PROVA 2 (30/06/2009)

Nome:		
-------	--	--

ırma:

Trabalhe com um sistema de ponto flutuante com 4 dígitos significativos (4 dígitos na mantissa). Escolhe somente 4 das 5 questões seguintes!!!

Justifique as suas respostas e explicite todas as contas. Trabalhe com radianos! Boa sorte e bom divertimento!

1. Considere a tabela

Ano t	1970	1980	1991	2000
População	$93 \cdot 10^{6}$	$119 \cdot 10^6$	$147 \cdot 10^6$	$170 \cdot 10^6$

(a) Utilize o método dos quadrados mínimos para ajustar uma curva da forma seguinte aos dados da tabela: [2.5 pts]

$$g(t) = \frac{a}{1 + b \cdot e^{-0.04(t - 2000)}}.$$

- (b) Qual é o erro obtido neste ajuste? Em outras palavras, qual é a norma euclidiana do resíduo? [0.5 pts]
- 2. Considere o problema de valor inicial $y' = -1.58 \cdot 10^{-10} y^2 + 0.04y$ com a condição inicial y(2007) = 185 milhões. Aqui y(t) representa uma aproximação para a população do Brasil no ano t.

Aplique o método de Euler Aperfeiçoado (de preferência em forma tabelar) com h=1 para encontrar uma aproximação para a população do Brasil no ano 2009. Qual é a aproximação obtida? [2.5 pts]

- 3. Considere a equação diferencial $y'' = -3.16 \cdot 10^{-10} yy' + 0.04y'$ com as condições de contorno y(2000) = 170 milhões e y(2003) = 177 milhões. Utilizando o método das diferenças finitas com h = 1 e usando a diferença centrada para aproximar a primeira derivada, encontre o sistema de equações que descreve o problema. Simplifique o sistema de equações agrupando as incognitas. Indique como este problema pode ser resolvido. [2 pts]
- 4. Dada a tabela

Faça uma interpolação quadratica da função inversa de $\sin(x)$ através da forma de Newton para aproximar o valor de x onde $\sin(x) = \sqrt{2.5}/2$. Compare o valor encontrado com $\arcsin(\sqrt{2.5}/2)$, ou seja, calcule $|E_2(\sqrt{2.5}/2)| = |\arcsin(\sqrt{2.5}/2) - p_2(\sqrt{2.5}/2)|$. [2.5 pts]

5. Considere a integral $\int_0^1 e^{-x^2} dx$. Aproxime o valor desta integral numéricamente tal que o valor absoluto do erro desta aproximação seja menor do que 10^{-3} . Justifique a sua resposta utilizando uma das fórmulas de erro dadas no verso. (Dica: observe que $x^2 > x^4$ para 0 < x < 1.) [2.5 pts]

ALGUMAS FÓRMULAS

$$p_n(x) = f_0 + f_1(x - x_0) + f_2(x - x_0)(x - x_1) + \dots + f_n(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \dots + f_n(x - x_0)(x - x$$

$$E_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$
 para algum $\xi_x \in (x_0, x_n)$.

$$|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0)(x - x_1) \dots (x - x_n)| \frac{M_{n+1}}{(n+1)!},$$

onde $M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$.

 $\frac{M_{n+1}}{(n+1)!} \simeq \max \mid \text{diferenças divididas de ordem } n+1 \mid.$

$$|E_n(x)| = |f(x) - p_n(x)| < \frac{h^{n+1} M_{n+1}}{4(n+1)}.$$

$$\int_{x_0}^{x_n} f(x)dx \approx \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

$$\int_{x_0}^{x_n} f(x)dx = \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$

$$\int_{-1}^{1} f(x)dx \approx f(-\frac{\sqrt{3}}{3}) + f(\frac{\sqrt{3}}{3})$$

$$|E_{TR}| \leq \frac{(b-a)h^2}{12}M_2$$
, onde $M_2 = \max_{x \in [a,b]} |f''(x)|$

$$|E_{SR}| \leq \frac{(b-a)h^4}{180} M_4$$
, onde $M_4 = \max_{x \in [a,b]} |f^{iv}(x)|$

$$y'(x_k) \approx \frac{y_{k+1} - y_k}{h}$$
; $y'(x_k) \approx \frac{y_k - y_{k-1}}{h}$; $y'(x_k) \approx \frac{y_{k+1} - y_{k-1}}{2h}$; $y''(x_k) \approx \frac{y_{k+1} - 2y_k + y_{k-1}}{h^2}$.

x_k	y_k	$y_k' = f(x_k, y_k)$	$\bar{y}_{k+1} = y_k + y_k' h$	$\bar{y}'_{k+1} = f(x_{k+1}, \bar{y}_{k+1})$	$\Delta y_k pprox rac{y_k' + \bar{y}_{k+1}'}{2} h$