The following presents a general framework for hypercomplex
algebras.
• On the one hand, we will be able to work with a broad class of

hypercomplex-valued neural networks.
• On the other hand, we will not be able to explore specific

properties (like the geometric properties of Clifford algebras) of
the hypercomplex algebra.
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Addition and Multiplication are Key Concepts

Addition and multiplication are core concepts for developing
hypercomplex-valued models.

For example, dense and convolutional layers are described by the
following equations, respectively:

yi = φ (si + bi) , with si =
N∑

j=1

wijxj , (1)

and
J(p, k) = φ

(
(I ∗ F)(p, k) + b(k)

)
, (2)

with

(I ∗ F)(p, k) =
C∑

c=1

∑
q∈G

I(p + S(q), c)F(q, c, k). (3)
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Basic Concepts on Algebra

Definition 1 (Algebra – Schafer (1961))

An algebra V over a field F is a vector space over F with an
additional bilinear operation called multiplication.

In the following, we focus on algebras over the field of real numbers;
that is, we only consider F = R.

As a bilinear operation, the multiplication of x , y ∈ V, denoted by the
juxtaposition xy , satisfies

(x + y)z = xz + yz and z(x + y) = zx + zy , ∀x , y , z ∈ V. (4)

and
α(xy) = (αx)y = x(αy), ∀α ∈ R and x , y ∈ V. (5)
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Finite-Dimensional Vector Algebra

We will be only concerned with finite dimensional vector spaces. In
other words, we assume that V is a vector space of dimension n,
i.e., dim(V) = n.

Let E = {e1,e2, . . . ,en} be an ordered basis for V. Given x ∈ V,
there is an unique n-tuple (x1, x2, . . . , xn) ∈ Rn such that

x =
n∑

i=1

xiei . (6)

The scalars x1, . . . , xn are the coordinates of x relative to the
ordered basis E .

In computational applications, x ∈ V is given by its coordinates
relative to the ordered basis E = {e1, . . . ,en}. In other words, x is
usually written as a vector in Rn.
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Given an ordered basis E = {e1, . . . ,en}, the mapping φ : V → Rn

given by

φ(x) =

x1
...

xn

 ∈ Rn, ∀x ∈ V, (7)

yields an isomorphism between V and Rn.

The absolute value x ∈ V with respect to the basis E = {e1, . . . ,en}
is the Euclidean norm of φ(x):

|x | := ∥φ(x)∥2 =
√

x2
1 + x2

2 + . . .+ x2
n . (8)

Remark:
The absolute value of x given by (8) is not an invariant; it depends
on the basis E = {e1, . . . ,en}.
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Multiplication Table

Given an ordered basis E = {e1, . . . ,en} of V, the multiplication is
completely determined by the n3 parameters pijk ∈ R which appear
in the products

eiej =
n∑

k=1

pijkek , ∀i , j = 1, . . . ,n. (9)

The products in (9) can be arranged in the multiplication table:

e1 ej en
...

ei · · ·
∑n

k=1 pijkek · · ·
...
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Commutative Algebras

Definition 2 (Commutative Algebra)

An algebra V is commutative if

xy = yx , ∀x , y ∈ V. (10)

The properties of an algebra can be derived from the same property
from the basis elements.

Let E = {e1, . . . ,en} be an ordered basis for an algebra V. The
algebra is commutative if and only if

eiej = ejei , ∀i , j = 1, . . . ,n.

From the multiplication table, an algebra is commutative if

pijk = pjik , ∀i , j , k = 1, . . . ,n.
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Associative Algebra

Definition 3 (Associative Algebra)

An algebra V is associative if

(xy)z = x(yz), ∀x , y , z ∈ V. (11)

Let E = {e1, . . . ,en} be an ordered basis for an algebra V. The
algebra is associative if and only if

(eiej)ek = ei(ejek ), ∀i , j = 1, . . . ,n.

Therefore, an algebra is associative if

n∑
µ=1

pijµpkµν =
n∑

µ=1

pjkµpiµν , ∀i , j , k , ν = 1, . . . ,n.
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Hypercomplex Algebra

A hypercomplex algebra, denoted by H, is a finite-dimensional
algebra in which the product has a two-sided identity (Catoni et al.,
2008; Kantor and Solodovnikov, 1989).

A hypercomplex algebra H is equipped with an (unique) element e0
such that

xe0 = e0x = x , ∀x ∈ V.

