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Abstract

The study in this paper is devoted to the stability and consistency analyses of an
adaptive multilevel time discretization proposed by Bacry, Mallat and Papanicolau [1].
The main idea is to evolve the components in a multirresolution representation of the
numerical solution by means of an explicit algorithm, adapting the time step according
to each scale level. For a model problem, and in the context of biorthogonal wavelets,
it is proved that the stability condition and consistency order are the same as in the
original non-adapted scheme.

Resumo

Este trabalho é dedicado ao estudo de estabilidade e consisténcia para um esquema
em multinivel, com adaptabilidade temporal, para equacoes evolutivas. Em tal es-
quema, a solucdo numérica é representada como a soma de varias componentes, em
diferentes niveis de escala. Para fazer a evolugao temporal, adota-se um algoritmo
explicito de referéncia que seja estivel. Mas o passo de tempo ndo é o mesmo para
todas as componentes. Em cada nivel, escolhe-se um passo de tempo que satisfaca os
principios que regem a estabilidade do algoritmo de referéncia em tal nivel de escala.
Escolhendo um problema modelo, e um contexto de multiescala definido por wavelets
biortogonais, prova-se que as condigoes de estabilidade e consisténcia do algortimo
explicito de referéncia s@o mantidas no esquema adaptativo associado.



1 Introduction

For stability or accuracy reasons, the computation of approximate solutions to partial differ-
ential equations for time-dependent problems requires the adjustment of the time discretiza-
tion to the spacial resolution. For instance, for parabolic problems, as for the heat equation,
a stable explicit scheme typically requires the division of the time step by four if the spacial
resolution is increased by a factor of two. For flow problems, the compromise between time
and space steps is usually done by introducing a CFL number. The time step is then obtained
by multiplying the space step by the CFL number divided by an estimate of the maximum
local speed.

In many problems, the solutions may present all sort of features at different scale lev-
els that pose considerable additional computational challenge. In such cases, a multilevel
framework may be helpful. Splitting the solutions into several components of different scale
levels, each component requires different time steps to be stably evolved. Therefore, a time-
adaptivity strategy may improve the efficiency of such methods. For instance, in the solution
of dissipative problems with multilevel scheme of nonlinear Galerkin type [8], the main idea is
to compute differently the low and high modes, since their physical significances are different.

Nowadays, there is ample numerical evidence that significant improvements in accuracy
and computational efficiency may be obtained by economically adapting the mesh points
according to the occurrence of localized singular features, such as boundary layers, shocks or
rarefaction waves. Adaptivity may simplify the numerical simulation, with no waste of fine
grid cells where the solution is smooth, and refinement only close to irregularities, where it
is actually needed. In such adaptive contexts, it is also tempting to consider a higher degree
of efficiency by using local time steps that depends on the level of refinement, i.e. in some
parts a large time step may be satisfactory, but in other parts a small time step is necessary
[12].

In wavelet analysis, space adaptivity appears naturally since the wavelet coefficients can
be used as local regularity indicators. In such context, time adaptivity, combined with space
discretization by means of adapted orthonormal wavelet expansion, was firstly considered in
[1]. The algorithm modifies the time discretization at each wavelet scale level in a way that
allows each component to be evolved with the time step satisfying the corresponding stability
constraint. Numerical results for the one-dimensional Burgers equation are presented in [1]
concerning the efficiency of the method on accuracy, stability and complexity.

In the present paper, we consider the algorithm proposed in [1] in the extended context
of biorthogonal wavelets. Focalizing only the time-adaptation aspect, we develop a classical
consistency and stability analysis. For a simpler and more clear development of the general
concepts and for the analysis of the method, we consider the one-dimensional heat equation.
However, the analysis can be straightforward extended for general linear equations with
constant coefficients and periodic boundary conditions in higher dimensions. We show that,
for the model problem, the same stability and consistency conditions hold for the reference



scheme as for its time-adaptive version.

The next section contains a brief overview of the main aspects of biorthogonal multires-
olution analysis which are required in the subsequent parts of this paper. In Section 3, the
reference algorithm is described and analysed. Section 4 is the main part of this paper. It is
dedicated to the definition of the adaptive scheme and its consistency and stability analyses.
Some concluding remarks are presented in Section 5.

