Arquivo mensais:maio 2016

Marés, Ciclovia e Clima

No feriado Brasileiro de Tiradentes, em 21 de Abril de 2016, uma parte da ciclovia da orla da cidade do Rio de Janeiro caiu em virtude do impacto da massa de água do mar que tirou a passarela de seus suportes e caiu, levando duas pessoas à morte.

Splash de Maré em Ciclovia

Ciclovia Rompida pela Maré

Veja algumas matérias jornalísticas sobre o assunto:

É claro que a Ciclovia não estava preparada para isso, mas era previsível.

A dinâmica das águas nas encostas não é simples, mas já é muito bem conhecida. Sendo bem sucinto, o movimento, alcance e altura das águas na orla do continente (ou nos limites de um grande lago) dependem dos seguintes fatores:

  1. Posição relativa da Lua e do Sol;
  2. Posição geográfica do local;
  3. Perfil do fundo da praia;
  4. Contorno da orla;
  5. Tipo de material na orla, como pedra, areia, com ou sem vegetação;
  6. Velocidade dos ventos e das correntes nas imediações;
  7. Tempestades em alto mar;

Todos que já foram à praia sabem das marés altas e baixas que ocorrem com alguma repetição ao longo dos dias, mas em horários diferentes. Em termos de periodicidade podemos classificar as marés em três tipos:

  1. Semi-diurna;
  2. Diurna;
  3. Mista;

A figura abaixo mostra no mapa mundo quais os tipos predominantes de marés altas (e baixas):

Mapa mundial mostrando onde ocorrem os 3 tipos de marés.

3 tipos de marés

Vou comentar apenas as variáveis relativas à Lua e ao Sol. Vamos usar algumas aproximações. Todos os corpos envolvidos, Terra, Lua e Sol, são esferóides muito similares a uma esfera. Todos os corpos envolvidos têm uma rotação em torno de um eixo, isto é, cada corpo tem momentum angular em relação ao seu eixo.  Eles também  viajam em uma órbita não retilínea no espaço e sendo assim possuem momenta angulares devido à translação no espaço. Finalmente, é importante registrar as distâncias entre os centros de massa.

A quantidade de parâmetros nessa configuração (já simplificada) é enorme:

  • 9 para especificar as posições dos centros de massa
  • 3 para especificar os vetores momenta angular em relação aos seus eixos de cada astro. Para o fenômeno, basta o momentum angular da Terra.
  • 2 para especificar os raios maiores e menores de cada esferóide. Para o estudo da maré em períodos inferiores a um século, basta as raios equatorial e polar da Terra. E muitas vezes usa-se apenas o raio médio.
  • 9 para especificar as velocidades de cada astro – os momenta angular relativo às translações seguem do produto vetorial das posições com as velocidades.

Isto é, o estudo da parte do movimento das marés devido à força gravitacional diferencial envolve pelo menos 21 parâmetros. Claro que muitos desses parâmetros têm pequena importância para o fenômeno. Antecipo que o principal ator para o fenômeno das marés são as força diferenciais ou de maré (tidal force) provocada pela Lua e pelo Sol. As acelerações provocadas em cada caso (e seus valores absolutos médios) são:
\large a_L = \frac{ G M_L}{R_{LT} ^3} \, r \approx 6 \times 10^{-7} \, \frac{m}{s^2}  

\large a_S = \frac{ G M_S}{R_{ST} ^3} \, r \approx 3 \times 10^{-7} \, \frac{m}{s^2}

em que r a distância ao centro da Terra,   R_{LT}  é a distância entre Terra e Lua, e  M_L é a massa da Lua;   R_{ST}  é a distância entre a Terra e o Sol, e  M_S é a massa do Sol. Os valores médios foram obtidos na Planetary Fact Sheet da NASA.

É importante é perceber o comportamento com o inverso do CUBO da distância. E essa aceleração, como um vetor, tem a direção e sentido estabelecidos pela reta que une os centros de gravidade dos corpos envolvidos.  Assim, como essas distâncias e direções variam ao longo das horas, dias e estações, temos variações significativas nos efeitos de maré.

Observe as distâncias relativas, em duas escalas abaixo. A primeira figura contempla o Sol, a Terra e a Lua em um mesmo quadro.

solar_eclipse_model_1

Posições e Tamanhos em escala

E a segunda figura contempla apenas a Lua e a Terra, mas mostra os tamanhos desses astros como pequenos círculos.

E por outro lado, a ilustração abaixo, fora de escala, enfatiza o aumento relativo da maré na qual a penas as forças diferenciais em sentidos opostos estão representadas.

diff_grav1

Esquema, fora de escala, das forças diferenciais de maré

Há várias outras configurações relativas e tudo está em movimento: A terra gira em torno de si com período de 24 horas, a Lua gira em torno da Terra com período próximo a 28 dias, e a Terra (junto com a Lua) orbita em torno do Sol a cada 365,4 dias. A configuração espacial relativa desses três astros se repete a cada 18,3 anos (aproximadamente).

Assim, é importante ter dados medidos de longa data. E a Marinha do Brasil mantém várias estações de medidas e assim fornece tábuas de previsões de marés. A estação que fica na Ilha Fiscal, no Rio de Janeiro, usa 26 harmônicos para construir a tabela de maré e está ativa desde os anos 1960. Lembre-se da simples contagem acima de pelos menos 21 parâmetros.

Aliás, os dados dessa estação estimam a tendência do aumento do nível do mar (medida local) em aproximadamente 2,18 mm/ano com 95% de confiança no intervalo de 1,30 mm/ano para cima ou para baixo, com base no nível médio mensal do mar de 1963 to 2011. Esse é mais um dado apontando as mudanças climáticas.

Gráfico mostra aumento do nível do mar medido na estação da Ilha Fiscal

Tendência de nível do mar no Rio de Janeiro

Voltando ao problema da Ciclovia, observamos a dinâmica das ondas que se quebram no “quebra-mar”. Essas ondas têm mais volume de água e mais potencial destrutor durante as marés altas. E elas são ainda maiores em Luas Cheias ou Novas. E podem ser ainda maiores se a Lua estiver nos seu Perigeo (ponto mais próximo da Terra) e podem ser ainda maiores se a Terra (junto com a Lua) estiver no seu Periélio (ponto da órbita terrestre mais próximo do Sol).

Enfim. Um projeto interessante como esse de uma ciclovia na belíssima orla do Rio de Janeiro tem que contemplar tudo isso e um pouco mais.