Identity is usually the first element of the ordered basis. Thus,
E = {e0,e1, . . . ,en} is an ordered basis of an hypercomplex algebra
and dim(H) = n + 1.

We often consider the canonical basis τ = {1, i1, . . . , in}. Thus, a
hypercomplex number is given by

x = x0 + x1i1 + . . .+ xnin. (12)
Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 12 / 30



The multiplication table of a hypercomplex algebra with respect to
the canonical basis τ = {1, i1, . . . , in} is

1 i1 i j in
1 1 i1 i j in

...
i i i i · · · pij0 +

∑n
k=1 pijk ik · · ·
...

Thus, we have

p0jk = pi0k =

{
1, i = k or j = k ,
0, otherwise.
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Example – Quaternions

Quaternions, introduced by Hamilton in the late 19th, are
hypercomplex numbers that generalize real and complex numbers.

Using the canonical basis {1, i , j ,k}, a quaternion is given by

x = x0 + x1i + x2j + x3k .

Quaternions are effective mathematical tools for describing 3D
rotations.

They have also been effectively used to develop neural networks
(Arena et al., 1997; Parcollet et al., 2020).
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The multiplication table of quaternions is

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Because i j = k and j i = −k , the multiplication of quaternions is
non-commutative.

The multiplicative inverse of any quaternion x ̸= 0 is

x−1 =
x̄

x x̄
,

where x̄ = x0 − x1i − x2j − x3k is the conjugate of x .
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Product and Bilinear Forms

Using the distributive law and the multiplication table, the product of
x =

∑n
i=1 xiei and y =

∑n
j=1 yjej satisfies

xy =

(
n∑

i=1

xiei

) n∑
j=1

yjej

 =
n∑

i=1

n∑
j=1

xiyj(eiej)

=
n∑

i=1

n∑
j=1

xiyj

(
n∑

k=1

pijkek

)
=

n∑
k=1

 n∑
i=1

n∑
j=1

xiyjpijk

ek

Because the product is bilinear, the function Bk : V×V → R given by

Bk (x , y) =
n∑

i=1

n∑
j=1

xiyjpijk , ∀k = 1, . . . ,n, (13)

is a bilinear form.
Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 16 / 30



Proposition 1

Let E = {e1, . . . ,en} be an ordered basis of an algebra V. The
multiplication of x =

∑n
i=1 xiei and y =

∑n
j=1 yjej satisfies

xy =
n∑

k=1

Bk (x , y)ek , (14)

where Bk : V×V → R is a bilinear form whose matrix representation
in the ordered basis E is

Bk =


p11k p12k . . . p1nk
p21k p22k . . . p2nk

...
...

. . .
...

pn1k pn2k . . . pnnk

 ∈ Rn×n, ∀k = 1, . . . ,n. (15)

Thus, we have Bk (x , y) = φ(x)T Bkφ(y).
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Let H be a hypercomplex algebra. The matrix representation of the
bilinear forms Bk : H×H → R with respect to the canonical basis
τ = {1, i1, . . . , in} are

B0 =


1 0 · · · 0
0 p110 · · · p1n0
...

...
. . .

...
0 pn10 · · · pnn0

 ∈ R(n+1)×(n+1),

and, for k = 1, . . . ,n,

Bk =



0 0 0 · · · 1 · · · 0
0 p11k p12k · · · p1kk · · · p1nk
...

...
...

...
...

...
1 pk1k pj2k · · · pkkk · · · pknk
...

...
...

...
...

...
0 pn1k pn2k · · · pnkk · · · pnnk


∈ R(n+1)×(n+1).
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Non-Degenerate Algebra

A bilinear form Bk : V× V → R is non-degenerate if its matrix
representation Bk is non-singular with respect to any ordered basis
E = {e1, . . . ,en}.

Definition 4 (Non-degenerate algebra)

An algebra V is non-degenerate if all the bilinear forms in the
coordinates of the multiplication are non-degenerate. Otherwise, we
say that the algebra V is degenerate.

Remark
Non-degenerate algebras play an important role in the
approximation capability of hypercomplex-valued (or vector-valued)
multi-layer networks.
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Matrix Representation of the Product

The multiplication to the left by a =
∑n

i=1 aiei yields a linear operator
AL : V → V defined by

AL(x) = ax , ∀x ∈ V.

The matrix representation of AL relative to an ordered basis
E = {e1, . . . ,en} yields a mapping ML : V → Rn×n given by

ML(a) =

 | | |
φ(ae1) φ(ae2) . . . φ(aen)

| | |



=


∑n

i=1 aipi11
∑n

i=1 aipi21 . . .
∑n

i=1 aipin1∑n
i=1 aipi12

∑n
i=1 aipi22 . . .