2 Biorthogonal Multiresolution Analysis

In a multiresolution analysis, a sequence of embeded approximating spaces V; C L*(R) are
considered with corresponding Riesz bases {¢;x(z),k € I';}. The index j is associated with
the scale level and £ indicates the local position in space. A fundamental aspect is the
possibility of multilevel representations in terms of direct sums

Vi=V, oW, - Wy,

where J is a chosen coarsest level and W, contains the details between two consecutive levels
l and [ + 1. Riesz bases {¢;x(z), k € A;} for the complementary spaces W, are usually called
wavelets. For the applications of this paper, we consider shift invariant spaces V; with basis

of the form
bin(z) =2%p(202x — k), k€ Z.

The basic function ¢(z) is called scaling function and satisfies a scale relation
6(z) =23 h(k)6(2z — k). (1)

In the Fourier domain, the scale relation reads

6(€) = H(E/2)9(¢/2), (2)

where

H(E) = 3" hk)e ™ 3)

keZ

For the construction of the wavelets, a dual multiresolution analysis V;* may be considered.
It is determined by a scaling function ¢*(z), with corresponding scale relation

¢"(2) =2)  h*(k)¢"(2z — k), (4)

kEZ

satisfying the biorthogonal relation
/ 6 (2)6(z — k)dz = 6.
R
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Complementary spaces W; and W;* are defined, such that
Vi =Vi+W, Vin =V +W/

by choosing the bases ¢y (z) = 2/%(2'z — k) (respectively ¢, (z) = 2/2%¢*(2'z — k)) asso-
ciated to the mother wavelets

—2Zg 62z —k) e Y'(x —QZg *(2z — k),

kEZ kEZ

where ¢g*(k) = (—=1)*"'h(1 — k) e g(k) = (—1)*"'h*(1 — k). Thus, the following biorthogonal
relations hold

/w — K)dz = &, (5)

/R 6" (2))(z — k)dz = /R ¥ (2)é(z — k)dz = 0. (6)

In such framework, approximations P’f of functions f are found in V; by means of the
biorthogonal projection operator
=) I (k)diule (7)

kel
where

G(k) == Dif(k) = /R [ (@)% () de (8)

It can also be represented in a multilevel setting

Pif(z) = P'f(a) +Zgl

= Z k)psk(w +szl Yk (@ 9)

kel I=J keA,

where Q' f(x) are projections on W, and d., are the wavelet coefficients
dt = G f (k) /w, (10)

The transformations relating the information at the finest level {c’(k)} and its multilevel
representation {c¢’(k)} U {d’(k)}U---U{d7'(k)} are known as Mallat algorithms and are
defined by the iterative application of the formulas

ITHE) = 2 h(s—2k)d(s), (11)

SEZ

dHE) = 2) gt(s — 2k)(s). (12)



Conversely,

Zh —2s)c! +Zg —25)d’"1(5). (13)

SEZ SEZ

In the applications of this paper, the functions are 1-periodic. All the concepts of biorthog-
onal multiresolution analysis hold for 1-periodic functions by simply considering 2’-periodic
sequences ¢’ in the expansions

= Jd(k)jn(x

keZ

defining of the spaces V7. In such case, the Riesz basis property implies that there exist
constants 0 < A < B such that, for all 2/-periodic sequences ¢/,

Al < 11D k) dsx@) e < Bll]l5,

kez
where ||.||L2 stands for the norm in L2([0, 1]) and

20 -1

IlE']l; =277 Y 1 () 2.

k=0

2.1 Accuracy

For shift-invariant approximating spaces, the approximation power is determined by the
Strang-Fix condition. A function ¢(z) is said to satisfy the Strang-Fix condition of order p if

$(0) # 0 and 5(5) has zeros of order p+ 1 at £ = 2kn, k € Z. In such case, the polynomials
of degree less or equal to p can be locally reproduced by linear combinations of the scaling
functions ¢;,(z). If ¢ and ¢* are integrable scaling functions of compact support, and ¢
satisfies a Strang-Fix condition of order p, then for functions in the Sobolev space H?™'(R)
the biorthogonal projection P’ f on V; verifies the accuracy property [5, 10]

1f =P flles S 27772 fllgss, (14)

for 0 < s < min{r,p + 1}, where r is degree of regularity of ¢, so that ¢ € H"(R). Conse-
quently, the following estimate also holds

197 fllae S 277®H] | f g, (15)

Similar results are valid in the periodic case [9].



