,		
Álgebra L	120000 /	(NIA 99ケ)
Aigebra L	mear (MA321
()	'	

PROVA 1 (23/09/2010)

Nome: RA: Turma:	
------------------	--

Justifique todas as suas respostas. Boa sorte e bom divertimento!

- 1. Mostre que para todo $n \in \mathbb{N}$ as afirmações seguintes são verdadeiras:
 - (a) O espaço vetorial $\mathcal{F}(N) = \{f : N \to \mathbb{R}\}$, onde $N = \{0, 1, \dots, n\}$, é isomorfo a \mathcal{P}_n , o espaço vetorial dos polinômios de grau $\leq n$. [1 pt]
 - (b) $\mathcal{F}(N)$ possui uma base finita. Justifique a sua resposta exibindo uma base de $\mathcal{F}(N)$. [1 pt]
- 2. Considere $\mathbb{R}^{2\times 2}$, o espaço vetorial das matrizes 2×2 com entradas em \mathbb{R} .
 - (a) Qual é a dimensão de $\mathbb{R}^{2\times 2}$. Justifique a sua resposta. [0.5 pts]
 - (b) Considere o seguinte subconjunto \mathcal{C} de $\mathbb{R}^{2\times 2}$:

$$\mathcal{C} = \left\{ \left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array} \right) , \left(\begin{array}{cc} 1 & -2 \\ 3 & 0 \end{array} \right) \right\} .$$

Encontre uma base \mathcal{B} de $\mathbb{R}^{2\times 2}$ tal que $\mathcal{B} \supseteq \mathcal{C}$. [1.5 pts]

3. Considere os subconjuntos seguintes do espaço vetorial $\mathcal{F}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R}\}$:

$$Z = \{ f \in \mathcal{F}(\mathbb{R}) \mid f(0) = 0 \}, \ E = \{ f \in \mathcal{F}(\mathbb{R}) \mid f(0) \neq 0 \}.$$

- (a) Mostre que o espaço vetorial $\mathcal{F}(\mathbb{R})$ tem dimensão infinita. [1 pt]
- (b) Mostre que Z é um espaço vetorial. [1 pt]
- (c) Verifique se E é espaço vetorial. [0.5 pts]
- (d) Encontre um subespaço U de $\mathcal{F}(\mathbb{R})$ tal que $\mathcal{F}(\mathbb{R})=Z\oplus U.$ [1.5 pts]
- 4. Encontre bases para os conjuntos de soluções dos sistemas lineares $Ax = (0,0)^t$, onde

(a)
$$A = \begin{pmatrix} 1 & -3 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
.

[1 pt]

(b)
$$A = \begin{pmatrix} 1 & -3 & 2 \\ -0.5 & 1.5 & -1 \end{pmatrix}.$$
 [1 pt]