∑n
i=1 aipin2

...
...

. . .
...∑n

i=1 aipi1n
∑n

i=1 aipi2n . . .
∑n

i=1 aipinn

 .
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Alternatively, we can write

ML(a) =
n∑

i=1

aiPT
i: , with PT

i: =


pi11 pi21 . . . pin1
pi12 pi22 . . . pin2

...
...

. . .
...

pi1n pi2n . . . pinn

 . (16)

Using the matrix representation, we have

φ(ax) = ML(a)φ(x) =
n∑

i=1

aiPT
i: φ(x), (17)

for all a =
∑n

i=1 aiei ∈ V and x ∈ V.
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Analogously, the multiplication to the right by a =
∑n

i=1 aiei yields a
linear operator AR : V → V defined by

AR(x) = xa, ∀x ∈ V.

The matrix of AR relative to an ordered basis E = {e1, . . . ,en} yields
the mapping MR : V → Rn×n given by

MR(a) =
n∑

i=1

aiP:i , with P:i =


p1i1 p1i2 . . . p1in
p2i1 p2i2 . . . p2in

...
...

. . .
...

pni1 pni2 . . . pnin

 . (18)

Using the matrix representation, we have

φ(xa)T = φT (x)MR(a) =
n∑

i=1

aiφ
T (x)P:i , ∀x ∈ V, (19)

where a =
∑n

i=1 aiei ∈ V.
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Example – Quaternions

Consider the quaternions with the canonical basis τ = {1, i , j ,k}.
The product of x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k
satisfies

φ(xy) =


x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 x3 x0 −x1
x3 −x2 x1 x0




y0
y1
y2
y3

 = ML(x)φ(y).

Note that
ML(x) = x0P0: + x1P1: + x2P2: + xnPn:,

whereP0: = I4×4 is the identity matrix and

PT
1: =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,PT
2: =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,PT
3: =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
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Similarly, we have

φ(xy)T = [x0, x1, x2, x3]
T


y0 y1 y2 y3
−y1 y0 −y3 y2
−y2 y3 y0 −y1
−y3 y2 −y1 y0

 = φ(x)TMR(y).

Note that
MR(y) = y0P:0 + y1P:1 + y2P:2 + y3P:3,

where P:0 = I4×4 is the identity matrix and

P:1 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

 ,P:2 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 ,P:3 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .
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Parametrized “Hypercomplex” Algebra

Recently, Zhang et al. introduced the so-called parametrized
“hypercomplex” algebra (Grassucci et al., 2022; Zhang et al., 2021).

However, a parametrized “hypercomplex” algebra does not
necessarily has an identity.

Accordingly, a parametrized “hypercomplex” algebra is defined as
follows using the matrix representation of multiplication:

Given matrices P1, . . . ,Pn ∈ Rn×n and an ordered basis
E = {e1, . . . ,en}, the product of a parametrized “hypercomplex”
algebra is defined by the equation

xy = φ−1
( n∑

i=1

xiPiφ(y)
)
, (20)

for all x =
∑n

i=1 xiei and y =
∑n

i=1 yiei .
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Concluding Remarks:

We identify an algebra V with Rn equipped with a multiplication.

A hypercomplex algebra, denoted by H, is a finite-dimensional
algebra with a two-sided multiplication identity.

Given an ordered basis E = {e1, . . . ,en}, the multiplication is
characterized by the multiplication table:

(eiej) =
n∑

k=1

pijkek , ∀i , j = 1, . . . ,n.

The multiplication satisfies

xy =
n∑

i=1

Bk (x , y)ek , ∀x , y ∈ V,

where Bk : V× V → R are bilinear forms.
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The multiplication of a and x also satisfies

φ(ax) = ML(a)φ(x) and φ(xa)T = φ(x)TMR(a), ∀x ∈ V.

where

ML(a) =
n∑

i=1

aiPT
i: , with PT

i: =


pi11 pi21 . . . pin1
pi12 pi22 . . . pin2

...
...

. . .
...

pi1n pi2n . . . pinn

 ,

and

MR(a) =
n∑

i=1

aiP:i , with P:i =


p1i1 p1i2 . . . p1in
p2i1 p2i2 . . . p2in

...
...

. . .
...

pni1 pni2 . . . pnin

 .

Thanks for your attention!
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