2.2 Cases of Interest

We have particular interest in the family of biorthogonal multiresolution analyses introduced
by Cohen, Daubechies and Feauveau [6]. Let N* and N be two positive integers of same
parity such that N*+ N = M is an even integer. ¢* = ¢y~ is chosen as the B-spline de order
N*. For even N* = 2[* the corresponding scaling filter is

H(E) = (cos g)N .

If N = 2I, then scaling functions ¢(z) = ¢y~ n(z) may be found with scaling filters

N -1 . 2k
H(¢) = (cosg) Z (Z—H ;1+k)<sing> )

k=0

Similarly, for odd N* = 2[* + 1, and N = 2/ 4 1, the corresponding filters are

A"
H* (&) = e%/? (cos 5)

N4l i 2%k
H(E) = e (cosg) 3 < l+lk+ K ) (sin g) .

k=0

and

For these families, all the basic functions have compact support. ¢* is a CV 2 piecewise
polynomials of degree N* — 1, and ¢ has increasing regularity with increasing N. ¢* and ¢
are symmetric functions centered at x = 0, for even N* and N, and centered at z = %, for
odd N* and N. They satisfy Strang-fix conditions or order N* — 1 and N — 1, respectively.

In the extreme case N* = 0, ¢*(x) = 0(z) is the Dirac distribution and 0y (x) = ¢om
correspond to the interpolating scaling functions defined by Delauries and Dubuc [7]. It can
be shown that

O () = /]R¢N* (y)dnn-(y + x)dy,

independently of the choices of N, N* such that M = N + N*[11].

3 The Reference Numerical Scheme

In this paper, we are concerned with the numerical solution of evolution equations

M = Lu(t,z),z € R, t >0,

u(0,x) = up(x),



with periodic boundary condition u(t,z + 1) = u(t,z), where £ is a differential operator
acting in the x variable.

We consider pairs of shift-invariant spaces {V}, Vj*} forming a biorthogonal multiresolu-
tion analysis, and having sufficient regularity. We define the discretization of problem (16)

by following two basic steps.

*  Space discretization.

At each time step, an approximate solution u;(¢, x) is sought in the approximating space
V;. It is defined by imposing a Petrov-Galerkin orthogonally property (the residual is or-
thogonal to VJ*) The result is the semidiscrete ODE problem

Ou;(t, z)

o = Lt )@), (17)

where £/ is the discrete version of £ given by
Lug(t, ) = PILug ). (18)

x  Time discretization.

The ODE system (17) is discretized by an appropriate ODE solver. For instance, when
adopting the forward Euler scheme, we get

uji(t + Ay, w) = [(L+ AL )uy (¢, ) () =2 [Ku;(t,)](x). (19)

The analysis of this paper holds for constant coefficients differential operators

EU—ZA 833”

Their discrete version may be expressed in terms of the 2/-periodic coefficients u™(s) in the

expansion
u(tn, ) = Zu I(s)p(20x — s)
SEZ
by the formula
SDIVER SERCT)

keZ
with

/ (@ da:"
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Therefore, the discrete formulation (19) can also be expressed in matrix form by

wH (k) = (1 + AL )u)(k)
= [Ku™](k), (20)

where K/ = K(A;,277) = (I + AyL7). This reference scheme can be interpreted as a finite
difference approximation.

In the applications of this paper, we shall also adopt the spline multiresolution framework.
In such case, the coefficients 5”(¢) depend on the choice of the parameter M, but are inde-
pendent of the particular choice of basic dual functions {¢n+ n, ¢y} such that M = N + N*

[11]. Precisely
N d"0y
F(@) = (@),

which also corresponds to the collocation scheme based on the interpolating scaling functions
O (). It can also be proved that, under the posed conditions on £, apart from the choice of
the initial data, the numerical scheme (20) is also equivalent to the Galerkin method based
on the orthogonal Daubechies’ scaling functions supported on [0, M — 1] [2]. However, if
the discrete operator £7 is represented in the multilevel context, then the formulations differ

according to the considered multiresolution analysis.

