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Abstract

Fuzzy associative memories (FAMs) can be used as a powerful tool for implementing fuzzy rule-based systems. The insight
that FAMs are closely related to mathematical morphology (MM) has recently led to the development of new fuzzy morphological
associative memories (FMAMs), in particular implicative fuzzy associative memories (IFAMs). As the name FMAM indicates,
these models belong to the class of fuzzy morphological neural networks (FMNNs). Thus, each node of an FMAM performs an
elementary operation of fuzzy MM. Clarifying several misconceptions about FMAMs that have recently appeared in the literature,
we provide a general framework for FMAMs within the class of FMNN. We show that many well-known FAM models fit within
this framework and can therefore be classified as FMAMs. Moreover, we employ certain concepts of duality that are defined in the
general theory of MM in order to derive a large class of strategies for learning and recall in FMAMs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematical morphology (MM) has found broad application in image and signal processing [11,43]. Although
MM was initially developed for binary image processing [26,39] and later extended to gray-scale image processing
[39,40,45], MM can be conducted very generally in the complete lattice setting [16,38].

One of the most important results of the theory of MM states that every mapping from one complete lattice into another
can be expressed as a composition of certain elementary operations in terms of supremum and infimum operations [2].
Specifically, these elementary operations consist of erosion, dilation, anti-erosion, and anti-dilation. In the last decade,
a host of researchers has used elementary operations of MM as aggregation functions of neurons for a new class of
artificial neural networks that have become known as morphological neural networks [35–37,53,33,48,1]. At the same
time, fuzzy mathematical morphology (FMM) emerged as another approach for extending binary MM to gray-scale
MM [41,5,9,27,10,51]. More information on applications of FMM and other fuzzy techniques in image processing can
be found in edited volumes by Nachtegael, Kerre, et al. [18,29,28].
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FMM is based on the observation that the fuzzy interval [0, 1] and the fuzzy hyperbox [0, 1]n constitute examples
of complete lattices. Therefore, we introduce fuzzy morphological neural networks (FMNNs) as the type of artificial
neural networks that compute fuzzy erosions, dilations, anti-erosions, or anti-dilations from [0, 1]n to [0, 1] at every
node.

The theory and applications of morphological neural networks, especially morphological associative memories
(AMs), have experienced a steady and consistent growth in the last few years [19,12,33,46–48,34,13,1]. A FMNN that
serves as an AM is called fuzzy morphological associative memory (FMAM) [50]. Clearly, FMAMs belong to the class
of fuzzy associative memories (FAMs) which have been studied extensively since the introduction of Kosko’s FAM
models [22,23].

Although the lattice operations of maximum and minimum are routinely used in several FAM models [8,22,24], the
relationship between FAMs and MM has not been explored thus far. In this paper, we show that FMAMs include many
well known models of FAM such as the FAMs of Kosko, Junbo et al., Liu, and Běhlolavék [22–24,17,3]. Furthermore,
this paper is the first to provide a general theoretical framework for FMAMs. Specifically, we derive a large sub-class of
FMAMs whose neurons perform dilations of the form max-C, i.e., a maximum of fuzzy conjunctions. Then, we develop
a learning strategy for general max-C FMAMs based on the concept of adjunction that—besides negation—represents
the main concept of duality in MM. Other learning strategies arise by taking the adjoint model or the negation of a
given max-C FMAM.

The paper is organized as follows. First, we review some basic concepts of MM, fuzzy set theory, and FMM. Then,
we present some general aspects of the FMAM subclass of FMNNs including the types of neurons used in FMAMs
and relationships of duality between FMAM models that are based on the concepts of adjunction and negation. In
Section 4, we employ these duality relationships in order to derive a novel class of recording schemes for FMAMs.
We finish the paper with some concluding remarks and Appendix A that contains the proofs of the theorems and
lemmas.

2. Mathematical background

2.1. Complete lattice framework of MM

MM is a theory that is concerned with the processing and analysis of objects using operators and functions based on
topological and geometrical concepts [16,43]. During the last few decades, it has acquired a special status within the
field of image processing, pattern recognition, and computer vision. Applications of MM include image segmentation
and reconstruction [20], feature detection [42], and signal decomposition [7].

The mathematical foundations of MM can be found in lattice theory which is concerned with algebraic structures
that arise by imposing some type of ordering on a set [4,16,38]. A partially ordered set X is called a lattice if and only
if every finite, non-empty subset of X has an infimum and a supremum in X. The infimum of Y ⊆ X is denoted by
the symbol

∧
Y . Alternatively, we write

∧
j∈J yj instead of

∧
Y if Y = {yj : j ∈ J } for some index set J . Similar

notations are used to denote the supremum of Y. We speak of a complete lattice X if every (finite or infinite) subset
has an infimum and a supremum in X. For instance, the interval [0, 1] represents a complete lattice. Moreover, the set
of functions from a set U to [0, 1], denoted by [0, 1]U , inherits the complete lattice structure of [0, 1] in terms of the
following partial order. For every x, y ∈ [0, 1]U , we have

x�y ⇔ x(u)�y(u) ∀u ∈ U. (1)

From now on, we denote complete lattices by the symbols L and M.
The elementary operators of MM are erosion, dilation, anti-erosion, and anti-dilation [2,16,40]. These four operators

are defined as follows.
An erosion is a mapping ε from a complete lattice L to a complete lattice M that commutes with the infimum

operation. In other words, the operator ε represents an erosion if and only if the following equality holds for every
subset Y ⊆ L:

ε
(∧

Y
)

=
∧
y∈Y

ε(y). (2)



M.E. Valle, P. Sussner / Fuzzy Sets and Systems 159 (2008) 747–768 749

Similarly, an operator � : L → M that commutes with the supremum operation is called a dilation. In other words, the
operator � represents a dilation if and only if the following equality holds for every subset Y ⊆ L:

�
(∨

Y
)

=
∨
y∈Y

�(y). (3)

An operator ε̄ : L → M is called an anti-erosion if and only if the first equality in Eq. (4) holds for every Y ⊆ L

and an operator �̄ : L → M is called an anti-dilation if and only if the second equality in Eq. (4) holds for every subset
Y ⊆ L.

ε̄
(∧

Y
)

=
∨
y∈Y

ε̄ (y) and �̄
(∨

Y
)

=
∧
y∈Y

�̄ (y) . (4)

The operators of erosion, dilation, anti-erosion, and anti-dilation represent the backbone of MM since every map-
ping � between complete lattices L and M can be expressed in terms of supremums and infimums of these four
operators [2]. More precisely, every mapping � : L → M can be represented as a supremum of infimums of ero-
sions and anti-dilations. Alternatively, � : L → M can be represented as an infimum of supremums of dilations and
anti-erosions.

Two important notions of duality permeate MM: adjunction and negation. A negation on a complete lattice L is an
involutive bijection �L : L → L which reverses the partial ordering [16]. For example, the operator NS(x) = 1 − x

represents a negation on the interval [0, 1].
Suppose that L and M are complete lattices equipped with negations �L : L → L and �M : M → M, respectively.

The following lemma reveals that anti-erosions and anti-dilations can be readily constructed from �L, �M, erosions, and
dilations. Since every complete lattice considered in this paper is endowed with a negation, we are mainly concerned
with erosions and dilations.

Lemma 1. Let L and M be complete lattices with negations �L and �M, respectively. An operator ε̄ : L → M represents
an anti-erosion if and only if �M ◦ ε̄ is an erosion and ε̄ ◦ �L is a dilation. Similarly, an operator �̄ : L → M represents
an anti-dilation if and only if �M ◦ �̄ is a dilation and �̄ ◦ �L is an erosion.

The operators of erosion and dilation can be linked by means of the concept of negation which is defined as follows.
Let � be an operator mapping a complete lattice L into a complete lattice M and let �L and �M be negations on L and
M, respectively. The operator �� given by

��(x) = �M (� (�L(x))) ∀ x ∈ L (5)

is called the negation of � (with respect to �L and �M).
In view of this definition, the following statement [16] arises as an immediate consequence of Lemma 1.

Corollary 2. The negation of an erosion is a dilation, and vice versa.

Many researchers—including Bloch and Maître [5], Sinha and Dougherty [41], as well as Nachtegael and Kerre
[27]—consider negation to be the most important notion of duality in MM. Other researchers such as Deng and
Heijmans [10], Ronse [38], and Maragos [25] advocate the duality relationship of adjunction, which is closely related
to the concepts of Galois connection [2] and the residuum of an operator [6,16].

