MS211 - CÁLCULO NUMÉRICO - 1º Semestre de 2013

http://www.ime.unicamp.br/~ms211

Escopo do curso MS211: Introduzir os fundamentos dos métodos numéricos básicos utilizados na solução (tipicamente aproximada) de problemas matemáticos, algébricos e diferenciais, de caráter linear ou não linear, que aparecem comumente nas ciências puras e aplicadas e também nas engenharias. Em cálculo numérico pretende-se, ainda, analisar a influência dos erros introduzidos nas aproximações construtivas desses problemas bem como a implementação computacional eficiente dos respectivos métodos de aproximação. É válido enfatizar, ainda, que a formulação e/ou construção de tais métodos numéricos é baseada em resultados matemáticos sólidos e, portanto, não são dependentes de uma linguagem de programação particular.

É válido mencionar que em uma visão mais ampla, no contexto dos cursos de graduação, cálculo numérico pode ser visto como uma primeira disciplina que abrange o estudo qualitativo e quantitativo de soluções aproximadas via algoritmos numéricos (construtivos) para o tratamento de modelos matemáticos algébricos e diferenciais postos geralmente no contínuo que surgem praticamente em todas as áreas do conhecimento. Desta maneira, o cálculo numérico também permite uma oportunidade de estabelecer conexões entre os aspectos abstratos do rigor matemático e suas aplicações com respeito à demanda da sociedade por soluções de desafios da vida cotidiana em seu curso natural. Do ponto de vista formal o cálculo numérico faz parte da análise numérica, no sentido amplo, que comumente está preocupada com a quantificação dos erros cometidos nas diversas etapas de aproximação, tais como arredondamento e truncamento, e também com questões mais refinadas no escopo dos processos de aproximação, como discretização e iteração, e principalmente, da taxa de convergência das sequências de soluções aproximadas para as soluções exatas (únicas) dos modelos matemáticos sob investigação.

Ementa:

- 1. Aritmética de Ponto Flutuante e Erros em Operações Numéricas.
- 2. Zeros reais de funçoes reais. Métodos: bissecção, Newton e secante.
- 3. Resolução de sistemas lineares: Métodos diretos: eliminação de Gauss e fatoração/decomposição LU. Métodos iterativos: Gauss-Jacobi e Gauss-Seidel.
- 4. Resolução de sistemas não lineares: método de Newton.
- 5. Resolução numérica de equações diferenciais ordinárias. Problemas de Valor Inicial: método de Euler, métodos de série de Taylor e de Runge–Kutta. Equações de ordem superior. Problemas de Valor de Contorno: método das diferenças finitas.
- 6. Ajuste de curvas pelo método dos quadrados mínimos.
- 7. Interpolação polinomial. Forma de Lagrange. Estudo do erro na interpolação. Spline linear.
- 8. Integração numérica: fórmulas de Newton-Cotes e Quadratura Gaussiana. Estudo do erro na integração.

Para saber alguns antecedentes de cálculo numérico ver link http://history.siam.org/

Referências disponíveis na biblioteca do IMECC

Cálculo Numérico - Aspectos Teóricos e Computacionais, Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes, 2a edição, Editora Pearson, 1997.

Métodos Numéricos, Maria Cristina Cunha, 2a edição, Editora da Unicamp, 2000. *Análise Numérica*, R. L. Burden e J. D. Faires. Editora Pioneira, 2003.

Numerical Analysis, David Kincaid e Ward Cheney, Brooks-Cole, 1991.

Elementary Numerical Analysis, S.D.Conte e C. de Boor, McGraw-Hill, 1987.

Outros bons textos também disponíveis na biblioteca do IMECC

Theoretical numerical analysis: a functional analysis framework, K. Atkinson, 3rd ed, 2010.

Matrix Analysis, R.A. Horn e C.R. Johnson. Cambridge University Press, 1987.

Numerical solution of partial differential equations, K. W. Morton and David Mayers, 2nd ed., Cambridge Univ. Press, 2005.

Numerical methods for special functions, Amparo Gil, Javier Segura, Nico M. Temme. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2007.

Introduction to numerical analysis, J. Stoer, R. Burlisch, Translated by R. Bartels, W. Gautschi and C. Witzgall Edição 2. ed., New York, N.Y.: Springer, 1993.

Computational methods in ordinary differential equations, John Donholm Lambert,, London; J. Wiley, 1973.

An introduction to numerical methods: a MATLAB approach, Abdelwahab Kharab and Ronald B. Guenther, 2nd ed, Boca Raton, FL; London: Chapman and Hall/CRC, 2006.

Numerical mathematics, Gunther Hammerlin, Karl-Heinz Hoffmann; translated by Larry Schumaker. NY: Springer, 1991 (Undergraduate texts in mathematics).

MATLAB 6 - Curso Completo, D. Hanselman & B. Littlefield, Pearson Education do Brasil, 2003.

Numerical Computing with MatLab, Cleve B. Moler, Editora SIAM, 2004.

Numerical recipes: the art of scientific computing, William H. Press, et al., 3rd ed., Cambridge: Cambridge University Press, 2007.

Numerical recipes example book (Fortran), William T. Vetterling, et al. Cambridge, MA; New York, NY: Cambridge University Press, 1985.

Observações:

- (1) Notas de aulas introdutórias e links no contexto do curso MS211 estarão indicados na página da disciplina para consulta http://www.ime.unicamp.br/~ms211
- (2) Demais Informações sobre critério de avaliações, horários dos monitores PAD e PED e contato com os professores no IMECC, favor ver http://www.ime.unicamp.br/~ms211