3.1 Stability

Given the periodic conditions and the constant coefficients in £, K7 results to be a circulant
matrix. Therefore, the system (20) can be diagonalized by the Fourier matrix. This means
that

L+ A, 275 (ifi)] i (k) = K(&)am (k)

v=0

an—f—l,j(k) —

= [Reh]" a ), (21)

where ™7 stands for the discrete Fourier transform of order 2/ of the numerical solution
coefficients u™7, and

IGE Zﬁ(")(s)e_“é, & = omk277,

SEZ

The symbol IE({;“) = I/C\(f ,Ay,277) is the amplification factor, since its magnitude indicates
how the amplitude 4™/ (k) of each frequency present in the numerical solution is amplified
during one time step.
As indicated in [3],Theorem 5.2.1, the scheme is stable if, and only if, there are constants
Ce, a, such that R
KM(€)] < Cee™ ™, € €0, 27].

8



As an example, with Lu = u,, for the heat equation, consider
K(©) =1+75),
where 7 = 2% A,. If 7 is kept constant, them stability is attained if [KC(¢)| < 1, that is,

1+ 7'5(2)(5)‘ <1, ¢elo,2q]. (22)

As shown in Figure 1(a), 3®(¢) is a negative function, with minimum value at £ = 7.
Therefore, stability occurs if

2 _ 2
max [52(6)] 5@ (m)

£€[0,27)

0<7<

= Trmax- (23)

In Table 1, the numerical values for |3® (r)| are displayed for M = 6,8 e 10 and the corre-
sponding Ty.x. The curves in Figures 1b-1d illustrate the behaviour of the symbol |K(£)], for
M =6, M =8 and M = 10, with 7 within the stability region (23).

Table 1: |3®(r)| and corresponding Tmax

M 89 (m)] Tmax

6 % ~ 14.019047619 0.142663043

8 1339264, 11.165650923 0.179120770

119945

10 | 2066447454208, 1() 386160713 | 0.192563937

2028319032915

3.2 Consistency

The truncation error is defined by

(ET™)(k) = Ait[u<tn+At,xi>—(/@'a)(tmxf;ﬂ
_ Ait [u(tn + Dt 23) = ultn, 2])] = (£70) (tn, 7))

+ [(£- Ej)u] (tn,xi).

9



Figure 1: (a) 8@ (€), M = 6,8, 10; Symbol |K(€)| for: (b) M = 6; (c) M = 8; (d) M = 10.

It is the result of two kinds of dicretization errors. The first part being

1 . .
Kt [u(tn + Ay, ) — ulty, xi)} —

du

gives the error in the time discretization by the Euler scheme, which is of first order. The
second part

[(£ - Ej)u] (tn, xi:)

is the truncation error in the discretization of £ in the biorthogonal framework. As shown in
[9, 4], its consistency is of order M — m + «, where o = 0 for even m, and « = 1 otherwise.

10



Therefore, . _
[BT™| = O(A) + O(27/Mm+e)),

which means that the scheme is consistent of order (1, M — m + «). According to Lax-
Richtmyer Equivalence Theorem [13], convergence holds in the stability region.

4 The Multilevel Scheme: Time-Adaptivity

In an biorthogonal multiresolution analysis framework, there is the possibility of representing
the numerical solution u;(¢, ) in a multilevel setting. Therefore, we may consider the idea of
modifying the reference scheme in the same way as proposed in [1]. For a simplier and more
clear development of the general concepts, and for the analysis of the method, we consider
the one-dimensional heat equation. As described in the previous section, for stability of the
scheme with spacial resolution 277 we must choose the time step A{ in the stability region
A} < 47 Tax. At the next coarser level j — 1, AJ™' = 4AJ. This means that, at level j — 1,
the solution can be updated at t + A~ by the expression

wi (t+ A7 z) = (T+ A7 L) uja(t, @), (24)

At level j, the time step is four times smaller, an thus requires four iterations to update the
solution at ¢ + AJ"'. That is,

ui(t+ A7 1) = it + 44, z) = (T + ALL ) uy(t, ). (25)