Let L and M be complete lattices. Consider two arbitrary operators � : L → M and ε : M → L. We say that the pair
(ε, �) is an adjunction from L to M or that ε and � are adjoint if and only if we have

�(x)�y ⇔ x�ε(y) ∀ x ∈ L, y ∈ M. (6)

Adjunction constitutes a concept of duality due to the following proposition [40,16].

Proposition 3. Let L and M be complete lattices. Consider mappings � : L → M and ε : M → L.

(i) If (ε, �) is an adjunction then � is a dilation and ε is an erosion.
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Fig. 1. Scheme to obtain a dilation from an erosion and vice versa.

(ii) For any dilation � there is a unique erosion ε such that (ε, �) is an adjunction. The adjoint erosion is given by

ε(y) =
∨

{x ∈ L : �(x)�y} , (7)

for every y ∈ M.
(iii) For any erosion ε there is a unique dilation � such that (ε, �) is an adjunction. The adjoint dilation is given by

�(x) =
∧

{y ∈ M : ε(y)�x} , (8)

for every x ∈ L.

The preceding observations clarify that there is a unique erosion that can be associated with a certain dilation, and
vice versa, in terms of either negation or adjunction. Furthermore, given an adjunction (ε, �), the pair (��, ε�) forms
an adjunction [16]. These observations lead to the commutative diagram depicted in Fig. 1. This diagram will be used
later to develop new FMAM models.

2.2. Basic concepts of fuzzy set theory

In this paper, the class of fuzzy sets in U will be denoted by F(U) = [0, 1]U . In particular, if U = {u1, . . . , un} is a
finite set then x ∈ F(U) will be represented by a column vector x = [x1, . . . , xn]T ∈ [0, 1]n where xj = x(uj ) is the
degree of membership of uj in x, for every j = 1, . . . , n. In the following, we will focus on finite fuzzy sets such as
x ∈ [0, 1]n and y ∈ [0, 1]m.

2.2.1. Some basic operations of fuzzy logic
We define a fuzzy conjunction as an increasing mapping C : [0, 1]×[0, 1] → [0, 1] that satisfies C(0, 0) = C(0, 1) =

C(1, 0) = 0 and C(1, 1) = 1. Examples of fuzzy conjunction include the following operators:

CM(x, y) = x ∧ y, (9)

CP (x, y) = x · y, (10)

CL(x, y) = 0 ∨ (x + y − 1), (11)

CK(x, y) =
{

0, x + y�1,

x, x + y > 1.
(12)

Note that the fuzzy conjunctions CM , CP , and CL are examples of t-norms [21,32]. In contrast, the fuzzy conjunction
CK does not constitute a t-norm since CK fails to be commutative. Note that CK slightly differs from the fuzzy
conjunction of Kleene and Dienes that was defined by Deng and Heijmans [10].

Lemma 4. The operators CM , CP , CL, and CK represent dilations on [0, 1] in both arguments.

A fuzzy disjunction is an increasing mapping D : [0, 1] × [0, 1] → [0, 1] that satisfies D(0, 0) = 0 and D(0, 1) =
D(1, 0) = D(1, 1) = 1. The following operators are examples of fuzzy disjunctions:

DM(x, y) = x ∨ y, (13)

DP (x, y) = x + y − x · y, (14)
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DL(x, y) = 1 ∧ (x + y), (15)

DK(x, y) =
{

1, x + y�1,

x, x + y < 1.
(16)

Note that the operators DM , DP , and DL represent t-conorm [21,32]. The following observation is also pertinent.

Lemma 5. The operators DM , DP , DL, and DK represent erosions on [0, 1] in both arguments.

An operator I : [0, 1] × [0, 1] → [0, 1] that is decreasing in the first argument and that is increasing in the second
argument is called a fuzzy implication if I extends the usual crisp implication on {0, 1} × {0, 1}, i.e., I (0, 0) =
I (0, 1) = I (1, 1) = 1 and I (1, 0) = 0. We obtain a reverse fuzzy implication J : [0, 1] × [0, 1] → [0, 1] by inverting
the arguments of a fuzzy implication I , i.e., J is defined as follows for every x, y ∈ [0, 1].

J (x, y) = I (y, x). (17)

The values I (x, y) and J (x, y) can be interpreted as the degree of truth of the sentences “x implies y” and “x is implied
by y”, respectively. Some particular reverse fuzzy implications can be found below:

JM(x, y) =
{

1, y�x,

x, y > x,
(Gödel), (18)

JP (x, y) =
{

1, y�x,

x/y, y > x,
(Goguen), (19)

JL(x, y) = 1 ∧ (x − y + 1) (Lukasiewicz), (20)

JK(x, y) = x ∨ (1 − y) (Kleene). (21)

Finally, a negation on the unit interval [0, 1] is called a fuzzy negation. The following unary operators represent
examples of fuzzy negations.

NS(x) = 1 − x, (22)

ND(x) = 1 − x

1 + px
, p > −1, (23)

NR(x) = p
√

1 − xp, p ∈ (0, ∞). (24)

Note that a fuzzy negation N on [0, 1] induces a negation N on F(U) that is given by applying N pointwise, i.e.,
N(x)(u) = N(x(u)). In this paper, we use a bold symbol N for a negation to indicate that the negation is vector-valued.

2.2.2. Duality relationships between fuzzy operators
We say that a fuzzy conjunction C and a fuzzy disjunction D are dual operators with respect to a fuzzy negation N

if and only if the following equation holds for every x, y ∈ [0, 1]:
C(x, y) = N(D(N(x), N(y))). (25)

Note that if C is a dilation in one of the arguments then D is an erosion in the same argument, and vice versa [10].

Lemma 6. The pairs (CM, DM), (CP , DP ), (CL, DL), (CK, DK) are dual operators with respect to the standard
fuzzy negation NS(x) = 1 − x.

We also define a duality relationship of negation between a fuzzy disjunction D and a fuzzy implication I . More
precisely, we say that the operators I and D are dual operators with respect to a fuzzy negation N or that D is the
negation of I if and only if the following equation holds for every x, y ∈ [0, 1]:

I (x, y) = D(N(x), y). (26)
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Note that Eq. (26) corresponds to the following classical idea of implication: the statement “P implies Q” holds true
if and only if the statement “not P or Q” also holds true [30,32].

We say that a fuzzy conjunction C and a fuzzy implication I form an adjunction if and only if C(z, ·) and I (z, ·)
form an adjunction for every z ∈ [0, 1] [10]. Equivalently, we have that C(z, ·) and D(N(z), ·) are adjoint. In this case,
the following relation holds for every x, y, z ∈ [0, 1]:

C(z, x)�y ⇔ x�D(N(z), y). (27)

Moreover, by Proposition 3, the operator C(z, ·) is a dilation and the operator D(N(z), ·) is an erosion.
Similarly, a fuzzy conjunction C and a reverse fuzzy implication J are called adjoint operators if and only if C(·, z)

and J (·, z) form an adjunction for every z ∈ [0, 1]. Note that C(·, z) and J (·, z) represent a dilation and an erosion,
respectively. Furthermore, C and J satisfy the following relation for every x, y, z ∈ [0, 1]:

C(x, z)�y ⇔ x�J (y, z). (28)

In view of Proposition 3, a reverse fuzzy implication J and a fuzzy conjunction C can be obtained by means of the
following equations, respectively:

J (x, y) =
∨

{z ∈ [0, 1] : C(z, y)�x} and C(x, y) =
∧

{z ∈ [0, 1] : J (z, y)�x} . (29)

Lemma 7. The pairs (CM, JM), (CP , JP ), (CL, JL), and (CK, JK) are examples of adjoint operators.

2.2.3. Matrix products based on fuzzy logic operations
The fuzzy operations C, D, and J can be combined with the maximum or the minimum operation to yield the

following matrix products. We define the max-C product of A ∈ [0, 1]m×k and B ∈ [0, 1]k×n, denoted by E = A ◦ B,
as follows:

eij =
k∨

�=1

C(ai�, b�j ) ∀ i = 1, . . . , m ∀ j = 1, . . . , n. (30)

Similarly, the min-D product and the min-J product, denoted by G = A • B and H = A�B, respectively, are given
by the following equations:

gij =
k∧

�=1

D(ai�, b�j ) and hij =
k∧

�=1

J (ai�, b�j ) ∀ i = 1, . . . , m ∀ j = 1, . . . , n. (31)

Note that if the operators C and D of a max-C and a min-D products are dual with respect to a fuzzy negation N

then Eq. (32) holds for appropriately sized matrices A and B where N(E) denotes the entry-wise negation of a fuzzy
matrix E.

