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Motivation

Human pose forecasting aims to predict the position of human
keypoints.

Applications include home healthcare, security surveillance, and
self-driving cars.

Forecasting human pose should be equivariant to rigid motion,
which means the movement does not depend on the observer.

Usually, the data comprise a sequence of highly correlated points in
the 3D space. Formally, the pose at instant t is represented by

P(t) =

x1(t) y1(t) z1(t)
...

...
...

xn(t) yn(t) zn(t)

 =

p1(t)
...

pn(t)

 . (1)
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Vector and Hypercomplex-Valued Networks

Vector-valued neural networks (V-nets) are designed to process
arrays of vectors (Valle, 2023).

They are obtained by replacing real numbers with vectors. Formally,
the field (R,+, ·) is substituted by an algebra V.

Definition 1 (Algebra – Schafer (1961))

An algebra V over a field F is a vector space over F with an
additional bilinear operation called multiplication.

A hypercomplex algebra is an algebra with additional algebraic or
geometric properties (Catoni et al., 2008; Kantor and Solodovnikov,
1989).
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Quaternions

Quaternions, denoted by H, are well-known hypercomplex algebras.

A quaternion is a number of the form

q = qW + qX ı̂+ qY ȷ̂+ qZ κ̂ ∈ H, (2)

where qW ,qX ,qY ,qZ are real numbers.

The hyperimaginary units satisfy the Hamilton rules:

ı̂2 = ȷ̂2 = κ̂2 = ı̂ȷ̂κ̂ = −1 (3)

In polar form, we have

q = ∥q∥
(
cos

(
θ

2

)
+ sin

(
θ

2

)
u
)
, (4)

where θ ∈ [0,2π) and u = uX ı̂+ uY ȷ̂+ uZ κ̂ is a pure quaternion.
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Dual Numbers

A dual number has the form

â = a0 + εaε, (5)

where a0,aε ∈ R and ε, the dual unit, satisfies ε2 = 0.

For example, the following holds

(a0 + εaε)(b0 + εbε) = a0b0 + ε(a0bε + aεb0). (6)
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Dual Quaternions

Dual quaternions, denoted by D, are quaternions whose
components are dual numbers.

Formally, a dual quaternion is given by q̂ = q̂W + q̂X ı̂+ q̂Y ȷ̂+ q̂Z κ̂,
where q̂W , q̂X , q̂Y , q̂Z are dual numbers.

Equivalently, a dual quaternion is a dual numbers in which each part
is a quaternion.

Thus, a dual quaternion can be represented by q̂ = (q0 + εqε),
where q0,qε ∈ H.

We say that q̂ is a unit dual quaternion if

∥q̂∥ =
√

∥q0∥2 + ∥qε∥2 = 1. (7)
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Dual Quaternion Representation of Rigid Motions

A rigid motion in 3D space is a rotation and a translation.

The rotation of u = ux ı̂+ uy ȷ̂+ uz κ̂ by an angle θ followed by a
translation by d = dx ı̂+ dy ȷ̂+ dz κ̂ yields the dual quaternion

q̂ = q̂W + q̂X ı̂+ q̂Y ȷ̂+ q̂Z κ̂, (8)

where

q̂W = cos
θ

2
− ε

2
−→u ·

−→
d sin

θ

2
,

q̂X = ux sin
θ

2
+

ε

2

[
dx cos

θ

2
− sin

θ

2
(uydz − uzdy )

]
,

q̂Y = uy sin
θ

2
+

ε

2

[
dy cos

θ

2
− sin

θ

2
(uzdx − uxdz)

]
,

q̂Z = uz sin
θ

2
+

ε

2

[
dz cos

θ

2
− sin

θ

2
(uxdy − uydx)

]
.

(9)
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If there is no translation (
−→
d = 0ı̂+ 0ȷ̂+ 0κ̂), then the dual part

becomes null, and we have a quaternion in the polar form.

If there is no rotation (θ = 0), we obtain q̂ = 1 + ε
2
−→
d . Thus, the dual

part is responsible for the translation.

Dual quaternion contain the information necessary do describe rigid
motions.