Using the two-level decomposition V; = V;_; + W,_;, the component in W;_; needs to be
evolved with the time step A{, but it is natural to consider the evolution of the component
in V;_; with time step AJ7'. Using the representation P/ = Pi~1 4+ Qi1 the dicretization
L7 =PI LPI may be decomposed as

L= PItiLpit 4 pItiLQitt 4 QI LIt 4 QIT LI
Ej—l + 7'.7’ (26)

where £77! is the discretization of £ at level j — 1 and 77 is the operator
T =P LY + QP+ QL
which acts on or returns detail components. Equations (24), (25) and (26) imply that
u(t + 407 x) = [(I + AIT7) + ALY 4u,(t, x). (27)

Following [1], we modify the scheme by neglecting high order terms involving powers greater
than one of AL’ ', The result is the modified scheme

11



ui(t +4A7 2) = [(I+AITH* + 4AI L u,(t, x)
= Klu(t, ). (28)
For this modified scheme, the solution u; (t+4A], ) at t + 4A] is obtained by the evolution of

L7~ (t, ) with time step AJ " = 4AJ, while the components of higher scale level T7u;(t, z)
uses the appropriate time step A’

4.1 Matrix Structure

The adaptive scheme (28) can be formulated in terms of the multiresolution coefficients of the
numerical solution. To simplify the analysis, we shall consider the multiresolution analysis
V; defined by the interpolating scaling functions 6;(x), with regularity » > 2. A function
v € V; may be expressed as

v(z) = > v(k)0(2x — k)

keZ
= Zvj_l(k) 02w — k —f—Zd’ YEk)p(27 e — k),
keZ kEZ

where v/ (k) = v(k277) and d’ (k) = G’ 'v(k). Developing each term in (26), we get

(L) (z) = (P77ILP ) (@) (29)
27y " Xoo(k)0(27 " x — k), (30)

where

Noo(k) = % S () 8Os — k).

SEZ

Similarly, using the Mallat’s formulas (11) and (12), we obtain

(T7)(z) = (PILQ ) (z) + (@ LPI ) (z) + (Q 1LY 1w)(x)

= 2% {Z Aot (k)O(2 1z — k) (31)

12



where the coefficients are

doalk) = 3 S )0 (s~ ),

SEZ
1 .
Ao(k) = 1 ZU]_I(S)Xl(S — k),
SEZ
Aa(k) = —Zdﬂ* $)x2(s — k),
SEZ

and

I (k) = d"””( ),

dz™
xi(s) = Zg B@D(n/2 +s),
x2(s) = Zg D(n/2 + s).

Therefore, I + Aj T7 has the form

(I+AIT)(x) = @ (k)02 'z — k) + > ¥ (k)2 e — k),
with
a (k) = v k) + Ao (K), (33)
VHE) = d77Hk) + T(Ae(k) + Aa(k)). (34)

To describe the action of the operator I+A77 in matrix form, we consider a vector containing
the multilevel coefficients of v(x), sorted in the following order

[ 710), d71(0), ..., v (k), M (K), ..., 07T = 1), (2 = 1))

Let
[aj_l(o)’ bj_l(()), L aj_l(k), bj_l(k'), e aj—1(2j—1 _ 1)’ bj—1(2j—1 _ 1)]T,

be the corresponding vector for the multiresolution discrete values of (I 4+ AJ77)v7. Bearing
in mind the formulas (33)-(34), the convolution form of the expressions for Ag 1, A1 o and Ay 1,
while considering this kind of data sorting, then (I + AZ77) has a block circulant structure,
with 2 x 2 blocks. Namely, I + A{Tj = circ(Ag, A1, . .., Agi-1_1), where

A = ( o 5 f()]:Q)(k) ) |

Consequently, in the Fourier domain, (I +A?77) is transformed into a block diagonal matrix,
with 2 x 2 blocks placed in the diagonal, as stated in the next lemma.