N(A ◦ B) = N(A) • N(B). (32)

Subscripts of the product symbols ◦, •, or � indicate the type of fuzzy operators used in Eqs. (30) and (31). For
example, the matrix E = A ◦M B is given by eij =∨k

�=1 CM(ai�, b�j ) =∨k
�=1 (ai� ∧ b�j ).

2.3. Some basic concepts of FMM

In the 1960s, MM was introduced by Matheron and Serra for the analysis of binary images [26,39]. In the 1980s,
Serra and Sternberg developed successful approaches to extend binary to gray-scale MM [39,45]. The classical and
most widely known method for the generalization of binary MM to gray-scale image processing employs the notion
of umbra and is due to Sternberg [44,45]. FMM is an extension of binary MM that is based on techniques of fuzzy set
theory [27,10,25,28,51].

Various researchers have set out to define approaches towards FMM [27]. Among these definitions are the approaches
of De Baets [9], Sinha and Dougherty [41], Bloch and Maître [5], Deng and Heijmans [10], and Maragos [25]. We
refer the reader to [51] for an overview as well as a classification scheme of the most important approaches to FMM.
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A certain approach to FMM is determined by certain definitions of fuzzy erosion and fuzzy dilation since anti-
dilations and anti-erosions can be obtained by means of Lemma 1. We say that a function εF : F(U) → F(V ) is a
fuzzy erosion if and only if εF is an erosion in the sense of Eq. (2). Similarly, an operator �F : F(U) → F(V ) is a
fuzzy dilation if and only if it satisfies Eq. (3).

An erosion, a dilation respectively, is usually associated with a structuring element which is used to extract some
relevant information on the shape and form of objects. A fuzzy erosion εF : F(U) → F(V ), a fuzzy dilation
�F : F(U) → F(V ), respectively, is generally given by a rule that combines an input fuzzy set x ∈ F(U) with a
fuzzy structuring element w ∈ F(U) and generates an output fuzzy set y ∈ F(V ). Specific choices of fuzzy dilations
can be defined in terms of supremums of fuzzy conjunctions and specific choices of fuzzy erosions can be defined in
terms of infimums of fuzzy implications or fuzzy disjunctions. For example, if U = {u1, . . . , un} and if C(w, ·) is a
dilation for every w ∈ [0, 1] then we obtain a fuzzy dilation D(·, w) : F(U) → [0, 1] by defining

D(x, w) =
n∨

i=1

C(wi, xi). (33)

Thus, examples of fuzzy dilations include the operators given by Eq. (33) for the fuzzy conjunctions CM , CP , CL, and
CK . This claim follows from Proposition 8 and Lemma 1.

Similarly, if I (w, ·) is an erosion for every w ∈ [0, 1] and if D is the fuzzy disjunction that is the dual operator of I

with respect to a fuzzy negation N then we obtain a fuzzy erosion E(·, w) : F(U) → [0, 1] by defining

E(x, w) =
n∧

i=1

I (wi, xi) =
n∧

i=1

D(mi, xi), (34)

where m = N(w) and D is the negation of I (cf. Eq. (26)). Thus, D(m, ·) is an erosion for every m ∈ [0, 1]. In view
of Eqs. (30) and (31), these operators have the following representations:

D(x, w) = wT ◦ x and E(x, w) = E(x, N(m)) = mT • x. (35)

These two equations constitute the basis of the fuzzy morphological neurons that will be defined in the next section.
Note that if C and D represent a dilation and an erosion in the second argument, then the operators D and E given

by Eqs. (33) and (34) represent a fuzzy dilation and a fuzzy erosion, respectively. The following proposition, that
corresponds to a slight adaptation of Proposition 5.2 of [10], reveals that the converse also holds true.

Proposition 8. An operator D(·, w) given by Eq. (35) represents a fuzzy dilation for every w ∈ F(U) if and only if
C(w, ·) is a dilation for every w ∈ [0, 1].

Similarly, an operator E(·, w) = E(·, N(m)) given by Eq. (35) represents a fuzzy erosion for every m ∈ F(U) if and
only if D(m, ·) is an erosion for every m ∈ [0, 1].

3. General aspects of FMAM

AMs allow for the storage of pattern associations and the retrieval of the desired output pattern upon presentation
of a possibly noisy or incomplete version of an input pattern. Mathematically speaking, the AM design problem can
be stated as follows: Given a finite set of desired associations {(x�, y�) : � = 1, . . . , k}, determine a mapping G such
that G(x�) = y� for all � = 1, . . . , k. Furthermore, the mapping G should be endowed with a certain tolerance with
respect to noise, i.e., G(x̃�) should equal y� for noisy or incomplete versions x̃� of x�.

The set of associations {(x�, y�) : � = 1, . . . , k} is called fundamental memory set and each association (x�, y�) in
this set is called a fundamental memory [14,15]. In this paper, we often consider the matrix X = [x1, . . . xk] whose
columns consist of the vectors x� and the matrix Y = [y1, . . . yk] whose columns consist of the vectors y�.

We speak of an auto-associative memory if the fundamental memory set is of the form {(x�, x�) : � = 1, . . . , k}.
The memory is said to be hetero-associative if the output y� differs from the input x�. One of the most common
problem associated with the design of an AM is the creation of false or spurious memories. A spurious memory is
a memory association that does not belong to the fundamental memory set, i.e., it was unintentionally stored in the
memory.



754 M.E. Valle, P. Sussner / Fuzzy Sets and Systems 159 (2008) 747–768

The process of determining G is called recording phase and the mapping G is called associative mapping. We speak of
a neural associative memory if the associative mapping G is given by an artificial neural network (ANN). In particular,
we have a fuzzy (neural) associative memory (FAM) if the associative mapping G is given by a fuzzy neural network
and the patterns x� and y� are fuzzy sets for every � = 1, . . . , k.

We speak of a [fuzzy] morphological neural network if its neurons perform an elementary [fuzzy] morphological
operation. The neurons of an ANN of this type are called [fuzzy] morphological neurons. A FMNN that serves as an
AM is called a FMAM.

3.1. Types of neurons used in FAM models

Let us now present the most important types of fuzzy neurons that occur in FMAM models. These models of artificial
neurons can be formulated in terms of max-C and min-D matrix products. From now on, the symbol x = [x1, . . . , xn]T

denotes the fuzzy input vector and y denotes the fuzzy output value. The weights wi, mi ∈ [0, 1] of these fuzzy neurons
form vectors w = [w1, . . . , wn]T and m = [m1, . . . , mn]T.

One of the most general classes of fuzzy neurons was introduced by Pedrycz in the early 1990s [31]. We are
particularly interested in an OR-neuron of the following form, where S is a t-conorm and T is a t-norm.

y = n

S
j=1

T (wj , xj ). (36)

Consider the special case that S equals the maximum operation. Moreover, let us substitute the t-norm with the more
general operation of fuzzy conjunction. Thus, we obtain a max-C neuron of the following form:

y =
n∨

j=1

C(wj , xj ) = wT ◦ x. (37)

Particular choices of fuzzy conjunctions yield particular max-C neurons. We will indicate the underlying type of fuzzy
conjunction by means of a subscript. A similar notation will be applied to describe the min-D neuron that is introduced
below. Max-C neurons occur in several FAM models, including the famous FAMs of Kosko [23] and the recent IFAM
models [49].

A closer look at Eqs. (37) and (33) reveals that a max-C neuron represents a fuzzy dilation if C commutes with the
supremum in the second argument. In fact, by Proposition 8, we have a max-C morphological neuron or max-C dilative
neuron if and only if C(x, ·) is a dilation for every x ∈ [0, 1]. Examples of max-C morphological neurons include
max-CM , max-CP , max-CL, and max-CK neurons.

In a similar vein, we slightly adapt Pedrycz’s AND-neuron [31] in order to obtain the neural model that is given in
terms of the following equation:

y =
n∧

j=1

D(mj , xj ) = mT • x. (38)

We refer to neurons of this type as min-D neurons. We will show that the FLBAM models [3] and some dual FAM
models are equipped with min-D neurons [49]. In view of Proposition 8, we speak of a min-D morphological neuron
or min-D erosive neuron if and only if D(x, ·) is an erosion for every x ∈ [0, 1]. Min-DM , min-DP , min-DL, and
min-DK neurons exemplify min-D morphological neurons.