Question:
Do neural networks based on dual quaternions exhibit rigid motion
equivariance?
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Experiment – Lorenz System

The Lorenz system describes the movement of a free particle in
atmospheric domain effects.

We used a time series of 10.000 consecutive positions, 10% of which
are used for training, and the remaining 90% are used for testing.

Single hidden-layer MLPs with ReLU activation are used as follows:
• Real-Valued Model (6-128-3 architecture, 1280 parameters):
(xt−1, yt−1, zt−1, xt , yt , zt) 7→ (xt+1, yt+1, zt+1).

• Quaternion-Valued Model (2-80-1 architecture, 1280 params):
(0 + xt−1ı̂+ yt−1ȷ̂+ zt−1κ̂,0 + xt ı̂+ yt ȷ̂+ zt κ̂) 7→
(0 + xt+1ı̂+ yt+1ȷ̂+ zt+1κ̂).

• Dual Quaternion-Valued Model (1-53-1 arch., 1280 params):
(0 + xt−1ı̂+ yt−1ȷ̂+ zt−1κ̂) + ε(0 + xt ı̂+ yt ȷ̂+ zt κ̂) 7→
(0 + xt+1ı̂+ yt+1ȷ̂+ zt+1κ̂) + ε(0 + 0ı̂+ 0ȷ̂+ 0κ̂).

Marcos Eduardo Valle (Unicamp - Brazil) Dual Quaternions and Ridig Motion 9 / 17



Predicted trajectories are in red and expected in blue.
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Model Test MSE↓
Original Translated Rotated T+R

Real 0.433 4.648 118.719 192.766
Quaternion 0.756 7.952 178.102 263.051
Dual Quat. 0.272 0.183 2.140 3.617

Model Test Prediction Gain↑
Original Translated Rotated T+R

Real 57.187 31.050 14.024 10.360
Quaternion 51.918 24.841 6.847 3.729
Dual Quat. 63.606 52.722 43.797 40.108
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Experiment – Human Pose Forecasting

Human pose forecast using variational autoencoder endowed with
dual quaternion numbers based on the decoupled representations
for pose forecasting (DeRPoF) (Parsaeifard et al., 2021).

The position (x , y , z) of a joint is encoded by

q̂ = xc ı̂+ yc ȷ̂+ zcκ̂+ ε ((x − xc) ı̂+ (y − yc) ȷ̂+ (z − zc) κ̂) , (10)

where (xc , yc , zc) represents the center of mass.

We used the 3D Poses in the Wild (3DPW) structured dataset (13
key joints and the center of mass), which contains over 51.000
registered frames from 60 short videos with hugging, arguing,
playing basketball, and dancing, among others.
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Model VIM↓ FDE↓ Val Loss↓

SC-MPF (Adeli et al., 2020) 46.28 - -
Nearest Neighbour (Zhang et al., 2019) 27.34 - -
Zero Velocity (Martinez et al., 2017) 29.35 - -
DeRPoF (Parsaeifard et al., 2021) 19.07 ± .005 0.360 ± .007 -
CoRPoF (Parsaeifard et al., 2021) 16.76 ± .003 0.317 ± .001 0.118 ± .004

Quaternion CoRPoF 16.35 ± .009 0.271 ± .002 0.105 ± .010

Dual Quaternion CoRPoF 15.23 ± .002 0.266 ± .001 0.103 ± .006

Metrics:
• Visibility ignored metric (VIM): the average of the distances

between each predicted joint and the ground truth, in centimeters
Parsaeifard et al. (2021).

• Final displacement error (FDE): An L2 distance.
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Concluding Remarks

Vector-valued networks (V-nets) are designed to process vector
information. In particular, hypercomplex-valued neural networks are
particular V-nets enriched with algebraic or geometric properties.

Dual quaternions contain information on rigid motions in 3D.

We provided a practical example of the translation and rotation
equivariance properties using the Lorenz system.

We proceed to show how models endowed with this formulation
outperform other approaches for human pose forecasting.

Our results show that models utilizing dual quaternions are able to
maintain their performance even when data are translated and
rotated.
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