Hypercomplex-valued Neural Networks

Part 1 — Introduction and Basic Concepts.
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Aims and Goals:

Introduce a broad class of hypercomplex-valued neural networks.

Why a broad class of hypercomplex-valued neural networks?

Neural networks (NNs) have demonstrated outstanding results in
several application areas, including image detection and
classification.

e Hypercomplex-valued neural networks showed competitive or
superior performance but with fewer parameters than their
equivalent neural networks defined on real numbers.

¢ The advantages of hypercomplex-valued NNs include reducing
the number of parameters and treating multiple values as a single
entity.
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A search on Scopus on February 2022 by “neural network”
combined with an additional hypercomplex algebra search term:

Hypercomplex algebra additional search term

# Documents

“complex number” OR “complex valued”
“quaternion”
“Clifford"
“hypercomplex”
“octonion”

“hyperbolic number” OR “hyperbolic valued”
“Bicomplex”
“Cayley-Dickson”
“tessarines”
“coquaternion”

“Klein four-group”

1,855

704
121
80
22
18
8

—_ = a O,

Although some documents appeared in more than one search, it is
clear that complex and quaternion-valued models dominate the

research on HvNNSs.
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Aims and goals:

Most research focuses on networks based on complex numbers and
quaternions.

Alternative algebras can result in efficient hypercomplex-valued NNs!

The following presents a general framework for hypercomplex

algebras.

¢ On the one hand, we will be able to work with a broad class of
hypercomplex-valued neural networks.

¢ On the other hand, we will not be able to explore specific
properties (like the geometric properties of Clifford algebras) of
the hypercomplex algebra.
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-
Addition and Multiplication are Key Concepts

Addition and multiplication are core concepts for developing
hypercomplex-valued models.

For example, dense and convolutional layers are described by the
following equations, respectively:

yi=p(si+b), with s = Zw,jx/, (1)
and
J(p, k) = o((1+ F)(p, k) + b(k)), (2)
with c
ZZ (p+ S(9), €)F(q, ¢, k). (3)
c=1qeG
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Basic Concepts on Algebra

Definition 1 (Algebra — Schafer (1961))

An algebra V over a field F is a vector space over F with an
additional bilinear operation called multiplication.

In the following, we focus on algebras over the field of real numbers;
that is, we only consider F = R.

|
As a bilinear operation, the multiplication of x, y € V, denoted by the
juxtaposition xy, satisfies

(x+y)z=xz+yz and z(x+y)=zx+2zy, Vx,y,ze€V. (4)

and
a(xy) = (ax)y = x(ay), VaeR and x,yeV. (5)
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Finite-Dimensional Vector Algebra

We will be only concerned with finite dimensional vector spaces. In
other words, we assume that V is a vector space of dimension n,
i.e.,, dim(V) = n.

Let £ = {eq,e2,...,€n} be an ordered basis for V. Given x € V,

there is an unique n-tuple (xq, X2, ..., Xn) € R” such that
n
X = Z Xj€j. (6)
i=1
The scalars x4, ..., X, are the coordinates of x relative to the

ordered basis £.

In computational applications, x € V is given by its coordinates
relative to the ordered basis £ = {ey, ..., en}. In other words, x is
usually written as a vector in R".
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Given an ordered basis £ = {eq, ..., en}, the mapping ¢ : V — R"
given by
X
ex)=1:]€R", vxeV, (7)
Xn

yields an isomorphism between V and R".

The absolute value x € V with respect to the basis € = {ey,..., en}
is the Euclidean norm of ¢(x):

x| = ()2 = /X2 + x5 +... + X5, (8)

REINEE

The absolute value of x given by (8) is not an invariant; it depends
on the basis £ = {ey, ..., en}.
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————
Multiplication Table

Given an ordered basis £ = {ey, ..., ey} of V, the multiplication is
completely determined by the n® parameters pik € R which appear
in the products

n
66 =Y Pjkbk, Vij=1,...,n 9)
k=1

The products in (9) can be arranged in the multiplication table:

‘ e €; €n

n
€ | - D k—1 PikCk

Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 9/30



Commutative Algebras

Definition 2 (Commutative Algebra)

An algebra V is commutative if

Xy =yx, Vx,yeV. (10)

The properties of an algebra can be derived from the same property
from the basis elements.