3.2. Max-C FMAM

This section shows that many well-known FAM models can be viewed as single layer feedforwardANNs with max-C
morphological neurons. These models are given by

y = W(x) = W ◦ x, (39)

where W ∈ [0, 1]m×n represents the synaptic weight matrix and x ∈ [0, 1]n and y ∈ [0, 1]m are the fuzzy input and
fuzzy output patterns, respectively. Some exceptions to this rule will be presented in the next section.
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Note that Eq. (39) describes an FMAM if and only if the corresponding fuzzy conjunction corresponds to a dilation.
In this case, the associative mapping W represents a dilation from [0, 1]n into [0, 1]m and the AM model given by
Eq. (39) belongs to the class of max-C FMAMs. Several examples of max-C FMAMs are listed below.

Example 9. Kosko’s FAMs, introduced in the early 1990s, constitute one of the earliest attempts to develop neural AM
models based on fuzzy set theory [23]. These models employ max-CM or max-CP products in Eq. (39). Consequently,
they are usually referred to as max.min FAM and max-product FAM. Note that both max–min and max-product FAMs
represent FMAMs.

Let us construct the matrices X = [x1, . . . , xk] ∈ [0, 1]n×k and Y = [y1, . . . , yk] ∈ [0, 1]m×k . The weight matrix
of the max–min FAM is synthesized by setting W = Y ◦M XT and the weight matrix of the max-product FAM is
synthesized by setting W = Y ◦P XT.

Example 10. Chung and Lee generalized Kosko’s FAMs by substituting the max–min or the max-product with a more
general max-t product [8]. The resulting model, called generalized FAM (GFAM), can be described in terms of the
following relationship between an input pattern x and the corresponding output pattern y. Here, the symbol ◦T denotes
the max-C product where C is a t-norm.

y = W ◦T x where W = Y ◦T XT. (40)

Note that a GFAM performs a dilation at each node (and overall) if and only if the t-norm represents a dilation. In this
case, we speak of a morphological or dilative GFAM.

We would like to point out that Chung and Lee were particularly interested in the Lukasiewicz GFAM, i.e., the
GFAM based on the max-CL product [8]. Note that the Lukasiewicz GFAM belongs to the FMAM class.

Example 11. Junbo’s FAM and Kosko’s max–min FAM share the same network topology and the same type of
morphological neurons, namely max-CM neurons [17]. Consequently, Junbo’s FAM computes the output pattern y
according to the rule y = W ◦M x upon presentation of an input pattern x ∈ [0, 1]n. Thus, Junbo’s model belongs to
the FMAM class.

The difference between the max–min FAM and Junbo’s FAM lies in the learning rule. Junbo et al. introduced a new
learning rule for FAMs that allows for the storage of multiple fuzzy fundamental memories. The synaptic weight matrix
is computed as follows:

W = Y�MXT. (41)

Here, the symbol �M denotes the min-JM product of Eq. (31). We refer to this learning rule as Gödel implicative
learning since it employs Gödel’s reverse fuzzy implication JM [49].

Example 12. The max–min FAM with threshold of Liu is a variation of Junbo’s FAM that incorporates a threshold
(or bias) at the input and output layer [24]. The recall phase of this model is given by the following equation where
W ∈ [0, 1]m×n is the synaptic weight matrix and c ∈ [0, 1]n and d ∈ [0, 1]m are the threshold vectors:

y = (W ◦M (x ∨ c)) ∨ d. (42)

Note that Eq. (42) boils down to adding bias terms to the max–min FAM. However, due to the monotonicity of max-
CM product, the action of both thresholds c and d can be captured in terms of a new threshold � = [�1, . . . , �m] ∈
[0, 1]m [49]. Note that adding a threshold � amounts to setting x = [1, x1, . . . , xn]T and wi0 = �i for
i = 1, . . . , m. Consequently, the max–min FAM with threshold can be reduced to a FAM model described by Eq. (39)
with max-CM morphological neurons. Thus, the max–min FAM with threshold belongs to the class
of FMAMs.

Example 13. We recently introduced a new class of max-C FMAMs called implicative fuzzy associative memories
(IFAMs) [49,52]. An IFAM model has max-T neurons, where T is a continuous t-norm. In contrast to the GFAM, the
IFAM model includes a bias term � ∈ [0, 1]m and employs a learning rule called R-implicative fuzzy learning. This
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learning rule defines W and � as follows:

W = Y�T XT and � =
k∧

�=1

y�. (43)

The reverse fuzzy implication JT employed in the min-JT product “�T ” is uniquely determined by setting JT (y, x) =
IT (x, y) where IT is the fuzzy implication given by the following equation:

IT (x, y) =
∨

{z ∈ [0, 1] : T (z, x)�y}. (44)

A closer look at Eqs. (44) and (29), reveals that JT is simply the reverse fuzzy implication that is adjoint to the t-norm T.
Particular choices of T, JT , respectively, lead to particular IFAM models. The name of a particular IFAM model indicates
the choice of T and JT . For example, the Gödel IFAM corresponds to the IFAM model given by y = (W ◦M x) ∨ �,
where W = Y�MXT and � = ∧k

�=1 y�. If the columns of the matrices X ∈ [0, 1]3×3 and Y = [0, 1]2×3 given by

Eq. (45) represent the patterns x� and y�, where � = 1, 2, 3, then the matrix W ∈ [0, 1]2×3 and the vector � ∈ [0, 1]2

of the Gödel IFAM are given by Eq. (46).

X =
⎡
⎣ 0.4 0.8 0.9

0.7 1.0 0.2
0.6 0.5 1.0

⎤
⎦ and Y =

[
0.7 0.8 0.7
0.6 0.6 0.2

]
, (45)

W =
[

0.7 0.8 0.7
0.2 0.6 0.2

]
and � =

[
0.7
0.2

]
. (46)

Note that an IFAM model can be described by Eq. (37) setting x = [1, x1, . . . , xn]T and wi0 = �i for i = 1, . . . , m.
Furthermore, a continuous t-norm represents a dilation in [0, 1]. Thus, IFAM models belong to the class of FMAMs.

3.3. Min-D FMAMs, the negations of max-C FMAMs

This section concerns FAM models given by the following equation where M ∈ [0, 1]m×n represents the synaptic
weight matrix and x ∈ [0, 1]n and y ∈ [0, 1]m are the fuzzy input and fuzzy output patterns, respectively.

y = M(x) = M • x. (47)

Note that Eq. (47) describes a single layer feedforward ANN with min-D neurons. In particular, this equation yields
an FMAM if and only if the corresponding fuzzy disjunction corresponds to an erosion in the second argument. In this
case, the associative mapping M represents an erosion from [0, 1]n into [0, 1]m. The resulting model will be called
min-D FMAM. The following establishes a relationship between min-D and max-C FMAMs.

Recall that a max-C FMAM corresponds to a dilation W : [0, 1]n → [0, 1]m. Thus, the two relationships of duality
of MM can be used to formulate new FMAM models. In particular, let N(x) denote the component-wise fuzzy negation
of a vector x. We define the negation of a max-C FAM W as the AM model M that corresponds to the negation of
W with respect to N, i.e., the FAM M given by the following equation where x and y are the input and the recalled
patterns, respectively:

y = M(x) = WN(x) = N (W [N(x)]) . (48)

The following theorem reveals that the negation of a max-C FMAM represents a min-D FMAM.

Theorem 14. Let N be a fuzzy negation. If we define a function �N such that �N(W) = WN for all max-C FAMs W
then �N constitutes a bijection between the set of max-C FAMs and the set of min-D FAMs. Given an arbitrary max-C
FAM W with corresponding weight matrix W , we have that the weight matrix of the min-D FAM M = WN is simply
given by M = N(W). Moreover, the fuzzy operators C and D are dual with respect to N .

In particular, if C is a dilation in the second argument then D is an erosion in the second argument. Therefore,
restricting �N to the set of max-C FMAMs yields a bijection between the sets of max-C FMAMs and min-D FMAMs.
Similarly, if C is a t-norm then D is a t-conorm and therefore �N induces a bijection between the set of max-T FAMs
and the set of min-S FAMs.
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Example 15. Consider a max-T FMAM such as a dilative GFAM given by Eq. (40). The negation of the original model
computes an output pattern y according to the rule y = M •S x. Here, the symbol •S denotes the min-D product where
D is a t-conorm. We refer to [49] for another example of a class of min-D FMAMs, namely, the dual IFAMs.

