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Introduction

Huang et al. (2006) has coined the name extreme learning
machines (ELMs) to a class of single hidden-layer networks.

An ELM is designed by randomly initializing the parameters of the
hidden layer and adjusting the output layer using least squares.

Despite having more than 6,000 citations in the Web of Science, the
main idea behind ELMs has been introduced and formalized by
Igelnik and Pao (1995); Pao et al. (1994), known as random vector
functional link networks (RVFL nets).

The RVFL nets are based on two concepts: An integral
representation of a function and the Monte Carlo method.

The following is based on Husmeier (1999).
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Monte Carlo Method

Monte Carlo methods aim to approximate the solution of problems
using randomness.

They are handy for high-dimensional numerical integration as
follows.

Consider the problem of estimating the volume of an m-dimensional
hypersphere by numerical integration.

Let χS : Rm → {0,1} be the indicator function of the hypersphere of
radius R > 0. Formally, we have

χS(x) =

{
1, ∥x∥ ≤ R,

0, otherwise.
(1)
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The volume of the hypersphere is

VS =

∫
Rm

χS(x)dx =

∫
K
χS(x)dx =

2πm/2Rm

mΓ(m/2)
, (2)

where K = [−R,R]m is the smallest hypercube that contains the
hypersphere.

Using a standard numerical method based on the Riemann integral,
each side of the hypercube K is divided into k intervals of length
ℓ = (2R)/k .

As a consequence, the hypercube K is divided into n = km

equally-sized sub-cubes, each one with volume

ℓm =

(
2R
k

)m

=
(2R)m

n
. (3)
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Finally, the volume of the hypersphere is approximated by

V G
S =

n∑
i=1

χS(xi)
(2R)m

n
= (2R)m

(
1
n

n∑
i=1

χS(xi)

)
, (4)

where xi is the center of the i th sub-cube.

The Monte Carlo method approximates Vs using random samples
x1, . . . ,xn instead of a regular grid.

Precisely, consider a uniform distribution on K given by

P(x) =
1

(2R)mχK (x), (5)

where χK : Rm → R is the indicator function of the hypercube K .
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The volume of the hypersphere is approximated by

V MC
S = (2R)m

(
1
n

n∑
i=1

χS(xi)

)
, (6)

where x1, . . . ,xn are selected independently using the uniform
distribution.

Note that V G
S and V MC

S have the same expression and differ only on
the samples xi ’s (grid versus random sample).

However, the two approximation methods differ significantly as m
and n increases.

The following table contains the relative error given by

Er =
100
Vs

|V X
S − VS|, V X

S ∈ {V G
S ,V MC

S }. (7)
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Dimension (m) # Samples (n) Grid Er MC Er

3 27(= 33) 34.4 12.8
3 125(= 53) 23.8 7.8
3 1000(= 103) 5.4 2.8
10 1024(= 210) 100.0 38.5
10 59049(= 310) 36.7 4.9

Source: Husmeier (1999).
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Random Vector Functional Link (RVFL) Networks

A single hidden-layer network defines a function f̃n : Rm → R using
the equation

f̃n(x) =
n∑

i=1

wig(uT
i x − bi), (8)

where g : R → R is the activation or transfer function and n is the
number of neurons in the hidden layer.

In an RVFL network, the parameters of the hidden layer – the
weights ui ∈ Rm and the bias bi ∈ R – are selected randomly and
independently in advance.

The weights wi ’s are determined using least squares (or, eventually,
using logistic regression or softmax regression in classification
problems).
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Let K ⊂ Rm be a compact set, and let f : K → R be a continuous
function on K .