13



Lemma 4.1 Let a7~' and ! be the discrete Fourier transform of order 27— of the coeffi-
cients a/ (k) and &' ~!(k) given in (33) and (34). Then

( @~ (k) ) B 1 %5(2)(2%) ( @j—l(k) )
) )T\ D) 1+ e ) \ATH) )

where

06 = GREFD(E) +GiOB ).
%) = GpOI?(©) +GiEI) (),

BAE) = Y pA(s)e™™,

SEZ

196 = Y 99(e e,

SEZ

Gp(€) = > g'(2s5)e™,

SEZ

Gi(e) = 3 g'(2s+ 1)

SEZ

As a consequence of Lemma 4.1, the following results hold for the adaptive operator
Ki=(I+AIT7)*+4A7L571

Corollary 4.2 Consider the vector U}/, formed by the components of the discrete Fourier
transforms 4™/~ and d™’~!, sorted in the following order

[@™1=1(0), d™7=1(0), @™ (1), d™ (1) ..., i (20 — 1), a0 — )T

On this form, the action of the operator K7 = (I + AJT7)* +4AJ LI, corresponding to the
adaptive scheme (28), can be expressed by the formula

an+l,j A]Ana]
u/r” = Kiuyrg,

where I/C\{L is a block diagonal matrix, with 2x2 blocks in the diagonal, defined by I/C\a (25%, 7), 0 <
k < 2/7! — 1, such that

(T8 g (T8

14



The amplification matrices K4 (£;7) have the formula as follows

Ra(€.7) Lo e ) <E<2>(§) 0)
a\S» = +
’ O 1+5ne ) L 00

4.2 Stability Analysis

As described in the section 3.1, the stability region for the reference scheme is 7 < 7ipay. The
question here is to see whether the same characterization holds for the adaptive scheme.
As proved in Corollary 4.2, the adaptive scheme (28) can be formulated, in the Fourier
domain, by the relation o
Uy /p’ = Kiuyy.
Therefore, the stability analysis can be stated in terms of spectral properties of the amplifi-
cation matrix /C,. As described in [3], Theorem 5.2.2, a necessary condition for stability is

that the eigenvalues vy of /Ea satisfy the von Neumann condition
| < B, (35)

Theorem 5.2.3 in [3] shows that such condition is sufficient in the case where K, can be
uniformly diagonalized in the sense that there is a matrix 7= T'(277, ) such that

T KT = diag(vi,va, . .., Vai), (36)

with ||| |7 || < C, for C independent of £ and the resolution level j.

For the adaptive scheme under study, IEZL is a block diagonal matrix, with 2 x 2 blocks
I%a(%,z; 7), 0 < k < 277! — 1 placed in the diagonal. Therefore, we simply need to analyse
the spectral properties of such blocks.

The eigenvalues vy, ¢ = 1,2 of each block I/C\a(fi, 7) may be obtained directly from the
block entries, and the spectral radius p(lea({-“ , 7)) can be expressed as a function of £ and 7.
Numerical experiments show that, for fixed 7, the maximum of p(K,(£;7)) occurs at & = .
In Figure 2 the graphs of p(l/C\a(W; 7)) are plotted as functions of 7, for M =6,8,10 e 12. In
each case, it and can be noticed that, for 7 > Tax, p(I/C\a(W, 7)) > 1. Therefore, for 7 > 7,4
the adaptive scheme, as well as its reference scheme, is unstable.

Figure 3 displays level sets for the spectral radius p(lea(f; 7)), for M = 6,8,10,12. The
horizontal red dotted line indicates T = Tyax, Which is the upper level for stability. As
expected, for 7 < Tax, the necessary condition p(fC, (€, 7)) < 1 is verified. We can also note
that & = 7 is a critical point in the sense that, for each level curve, the minimum value for 7
is reached at & = 7.

15



— M6

— M8

M10

— M2

Figure 2: The spectral radius p(lea(w; 7)).

Figure 4 is for fixed 7 = Tyay. It shows the behaviour of the eigenvalues of IEa(f , Tmax)
for different choices of the parameter M. As expected,

kel <1 forf=1,2,

which shows that the necessary condition (35) for the stability is verified with a, = 0.

(From Figure 4, we also conclude that the eigenvalues are distinct for £ € (0, 27). Similar
behaviour holds for 7 < 7. This fact indicates that the matrix 7" mentioned in (36) may
be taken as a block diagonal matrix, with 2 x 2 blocks formed by eigenvectors of I@a(%i, 7).
For £ = 0 and & = 2, I/C\a(f) is simply the 2 x 2 identity matrix. The behaviour of the
Euclidian norm ||T°(§, 7)||2 is illustrated in Figure 5, for M = 6,8,10 e 12. It suggests that,
for € € [0,27] and 0 < 7 < Toax, ||T(€,7)]|2 is a bounded function which is also bounded
away from zero. Therefore, based on this numerical evidence, we argue that the condition
on T that guarantees stability is verified by the adaptive scheme.