Example 16. The fuzzy logical bidirectional associative memory (FLBAM) [3] employs fuzzy implications IT given
by Eq. (44) where T is a t-norm. Given an input pattern x(0) ∈ [0, 1]n, the FLBAM generates a sequence (x(0), y(0)),
(x(1), y(0)), (x(1), y(1)), (x(2), y(1)), . . . as follows for k = 0, 1, . . .

y
(k)
i =

n∧
j=1

IT (x
(k)
j , mij ) ∀ i = 1, . . . , m, (49)

x
(k+1)
j =

m∧
i=1

IT (y
(k)
i , mij ) ∀ j = 1, . . . , n. (50)

The synaptic weight matrix M of the FLBAM is synthesized using the rule M = Y ◦T XT. The following theorem
reveals that performing one step of the FLBAM model corresponds to an application of a min-D FMAM to the negation
of either x(k) or y(k).

Theorem 17. Let x(0) ∈ [0, 1]n be an input pattern. The sequence (x(0), y(0)), (x(1), y(0)), (x(1), y(1)), (x(2), y(1)), . . .

generated by an FLBAM model is given by

y(k) = M • N(x(k)) and x(k+1) = MT • N(y(k)) for k = 0, 1, . . . . (51)

Furthermore, the neurons of the FLBAM are min-D erosive (morphological) neurons.

3.4. Adjoint FMAM

The duality relationship of adjunction can be used to define adjoint models of a max-C or a min-D FMAM. For
example, consider a max-C FMAM W given by Eq. (39). There exists an erosion A : [0, 1]m → [0, 1]n such that
(A, W) forms an adjunction. Furthermore, Eq. (7) implies that the following equation holds for every y ∈ [0, 1]m.

A(y) =
∨

{x ∈ [0, 1]n : W(x)�y}, (52)

The adjoint FMAM of W is defined as the AM model that corresponds to the mapping A.
In a similar vein, if M : [0, 1]n → [0, 1]m is the erosion corresponding to a min-D FMAM given by Eq. (47) then

we define the adjoint FMAM of M as the dilation B : [0, 1]m → [0, 1]n that forms an adjunction with M. Using
Eq. (8), we are able to construct the dilation B as follows for every y ∈ [0, 1]m:

B(y) =
∧

{x ∈ [0, 1]n : M(x)�y}. (53)

The following theorem shows that the adjoint model of a max-C FMAM has min-D neurons whereas the adjoint
model of a min-D FMAM has max-C neurons. Thus, these models belong indeed to the FMAM class.

Theorem 18. Let W denote the max-C FMAM W and let M it denote the min-D FMAM M that are defined via
Eqs. (39) and (47). Given an input pattern y ∈ [0, 1]m, the adjoint FMAM of W computes the corresponding output
pattern x ∈ [0, 1]n in terms of the following equation where M = N(W):

x = A(y) = MT • y. (54)

Similarly, the adjoint FMAM of M computes the output pattern x (corresponding to the input pattern y) in terms of
the following equation where W = N(M):

x = B(y) = WT ◦ y. (55)
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Fig. 2. Relationship scheme between an FMAM model and its dual versions.

We would like to point out that Eq. (55) can also be determined by forming the negation of Eq. (54) since the
commutative diagram depicted in Fig. 2 holds true (cf. Fig. 1 and the Proof of Theorem 18). In other words, the
operators W and M are dual with respect to a negation N if and only if the operators A and B are also dual with respect
to N.

4. Recording scheme for FMAMs

In the previous section, we discussed the type of neurons and the network topology of many well-know FAM models.
This section introduces a large class of recording schemes for max-C and min-D FMAMs. More precisely, we will
show that a general class of recording strategies for max-C FMAMs called fuzzy learning by adjunction or implicative
fuzzy learning can be derived from the duality relationship of adjunction. In particular, we will show that this recording
scheme yields the synaptic weight matrix that represents the best approximation from below ofY in terms of the max-C
product and that it generalizes the implicative fuzzy learning scheme for IFAMs [49]. Finally, an application of the
duality relationship of negation to the synaptic weight matrix of a max-C FMAM leads to a new recording scheme for
min-D FMAMs.

4.1. Fuzzy learning by adjunction for max-C FMAMs

Let {(x�, y�) : � = 1, . . . , k} be a fundamental memory set. For simplicity, let X ∈ [0, 1]n×k and Y ∈ [0, 1]m×k

denote the matrices whose columns are the vectors x� and y�, respectively. Consider a max-C FMAM given by
Eq. (39) and let DX : [0, 1]m×n → [0, 1]m×k be the operator defined as follows:

DX(W) = W ◦ X. (56)

Note that if there exists a synaptic weight matrix W ∈ [0, 1]m×n such that Y = DX(W) then the max-C FMAM
produces the desired output y� upon presentation of the input x�, i.e., the FMAM perfectly recalls the associations
(x�, y�), for each � = 1, . . . , k.

Suppose that DX is a fuzzy dilation. By Proposition 6, there exists an unique fuzzy erosion EX : [0, 1]m×k →
[0, 1]m×n that forms an adjunction with DX. The fuzzy erosion EX depends on X ∈ [0, 1]n×k and produces a matrix in
[0, 1]m×n for every input Y ∈ [0, 1]m×k . Thus, the following equation can be used to define a synaptic weight matrix
for a max-C FMAM:

W = EX(Y ). (57)

Before we characterize synaptic weight matrices of this form, we provide necessary and sufficient conditions for the
operator DX to be a dilation.

Theorem 19. The operator DX given by Eq. (56) represents a dilation for every X ∈ [0, 1]n×k if and only if C(·, x)

is a dilation for every x ∈ [0, 1].
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Theorem 19 implies that Eq. (57) can be employed in the recording phase of a max-C FMAM if and only if the fuzzy
conjunction C represents a dilation in the first argument.

The following theorem describes the main properties of a synaptic weight matrix W given by Eq. (57). In particular,
Theorem 20 implies that W is the best approximation from below of Y in terms of the max-C product.

Theorem 20. Let X = [x1, . . . , xk] ∈ [0, 1]n×k and Y = [y1, . . . , yk] ∈ [0, 1]m×k . Consider an adjunction (DX, EX)

where DX is given by Eq. (56). The synaptic weight matrix W = EX(Y ) represents the supremum of the set of matrices
V ∈ [0, 1]m×n such that V ◦ X�Y , i.e., W satisfies the following equation:

W =
∨

{V ∈ [0, 1]m×n : V ◦ X�Y }. (58)

In particular, if there exists a matrix V ∈ [0, 1]m×n such that V ◦ X = Y then V �W and W ◦ X = Y .

A straightforward consequence of Theorem 20 that concerns the auto-associative case is presented in Corollary 21.
This corollary guarantees that a max-C FMAM will perfectly store and recall a set of patterns {x1, . . . , xk} if there
exists a fuzzy matrix I ∈ [0, 1]n×n such that I ◦ X = X for every X ∈ [0, 1]n×k . In this case, we say that the max-C
product has a left identity matrix I .

Corollary 21. Consider an adjunction (DX, EX) where DX is given by Eq. (56) and let X = [x1, . . . , xk]
∈ [0, 1]n×k . If the max-C product has a left identity I ∈ [0, 1]n×n then the synaptic weight matrix W = EX(X)

is such that W ◦ x� = x� for every � = 1, . . . , k.

Note that a max-C product has a left identity, namely the matrix whose entries are given by Kronecker’s delta,
if C(1, x) = x for every x ∈ [0, 1]. In particular, a t-norm satisfies T (1, x) = x for every x ∈ [0, 1]. Thus, one
can store as many patterns as desired in auto-associative max-T FMAMs using the recording scheme corresponding
to Eq. (57).

The following theorem shows that the synaptic weight matrix W given by Eq. (57) can be easily computed by means
of a single min-J product.

Theorem 22. Let X = [x1, . . . , xk] ∈ [0, 1]n×k and Y = [y1, . . . , yk] ∈ [0, 1]m×k . Consider an operator DX

given by Eq. (56) based on a fuzzy conjunction C that represents a dilation in both arguments. The synaptic weight
matrix W = EX(Y ) is given by the following min-J product where J is the reverse fuzzy implication that is adjoint
to C.