Let the transfer function g : R → R be a bounded (for convenience,
we assume that |g(t)| ≤ 1 for all t ∈ R) and differentiable function
whose derivative is square integrable, that is,∫

R
(g′(t))2dt < +∞. (9)

Note that the logistic function σ(t) = 1/(1 + e−t) and tanh satisfies
these conditions.
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Integral Representation f

The function f : K ⊂ Rm → R satisfies the following identity (Murata,
1996)

f (x) =
∫
Rm+1

T (u,b)g(uT x + b)dudb, ∀x ∈ K , (10)

where the transform T : Rm+1 → R is given by

T (u,b) ∝
∫
Rm

ğ(uT x − b)f (x)dx, ∀u ∈ Rm and b ∈ R. (11)

Here, the symbol “∝” means that T (u,b) is proportional to the
integral on the right, and ğ is a kind of conjugate of g.
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Formally, g and ğ must satisfy the conditions

Ğ∗(−w)G(−w) = Ğ∗(w)G(w), (12)∫ ∞

0

1
wm |Ğ∗(w)G(w)|dw < ∞, (13)

and ∫ ∞

0

1
wm Ğ∗(w)G(w)dw ̸= 0, (14)

where G = F{g} and Ğ = F{ğ} denote the Fourier transform of g
and ğ, respectively, and Ğ∗(w) denotes the complex conjugate of
Ğ(w).

Remark: The integral in (14) appears multiplying the integral on the
right-hand side of (11).
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Approximation of T

First, let us constrain the domain of the integral in (11) from Rm+1 to
the hypercube H = [−R,R]m+1.

Precisely, let fR be the function defined by

fR(x) :=
∫

H
T (u,b)g(uT x − b)dudb. (15)

Note that
f (x) = lim

R→∞
fR(x). (16)

Furthermore, let us approximate the integral in (15) using the Monte
Carlo method.
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Formally, define the function f̃n by means of the equation

f̃n(x) =
(2R)m+1

n

n∑
i=1

T (ui ,bi)g(uT
i x − bi), (17)

where (u1,b1), . . . , (un,bn) is a sample of size n drawn
independently from a uniform distribution in H = [−R,R]m+1.

Note that we obtain a single hidden-layer network

f̃n(x) =
n∑

i=1

wig(uT
i x − bi), (18)

by setting

wi =
(2R)m+1

n
T (ui ,bi). (19)
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Let us define

d [f , f̃n] =

√
1
|K |

E
{∫

K
(f (x)− f̃n(x))2dx

}
, (20)

where |K | denotes the volume of K and E{·} denotes the
expectation value with respect to the uniform probability distribution
in H = [−R,R]m+1.

Using the distance d , we obtain the inequality (Husmeier, 1999)

d [f , fn] ≤ sup
x∈K

|f (x)− fR(x)|+ d [fR, fn]. (21)

On the one hand, the first term on the right rand-side of (21) can be
made arbitrarily small by choosing large enough R. On the other
hand, the second term becomes very large as R → ∞.

Marcos Eduardo Valle RVFL Networks September 2023 14 / 20



We can overcome this dilemma by assuming f is Lipshitz
continuous, that is,

∃κ > 0 : |f (x)− f (y)| ≤ κ

m∑
i=1

|xi − yi |, ∀x,y ∈ K . (22)

In this case, the first term becomes negligibly for finite R, and we
obtain the inequality

d [f , f̃n] ≤
CRVFL√

n
, C2

RVFL = |H|
∫

H
T 2(u,b)dudb, (23)

where |H| = (2R)m+1 is the volume of the hypercube H.

In a similar fashion but considering a probability distribution that
considers information about the function f (we can think of
fine-tuning the parameters ui ’s and bi ’s), we obtain

d [f , f̃n] ≤
CMLP√

n
, CMLP =

∫
Rm+1

T (u,b)dudb. (24)
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Furthermore, we have

C2
RVFL − C2

MLP = |H|2Var|T (u,b)| ≥ 0, (25)

which implies that
CRVFL ≥ CMLP . (26)

Thus, fine-tuning the hidden layer parameters gives a closer
approximation to f than the RVFL model for a given n.

However, the approximation error is ∝ 1/
√

n in both cases.
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Concluding

Extreme learning machines (ELMs) are equivalent to random vector
functional link (RVFL) networks.

RVFL networks are obtained first using an integral approximation of
function f and then using the Monte Carlo method to approximate
the integral.

As expected, fine-tuning the hidden layer parameters gives a closer
approximation to f than the RVFL model for a given n.

However, the approximation error is ∝ 1/
√

n, where n is the number
of hidden units, either finite-tuning or using a random initialization of
the hidden layer parameters.

Thanks for your attention!
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