Let £ = {ey,...,en} be an ordered basis for an algebra V. The
algebra is commutative if and only if

eiej=ee, VYi,j=1,...,n
From the multiplication table, an algebra is commutative if
Pik = Pjik, Vi,,k=1,...,n.
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Associative Algebra

Definition 3 (Associative Algebra)

An algebra V is associative if
(xy)z =x(yz), Vx,y,zeV. (11)
Let £ = {ey,...,en} be an ordered basis for an algebra V. The
algebra is associative if and only if
(eiej)ek = e,-(ejek), Vi,j=1,...,n.
Therefore, an algebra is associative if
n n
Zpijupk,uyzzpjkupiw/v \V/i,j,k,V:1,...,n.
n=1 n=1
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____________________________________
Hypercomplex Algebra

A hypercomplex algebra, denoted by H, is a finite-dimensional
algebra in which the product has a two-sided identity (Catoni et al.,
2008; Kantor and Solodovnikov, 1989).

A hypercomplex algebra H is equipped with an (unique) element ey
such that
Xey=¢gXx=x, VxeV.

Identity is usually the first element of the ordered basis. Thus,
& =1{ep,e€1,...,en}is an ordered basis of an hypercomplex algebra
and dim(H) = n+ 1.

We often consider the canonical basis 7 = {1,i1,...,in}. Thus, a
hypercomplex number is given by
X =Xg+ X{i1 + ...+ Xnipn. (12)

Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 12/30



The multiplication table of a hypercomplex algebra with respect to
the canonical basis 7 = {1, iy,...,in} is

1 iy i in
111 iy i in
i | 0 pjo+ Xk Pk
Thus, we have
1, i=korj=Kk,
Pojk = Piok =

0, otherwise.
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Example — Quaternions

Quaternions, introduced by Hamilton in the late 19th, are
hypercomplex numbers that generalize real and complex numbers.

Using the canonical basis {1, i, j, k}, a quaternion is given by

X = Xg + X1i + Xof + X3K.

Quaternions are effective mathematical tools for describing 3D
rotations.

They have also been effectively used to develop neural networks
(Arena et al., 1997; Parcollet et al., 2020).
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The multiplication table of quaternions is

1 i j k
11 i j k
ili -1 k —j
jlj —k -1 i
klk j —i -1

Because ij = k and ji = —k, the multiplication of quaternions is
non-commutative.

The multiplicative inverse of any quaternion x # 0 is

4 X
X = —=,
XX

where X = xo — x1i — Xof — X3k is the conjugate of x.
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-
Product and Bilinear Forms

Using the distributive law and the multiplication table, the product of
x =Yy xeandy=>T,ye satisfies

= (Z x,-e,-) (Z yjej) = Z Z xiyj(eiej)
=1 J=1

i=1 j=1

-3y (Soone) -3 (zzﬂ») o

i=1 j=1 k=1 \\i=1 j=1

Because the product is bilinear, the function By : V x V — R given by

n n
= e k=t (1)

i=1 j=1

is a bilinear form.
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Proposition 1

LetE = {eq,...,en} be an ordered basis of an algebra V. The
multiplication of x = >~/ x;e; and y = Y__, y;e; satisfies

n
Xy = Bk(X,y)ex, (14)
k=1

where By : V x V — R is a bilinear form whose matrix representation
in the ordered basis £ is

P11k P12k - Pink

B, — P2.1k P2.2k p2'nk

ER™" Vk=1,....n  (15)
Pnik  Pn2k --- Pnnk
Thus, we have By(x,y) = ¢(x)T Bxo(y).
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Let H be a hypercomplex algebra. The matrix representation of the
bilinear forms By : H x H — R with respect to the canonical basis

T={1,iy,...,ipn} are
1 0 0
B, 0 P1.1o P1.no
0 pnio Prno
and,fork =1,...,n,
0 0 0 1 e 0
0 prik P2k Pikk -+ Pink
B, — : : : : :
1 Prik  Pjek Prkk '+ Pknk
10 Pnik  Pn2k Prkk -+ Pnnk
Marcos Eduardo Valle Hypercomplex-valued Neural Networks

e R(n+1)><(n+1)7

e RHDx(n+1)

06-10 February 2023 18/30



Non-Degenerate Algebra

A bilinear form By : V x V — R is non-degenerate if its matrix
representation By is non-singular with respect to any ordered basis
g: {91,,6,7}

Definition 4 (Non-degenerate algebra)

An algebra V is non-degenerate if all the bilinear forms in the
coordinates of the multiplication are non-degenerate. Otherwise, we
say that the algebra V is degenerate.

Remark

Non-degenerate algebras play an important role in the
approximation capability of hypercomplex-valued (or vector-valued)
multi-layer networks.
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Matrix Representation of the Product

The multiplication to the left by a= Y"1, a;e; yields a linear operator
A 'V — V defined by

A (x) =ax, VxeV.