W = Y�XT. (59)

Recall that we had previously introduced implicative fuzzy learning, a recording scheme based on the minimum of
fuzzy implications [49,52]. Since a reverse fuzzy implication J corresponds to a fuzzy implication I , Eq. (59) describes
implicative fuzzy learning. Therefore, Theorem 22 generalizes the implicative fuzzy learning scheme used in IFAM
models to include general max-C FMAMs.

Implicative fuzzy learning has explicitly or implicitly been used in conjunction with several FAM models such as
the FAM model of Junbo et al. [17], the max–min FAM with threshold of Liu [24], and the IFAM models [49,52].
The following example concerns an application of the implicative fuzzy learning in an FMAM that is not based on a
t-norm.

Example 23. Consider the matrices X = [x1, . . . , x4] ∈ [0, 1]5×4 and V ∈ [0, 1]3×5 displayed in Eq. (60). In order
to verify Theorems 20 and 22, we defined Y = V ◦K X and computed the matrix W = Y�KXT using the implicative
fuzzy learning. Here, the symbols “◦K” and “�K” represent the max-C and the min-J products based on the fuzzy
conjunction CK and reverse fuzzy implication JK . Recall that CK does not represent a t-norm but does represent a
dilation in the first argument. The matrices Y = [y1, . . . , yk] ∈ [0, 1]3×4 and W ∈ [0, 1]3×5 are shown in Eq. (61).
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Note that V �W . Moreover, evaluating the max-CK product of W and X reveals that Y = W ◦K X.

X =

⎡
⎢⎢⎢⎢⎢⎣

0.35 1.00 0.82 0.25

0.14 0.70 0.32 0.04

0.41 0.97 0.33 0.27

0.13 0.17 0.64 0.33

0.70 0.86 0.96 0.36

⎤
⎥⎥⎥⎥⎥⎦ and V =

⎡
⎢⎣

0.03 0.53 0.24 0.74 0.16

0.28 0.44 0.70 0.73 0.87

0.07 0.48 0.50 0.00 0.74

⎤
⎥⎦ , (60)

Y =
⎡
⎢⎣

0.00 0.53 0.74 0.74

0.87 0.87 0.87 0.87

0.74 0.74 0.74 0.74

⎤
⎥⎦ and W =

⎡
⎢⎣

0.53 0.53 0.53 0.74 0.30

0.87 0.87 0.87 0.87 0.87

0.74 0.74 0.74 0.74 0.74

⎤
⎥⎦ . (61)

4.2. Synthesis of the weight matrix for a min-D FMAM

A recording scheme for a min-D FMAM can be derived either directly by using fuzzy learning by adjunction or
indirectly by forming the negation M = WN of a given max-C FMAM W , i.e., by calculating the negation M = N(W)

of the weight matrix W corresponding to a given max-C FMAM W . In this subsection, we adopt the latter, indirect
approach. We would like to point out, however, that the two approaches lead to the same synaptic weight matrix
(cf. the Proof of Theorem 24).

Consider a min-D FMAM M and let N be a fuzzy negation. Suppose that the fuzzy disjunction commutes with
the infimum operation in the first argument, i.e., D(·, x) is an erosion for every x ∈ [0, 1]. By Theorem 14, there
exists a max-C FMAM W such that W and M are dual operators with respect to a fuzzy negation N . This max-C
FMAM is based on the fuzzy conjunction C that is dual to D with respect to N . Thus, C(·, x) is a dilation for every
x ∈ [0, 1] and fuzzy learning by adjunction can be applied to store a set of associations. In particular, given matrices
X = [x1, . . . , xk] ∈ [0, 1]n×k and Y = [y1, . . . , yk] ∈ [0, 1]n×k , we can define W = N(Y )�N(X)T. Note that W is
computed in terms of the negations N(X) and N(Y ) instead of the matrices X and Y. This follows from the fact that
N(Y ) = W ◦ N(X) if and only if Y = M • X, where M = N(W).

Summarizing these observations, we can construct the synaptic weight matrix M ∈ [0, 1]m×n of a min-D FMAM
by means of the following equation:

M = N(W) = N(N(Y )�N(X)T). (62)

Here, the min-J product is based on the reverse implication that is adjoint to C, the fuzzy conjunction that is dual to D

with respect to N . The following theorem reveals that the matrix M given by Eq. (62) is the best approximation from
above of Y in the sense of the min-D product.

Theorem 24. The synaptic weight matrix M given by Eq. (62) represents the infimum of the set of matrices
U ∈ [0, 1]m×n such that U • X�Y , i.e., M satisfies the following equation:

M =
∧

{U ∈ [0, 1]m×n : U • X�Y }. (63)

Moreover, if there exists U ∈ [0, 1]m×n such that U • X = Y , then U �M and M • X = Y .

Note that Theorem 24 is the dual of Theorem 20. In fact, every statement concerning a max-C FMAM with synaptic
weight given by Eq. (59) induces a corresponding dual statement for the dual min-D FMAM with synaptic weight
matrix given by Eq. (62). For example, one can easily show that if there exist a synaptic weight matrix I ∈ [0, 1]n×n

such that I • X = X for every [0, 1]n×k , then one can store as many patterns as desired in the auto-associative min-D
FMAM.

The recording scheme of Eq. (62) has been applied to store patterns in dual IFAM models [49]. The following
theorem shows that the synaptic weight matrix of an FLBAM model can also be obtained by means of the negation of
fuzzy learning by adjunction.
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Theorem 25. Consider an FLBAM given by Eq. (51) and let N be a fuzzy negation. Let D denote the corresponding
fuzzy disjunction. Given matrices X = [x1, . . . , xk] ∈ [0, 1]n×k and Y = [y1, . . . , yk] ∈ [0, 1]m×k , we obtain the
synaptic weight matrix M ∈ [0, 1]m×n of the FLBAM model as follows:

M = N(N(Y )�XT), (64)

where J represents the reverse fuzzy implication that forms an adjunction with the negation of D, i.e., the pair (J, DN)

forms an adjunction.

5. Concluding remarks

This paper successfully relates FAMs and FMM. In particular, we employed concepts of FMM in order to establish
a general framework for the recording and recall phases of FAMs. The resulting class of FAMs was called the class of
FMAMs.

We have shown that many existing FAM models fit into this framework. More importantly, the results of this paper
reveal that the common structure of FMAMs cannot only be used to construct new particular FMAM models but it also
provides new insights into the properties of new and existing models.

In the future, we plan to investigate the recall phase of FMAMs. In particular, we will pursue results that charac-
terize the noise tolerance and the fixed points of auto-associative FMAMs that are trained using fuzzy learning by
adjunction. Furthermore, we plan to investigate the performance of FMAM models in applications as fuzzy rule-based
systems.
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Appendix A. Proof of lemmas and theorems

Proof of Lemma 1. We will only show that an operator ε̄ : L → M represents an anti-erosion if and only if �M ◦ ε̄ is
an erosion. The other claims can be demonstrated in a similar fashion.

Suppose that ε̄ represents an anti-erosion and let Y ⊆ L. The following equations reveal that �M ◦ ε̄ is an
erosion:

(�M ◦ ε̄)
(∧

Y
)

= �M

(
ε̄
(∧

Y
))

= �M

⎛
⎝∨

y∈Y

ε̄(y)

⎞
⎠ =

∧
y∈Y

�M(ε̄(y)) =
∧
y∈Y

(�M ◦ ε̄)(y). (A.1)

Now, suppose that �M ◦ ε̄ is an erosion. The converse follows from the fact that �M ◦ �M is the identity operator. In
fact, the following equations hold true for every Y ⊆ L:

ε̄
(∧

Y
)

= ((�M ◦ �M) ◦ ε̄)
(∧

Y
)

= �M ◦ (�M ◦ ε̄)
(∧

Y
)

= �M

⎛
⎝∧

y∈Y

(�M ◦ ε̄) (y)

⎞
⎠ (A.2)

=
∨
y∈Y

((�M ◦ �M) ε̄) (y) =
∨
y∈Y

ε̄ (y) . (A.3)

Thus, ε̄ represents an anti-erosion. �

Proof of Lemma 4. By Lemma 7 and Proposition 3, the operators CM(·, y), CP (·, y), CL(·, y), and CK(·, y) represent
dilations for every y ∈ [0, 1]. Since CM , CP , and CL are commutative operators, these three operators also perform a
dilation in second argument.
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The following equalities reveal that
∨

y∈Y CK(x, y) = CK(x,
∨

Y ) for every x ∈ [0, 1] and Y ⊆ [0, 1]. Thus, CK

is a dilation in both arguments.