4.3 Consistency

Let us consider the truncation error for the adaptive scheme
AN(ET™)(s) = u(ty + 40, 279) — (Kiu)(t,, 27),

where K7 = (I + AlT7)* + 4AJ£7~1. Tt can be split into three terms

16
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Figure 3: Spectral radius p(lea (& 7)), for £ € [0, 27]
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M=10 M=12

Figure 4: Eigenvalues for Ky (€, Tmax)
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(ET})(s) = {%At [u(t, + 42, 27) — u(t,, 2l)] — g—?(tmﬂﬁc)}
{

(Lu — LIu)(t,, :cfc)}
_ % [62(T9)2 + 4A2(T9) + A (T9)] ult, ). (37)

The first and second terms form the truncation error for the reference scheme. As we
shall prove next, the perturbation introduced by the adaptive strategy, corresponding to the
third term, produces errors or higher orders.

We shall give the estimates in terms of the norm in L?([0, 1]), since in Vj it is equivalent
to norm || - ||; of the coefficients. Given the definition of 77, we get

T ullge < [[PLLQI ullgs + | QF LPI g + [|QF LY g

Having in mind the estimates (14) and (15) for the projections occurring in the interpolatory
multiresolution context defined by 0,,(x) (p = M — 1), we obtain

1P L@ e < [[PFILYT u— £QF Mullpe + [|£Q7 tullpe
2 U000 Hullne +1|Q7 ulle
9=G=5]| Qugges5 + 20Dy g
2*(371)(M72)||u||HM,

AR AR IANIAN

where 0 < s < r — 2, and r is the regularity order of #,,. Similarly, for the second term we
have

QP s < [QL(PI  — W)l + 11Q7 Ll
2~ £(Pi~ — ) e + 2G| Lo gars
2= D5 [ PI Ty — | ggass + 26D

2—(j—1)(M—2)||u||HM'

A VAR ZANRIAN

Finally, for the last term
gf(jfl)s”[,ijluan

S
< 270D Q0 Ly | et
5 2*(j’1)(M’2)||u||HM.

197 LQ7 e

Combining all the three estimations, we get

1T 7ullze = 27972 gar.

20



Therefore, we conclude that in the adaptive scheme the order of truncation error is determined
by behaviour of the truncation error in the reference scheme. That is,

|ET™|| < O(Ay) + O(277M=2)),

The results of Section 4.2 and Section 4.3 are summarized in the following theorem.

Theorem 4.3 For the examples analysed in this paper, the adaptive scheme (28) present
the same stability and consistency properties of its reference scheme (20).

5 Conclusions

In this paper, the adaptive multilevel scheme proposed in [1] is considered in the biorthogonal
wavelet context. The adaptive scheme is formulated in terms of the multiresolution coeffi-
cients of the numerical solution. Using two levels, and having periodic boundary conditions
and constant coefficients, it turns out that the matrix making the connection between the
solution at one time step to the next one has a 2 x 2 block circulant structure. So that,
in the Fourier domain, it is transformed into a block-diagonal structure, with 2 x 2 blocks.
Therefore, the stability of the scheme is determined by the spectral properties of each of these
simple blocks, which can be derived from the behaviour of an easely computable function of
two variables (7,&),7 > 0,0 < £ < 27. This is because the four components of each block
are expressed as functions of the parameter 7 = 7(A;,277) and the sample values of known
2m-periodic functions, which are defined in terms of the scaling filters and symbols associated
to the finite difference coefficients. The dependence on the scale level appears, explicitely, on
the sampling step.

As a model problem, we consider the one-dimensional heat equation. In the adaptive
multilevel scheme, the advantage is that the time step used to update the components in a
certain scale level is multiplied by four if the resolution is decrased by a factor of two. We
show that this adaptive strategy does not affect the stability condition and consistency order,
which are maintaned the same as in the original reference scheme.
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