The matrix representation of A4, relative to an ordered basis
& ={ey,...,en}yields a mapping M, : V— R"™" given by

[ | \
M(a) = |p(aer) o(ae2) ... ¢(aen)
L ’ \
[>T aipit YoiqaiPiz1 oo i1 @iPin
n n
B Sihqaipitz Doiq@iPiz .- Doiq @iPin2
_2?21 aiPitn 27:1 ajPien - 27:1 aiPinn
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Alternatively, we can write

Pit1 P21 .- Pin
n . . .
M@ =S aP], with P = Pz Pize - Pinz] g
P : : .o
Pitn Pi2n --- Pinn
Using the matrix representation, we have
n
p(ax) = My(a)p(x) =Y aiPlo(x), (17)
i=1

foralla=>],ae €VandxeV.

Marcos Eduardo Valle Hypercomplex-valued Neural Networks 06-10 February 2023 21/30



Analogously, the multiplication to the right by a = "7, aje; yields a
linear operator Ag : V — V defined by

Ag(x) = xa, VxeV.

The matrix of Ag relative to an ordered basis £ = {ey, ..., ey} yields
the mapping Mg : V — R™" given by

P11 P12 --- Piin

n . B .
Ma(a) =Y aPs, with p,— |P0 P22 Pl g
=1

Pnit - Pni2  --- Pnin

Using the matrix representation, we have
n
p(xa)" =" (X)Mp(a) =D ai’ (X)P;, VxeV, (19)
i=1

n
wherea= > ;ae cV.
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Example — Quaternions

Consider the quaternions with the canonical basis = = {1, i, j, k}.
The product of x = xg + x1i + Xof + X3k and y = yo + y1i + yof + y3k
satisfies
Xo —X1 —X2 —X3| [Jo
Xy Xp —X3 Xo Y1
PN= 1 x % —xi| |y L(X)e(y)

X3 —Xo Xq Xo Y3

Note that
M (X) = xoPo. + X1 P1. + X2 Po. + XnPh.,
wherePy. = 44 is the identity matrix and

0 -1 0 0 0 0 -10 00 0 -1

; [t o o o]l 7 00 0 1 or (00 -1 0
Pi=lo o o —1'P2=|1 0 o o' {01 0o o
0 0 1 0 0 -1 0 0 10 0 0
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———
Similarly, we have

Yo W1 Yo Y3

T T|=Y1 Yo —V3 Yo
o(xy)" = [xo, X1, X2, X:
(xy) o, X1, X, X3 Yo Y3 Yo N

=Y3 Yo V1 Yo

= ¢(x)" Ma(y).

Note that
Mp(y) = yoP.o + y1P1 + y2P2 + y3Pa3,
where P.g = ly4 is the identity matrix and

0 1 0 O 0 010 0 0 0 {1
-1 0 0 O 0 0 0 1 0 0 -1 0

Pi=1o 0o o —1]"P2=|-1 0 0 0/'P=|0 1 0 ol
0 0 -1 0 0 1 00 -1 0 0 O
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Parametrized “Hypercomplex” Algebra

Recently, Zhang et al. introduced the so-called parametrized
“hypercomplex” algebra (Grassucci et al., 2022; Zhang et al., 2021).

However, a parametrized “hypercomplex” algebra does not
necessarily has an identity.

Accordingly, a parametrized “hypercomplex” algebra is defined as
follows using the matrix representation of multiplication:

|
Given matrices Py, ..., P, € R™"™ and an ordered basis
& ={e1,...,en}, the product of a parametrized “hypercomplex”
algebra is defined by the equation

xy =~ (anx,-Pfso(y)), (20)
i=1
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Concluding Remarks:

We identify an algebra V with R"” equipped with a multiplication.

A hypercomplex algebra, denoted by H, is a finite-dimensional
algebra with a two-sided multiplication identity.

Given an ordered basis £ = {ey, ..., en}, the multiplication is
characterized by the muItipIication table:

(eig) = Zp,,kek, Vij=1,.
pa

The multiplication satisfies

n
xy =Y B(x.y)ex, Vx,y €V,
i=1
where By : V x V — R are bilinear forms.
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The multiplication of a and x also satisfies
p(ax) = Mi(a)p(x) and p(xa)" = p(x)"Mr(a), VxeV.
where

P11 P2t .- Pint
n ] ‘ ‘
M (a) = E aPl, with P = P/-12 P/-zz & p,.ng

o : : .
Pitn  Pi2n --- Pinn
and
P Ptz .- Piin
n . . .
Mp(a) =) aiP;, with P;= pz.” ,02./2 . pzlm
P : : .
Pni1 Pni2  --- Phnin
Thanks for your attention! ]
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