∨
y∈Y

CK(x, y) =
∨
y∈Y

{
0, x + y�1
x otherwise

=
{

0, x + y�1 ∀ y ∈ Y

x otherwise
(A.4)

=
{

0,
∨
y∈Y

(x + y)�1

x otherwise
=
{

0, x +∨Y �1
x otherwise

= CK

(
x,
∨

Y
)

. � (A.5)

Proof of Lemma 5. This lemma is a straightforward consequence of Corollary 2 and Lemmas 4 and 6. �

Proof of Lemma 6. The negations of CM , CP , and CL with respect to the standard fuzzy negation satisfy the following
equations:

NS(CM(NS(x), NS(y))) = 1 − [(1 − x) ∧ (1 − y)] = x ∨ y = DM(x, y), (A.6)

NS(CP (NS(x), NS(y))) = 1 − (1 − x) · (1 − y) = x + y − x · y = DP (x, y), (A.7)

NS(CL(NS(x), NS(y))) = 1 − 0 ∨ [(1 − x) + (1 − y) − 1] = 1 ∧ (x + y) = DL(x, y). (A.8)

Similarly, the following equations hold true for the negation of CK with respect to NS :

NS(CM(NS(x), NS(y))) = 1 −
{

0, (1 − x) + (1 − y)�1,

1 − x otherwise
(A.9)

=
{

1, x + y�1,

x otherwise,
= DK(x, y). � (A.10)

Proof of Lemma 7. The following arguments show that the pairs (CM, JM), (CP , JP ), (CL, JL), and (CK, JK) are
adjoint operators since they satisfy Eq. (29):

JM(x, y) =
∨

{z ∈ [0, 1] : CM(z, y)�x} =
∨

{z ∈ [0, 1] : z ∧ y�x} (A.11)

=
∨

{z ∈ [0, 1] : z�x or y�x} =
{

1, y�x,

x, y > x.
(A.12)

JP (x, y) =
∨

{z ∈ [0, 1] : CP (z, y)�x} =
∨

{z ∈ [0, 1] : z · y�x} =
{

1, y�x,

x/y, y > x.
(A.13)

JL(x, y) =
∨

{z ∈ [0, 1] : CL(z, y)�x} =
∨

{z ∈ [0, 1] : 0 ∨ (z + y − 1)�x} (A.14)

=
∨

{z ∈ [0, 1] : z + y − 1�x} =
∨

{z ∈ [0, 1] : z�x − y + 1} (A.15)

= (x − y + 1) ∧ 1. (A.16)

Note that x − y + 1�0 since x�0 and 1 − y�0 for all x, y ∈ [0, 1]. Finally, note that CK satisfies the following
equalities:

CK(x, y) =
∧

{z ∈ [0, 1] : JK(z, y)�x} =
∧

{z ∈ [0, 1] : z ∨ (1 − y)�x} (A.17)

=
∧

{z ∈ [0, 1] : z�x or 1 − y�x} =
{

0, 1 − y�x,

x, 1 − y < x.
� (A.18)

Proof of Theorem 14. First, recall that the negation N is obtained by applying N element-wise, i.e., [N(z)]j = N(zj )

for every fuzzy vector z and for all index j ∈ J . Furthermore, the following equations hold true since a negation N is



M.E. Valle, P. Sussner / Fuzzy Sets and Systems 159 (2008) 747–768 763

a bijection that reverses the partial ordering of the lattice [0, 1]:

N

⎛
⎝∨

j∈J
zj

⎞
⎠ =

∧
j∈J

N(zj ) and N

⎛
⎝∧

j∈J
zj

⎞
⎠ =

∨
j∈J

N(zj ). (A.19)

It suffices to show that every max-C FAM corresponds to an unique min-D FAM in order to prove that the mapping
�N is injective. Let W be a max-C FAM with corresponding synaptic weight matrix W . The following equations hold
true for every i = 1, . . . , m:

[WN(x)]i = [N(W(N(x)))]i = N([W(N(x))]i ) (A.20)

= N

⎛
⎝ n∨

j=1

C(wij , N(xj ))

⎞
⎠ =

n∧
j=1

N(C(wij , N(xj ))) (A.21)

=
n∧

j=1

D(N(wij ), xj ) =
n∧

j=1

D(mij , xj ), (A.22)

where mij = N(wij ) for every i = 1, . . . , m and j = 1, . . . , n. In a similar fashion, one can demonstrate that every
min-D FAM corresponds to a max-C FAM, i.e., that �N is surjective. Thus, �N constitutes a bijection between the
sets of max-C and min-D FAMs.

Note that the duality relationship between C and D was used to derive the last equalities in (A.22). Thus, C and D

are dual with respect to the fuzzy negation N . In particular, if C is a t-norm, then D is a t-conorm [21,30,32]. Finally,
by Corollary 2, C is a dilation if and only if D is an erosion. �

Proof of Theorem 17. Let D(m, x) = IT (N(x), m) for every m, x ∈ [0, 1]. The operator D : [0, 1]×[0, 1] → [0, 1]
is a fuzzy disjunction since D is increasing in both arguments and satisfies the following equations:

D(0, 0) = IT (N(0), 0) = IT (1, 0) = 0, (A.23)

D(1, 0) = IT (N(0), 1) = IT (1, 1) = 1, (A.24)

D(0, 1) = IT (N(1), 0) = IT (0, 0) = 1, (A.25)

D(1, 1) = IT (N(1), 1) = IT (0, 1) = 1. (A.26)

Moreover, D(m, ·) represents an erosion since the following equalities hold true for every m ∈ [0, 1] and X ⊆ [0, 1]:

D
(
m,
∧

X
)

= IT

(
N
(∧

X
)

, m
)

= IT

(∨
x∈X

N(x), m

)
(A.27)

=
∨{

z ∈ [0, 1] : T

(
z,
∨
x∈X

N(x)

)
�m

}
(A.28)

=
∨{

z ∈ [0, 1] :
∨
x∈X

T (z, N(x))�m

}
(A.29)

=
∨

{z ∈ [0, 1] : T (z, N(x))�m, ∀ x ∈ X} (A.30)

=
∧
x∈X

{∨
{z ∈ [0, 1] : T (z, N(x))�m}

}
(A.31)

=
∧
x∈X

IT (N(x), m) =
∧
x∈X

D(m, x). (A.32)

Here, we used the fact that the t-norm T performs a dilation, i.e., T (z,
∨

X) = ∨
x∈X T (z, x) for every X ⊆ [0, 1].

This claim follows from the adjunction between T and IT .
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We conclude the proof by comparing the min-D product given by Eq. (31) with the following equations:

y
(k)
i =

n∧
j=1

IT (x
(k)
j , mij ) =

n∧
j=1

D(mij , N(x
(k)
j )) ∀i = 1, . . . , m, (A.33)

x
(k+1)
j =

m∧
i=1

IT (y
(k)
i , mij ) =

m∧
i=1

D(mij , N(y
(k)
i )) ∀j = 1, . . . , n. � (A.34)

Proof of Theorem 18. Let J = {1, . . . , n} and I = {1, . . . , m}. We derive Eq. (54) as follows:

x = A(y) =
∨

{u ∈ [0, 1]n : W(u)�y} (A.35)

=
∨⎧⎨
⎩u ∈ [0, 1]n :

n∨
j=1

C(wij , uj )�yi, ∀i ∈ I
⎫⎬
⎭ (A.36)

=
∨

{u ∈ [0, 1]n : C(wij , uj )�yi, ∀i ∈ I and ∀j ∈ J } (A.37)

=
∨

{u ∈ [0, 1]n : uj �D(N(wij ), yi), ∀i ∈ I and ∀j ∈ J } (A.38)

=
∨{

u ∈ [0, 1]n : uj �
n∧

i=1

D(mij , yi), ∀j ∈ J
}

(A.39)

=
∨

{u ∈ [0, 1]n : u�MT • y} = MT • y. (A.40)

Here, we assumed that C and D forms an adjunction in the second argument, thus the relation given by Eq. (27) holds.
Now, let us prove Eq. (55). First, recall that N is a negation. Thus, x�y if and only if N(x)�N(y), for every fuzzy

vectors x and y. The relationships of duality with respect to adjunction and negation yield the following equalities:

x = B(y) =
∧

{u ∈ [0, 1]n : M(u)�y} =
∧

{u ∈ [0, 1]n : WN(u)�y} (A.41)

=
∧

{u ∈ [0, 1]n : N(W(N(u)))�y} =
∧

{u ∈ [0, 1]n : W(N(u))�N(y)} (A.42)

=
∧

{u ∈ [0, 1]n : N(u)�A(N(y))} =
∧

{u ∈ [0, 1]n : u�N(A(N(y)))} (A.43)

= N(A(N(y))). (A.44)

Note that B(y) = N (A (N (y))) = AN(y), i.e., A is the negation of B if M is the negation of W . We would like to
point out that the converse also holds true.

We conclude the proof of Theorem 18 as follows. For every index j ∈ J , we have

xj = [N(A(N(z)))]i = N

⎛
⎝ n∧

j=1

D(mij , N(zj ))

⎞
⎠ (A.45)

=
n∨

j=1

N(C(mij , N(zj ))) =
n∨

j=1

C(wij , zj ), (A.46)

where wij = N(mij ) for every i ∈ I and for every j ∈ J . �

Proof of Theorem 19. Suppose that C(·, x) represents a dilation for every x ∈ [0, 1] and let X ∈ [0, 1]n×k . For
an arbitrary subset of fuzzy matrices S ⊆ [0, 1]m×n, we will use the symbol [S]ij to denote the set {w ∈ [0, 1] :
w = wij , W ∈ S} for every i = 1, . . . , m and j = 1, . . . , m. Thus, the ij th entry of

∨
S equals the supremum
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of [S]ij , i.e., [∨ S]ij =∨[S]ij . The following equalities reveal that y
�
i = [DX(

∨
S)]i� =∨W∈S[DX(W)]i� for every

i = 1, . . . , m and � = 1, . . . , k.[
DX

(∨
S
)]

i�
=
[(∨

S
)

◦ X
]
i�

=
n∨

j=1

C

([∨
S
]
ij

, xj�

)
(A.47)

=
n∨

j=1

C
(∨

[S]ij , xj�

)
=

n∨
j=1

⎡
⎣ ∨

w∈[S]ij
C(w, xj�)

⎤
⎦ (A.48)

=
n∨

j=1

[∨
W∈S

C(wij , xj�)

]
=
∨
W∈S

⎡
⎣ n∨

j=1

C(wij , xj�)

⎤
⎦ (A.49)

=
∨
W∈S

[W ◦ X]i� =
∨
W∈S

[DX(W)]i�. (A.50)

Thus, the operator DX commutes with the supremum, i.e., DX represents a dilation.
Suppose that DX is a dilation for every X ∈ [0, 1]m×n. Given x ∈ [0, 1] and S ⊆ [0, 1], we will show that

C(
∨

S, x) = ∨
s∈S C(s, x). Consider constant fuzzy matrices X and Ws with entries xj� = x and wij = s, for every

i = 1, . . . , m, j = 1, . . . , n, � = 1, . . . , k, and s ∈ S. Thus, the following equations hold for every i = 1, . . . , m and
� = 1, . . . , �:

[DX(Ws, X)]i� =
n∨

j=1

C([Ws]ij , xj�) = C(s, x). (A.51)

Moreover, since DX represents a dilation, we have

C
(∨

S, x
)

=
[
DX

(∨
{Ws : s ∈ S}, X

)]
i�

=
[∨

s∈S

DX(Ws, X)

]
i�

(A.52)

=
∨
s∈S

[DX(Ws, X)]i� =
∨
s∈S

C(s, x). (A.53)

Thus, C(·, x) represents a dilation for every x ∈ [0, 1]. �

Proof of Theorem 20. The proof follows directly from Proposition 6. �

Proof of Theorem 22. Let I = {1, . . . , m}, J = {1, . . . , n}, and K = {1, . . . , k}. By Theorem 20 and the relation
given by Eq. (28), we conclude that the following equalities hold true.

W =
∨

{V ∈ [0, 1]m×n : V ◦ X�Y } (A.54)

=
∨⎧⎨
⎩V ∈ [0, 1]m×n :

n∨
j=1

C(vij , x
�
j )�y

�
i , ∀ i ∈ I, ∀ � ∈ K

⎫⎬
⎭ (A.55)

=
∨

{V ∈ [0, 1]m×n : C(vij , x
�
j )�y

�
i , ∀ i ∈ I, ∀ j ∈ J , ∀ � ∈ K} (A.56)

=
∨

{V ∈ [0, 1]m×n : vij �J (y
�
i , x

�
j ), ∀ i ∈ I, ∀ j ∈ J , ∀ � ∈ K} (A.57)

=
∨⎧⎨
⎩V ∈ [0, 1]m×n : vij �

k∧
�=1

J (y
�
i , x

�
j ), ∀ i ∈ I, ∀ j ∈ J

⎫⎬
⎭ (A.58)

=
∨

{V ∈ [0, 1]m×n : V �Y�XT} = Y�XT. (A.59)

Here, x
�
j and y

�
i correspond to xj� and yi�, for every i ∈ I, j ∈ J , and � ∈ K, respectively. �
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Proof of Theorem 24. Let EX : [0, 1]m×n → [0, 1]m×k be the erosion defined as follows for every M ∈ [0, 1]m×n:

EX(M) = M • X. (A.60)

By Proposition 3, there exists an unique dilation DX : [0, 1]m×k → [0, 1]m×n such that (EX, DX) forms an adjunction.
We will show that M = DX(Y ). Thus, by Proposition 3, Eq. (63) holds true.

Recall that (EX, DX) forms an adjunction if and only if (DN
X , EN

X ) forms an adjunction [16]. Here, the symbols
DN

X and EN
X denote the negations of DX and EX. On one hand, the operator EN

X : [0, 1]m×n → [0, 1]m×k satisfies the
following equations where DN(X) is given by Eq. (56) except that N(X) replaces X.

EN
X (M) = N(N(M) • X) = M ◦ N(X) = DN(X)(M). (A.61)

By Theorem 22, the adjoint of DN(X) is the erosion given by

EN(X)(Y ) = Y�N(X)T. (A.62)

On the other hand, the adjoint operator is unique. Therefore, DN
X (Y ) = EN(X)(Y ) and the following equations holds

true:

DX(Y ) = N(DN
X (N(Y ))) = N(N(Y )�N(X)T) = M. � (A.63)

Proof of Theorem 25. Recall that the synaptic weight matrix of an FLBAM is given by M = Y ◦T XT, where “◦T ”
denotes a max-T product based on a t-norm T that performs a dilation. The following equalities show that the ij th
element of M can be expressed in terms of a reverse fuzzy implication J , for every i = 1, . . . , m and j = 1, . . . , n.
These equalities were derived using the commutativity of the t-norm (which represents a particular fuzzy conjunction)
and the relations given by Eqs. (25), (26), and (17), respectively.

mij =
k∨

�=1

T (y
�
i , x

�
j ) =

k∨
�=1

T (x
�
j , y

�
i ) (A.64)

=
k∨

�=1

N(S(N(x
�
j ), N(y

�
i ))) =

k∨
�=1

N(I (x
�
j , N(y

�
i ))) (A.65)

=
k∨

�=1

N(J (N(y
�
i ), x

�
j )) = N

⎛
⎝ k∧

�=1

J (N(y
�
i ), x

�
j )

⎞
⎠ . (A.66)

Hence, the synaptic weight matrix of an FLBAM model satisfies Eq. (64). Note that the reverse fuzzy implication J

and the t-norm T are such that T (x, y) = T (y, x) = N(J (N(y), x)). Thus, the following equation holds true for every
x, y ∈ [0, 1]:

J (y, x) = N(T (x, N(y))). (A.67)

Let C denote the negation of the fuzzy disjunction that appears in Eq. (51). The following sequence of inequalities
reveals that C and J satisfy the relation given in Eq. (28) for every x, y, w ∈ [0, 1]. Thus, C and J are adjoint operators.

w�J (y, x) ⇔ w�N(T (x, N(y))) ⇔ T (x, N(y))�N(w) (A.68)

⇔ N(y)�IT (x, N(w)) ⇔ N(y)�D(N(w), N(x)) (A.69)

⇔ N(D(N(w), N(x)))�y ⇔ C(w, x)�y. (A.70)

Here, we used the facts that T and IT are adjoint operators (cf. Eq. (44)) and that IT and D satisfy D(m, x) =
IT (N(x), m) for every m, x ∈ [0, 1]. �
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