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Abstract

The aim of this article is to develop new proves for the basic for-
mulas of stochastic analysis in Lie groups, in particular the stochastic
exponential and logarithm. These formulas will lead to simple proves
of (multiplicative) Doob-Meyer decomposition and Girsanov theorem
for semimartingales in Lie groups.
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1 Introduction

Let G be a Lie group with the corresponding Lie algebra G. We denote by
w the Maurer-Cartan form in G, i.e. if v € TG, then wy(v) = Ly-1,(v). It
corresponds to the unique G-valued left invariant 1-form in G. We recall
that in the case of G = (Rx, -) the Maurer-Cartan form is w, = %dg7 and in
the case of the general linear group GL(n,R) the Maurer-Cartan form w is
g~ tdg = (w;j)~1(dz;;) where () are the coordinate functions on GL(n,R).

The aim of this articles is to develop a set of formulas which are basic in
the construction of stochastic analysis in Lie groups, in particular we start
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with basic properties of the stochastic exponential and logarithm. These for-
mulas will lead naturally to a Doob-Meyer decomposition and an extension
of the Girsanov theorem for semimartingales in Lie groups.

We recall that given a 1-form 6 in a differentiable manifold M, and a
differentiable curve v : [a, b] — M, the integral of 6 along ~ is the well known

line integral:
/ = / 0 dy = / 04

(See e.g. the classical Spivak [12]). The generalization of this formula along
7 to an integral of an adapted stochastic 1-form Oy, € T, M along an M-
valued semimartingale X; was proposed by Ikeda and Manabe [5] (see also
[3], [9]). LOcally this integral can be described like that: let (U, z!,...,z")
be a local system of coordinates in M. Then, with respect to this chart the
1-form @ can be written as 0, = 0'(z) do' 4 ...0"(x) dz™, where 0'(z) are
(C*°, say) functions in M. Then, the Stratonovich integral of 6 along X, is

defined by:
j=n
/9 odX, = Z/ei(xt) odX}.
j=1

Let M; be a semimartingale in the Lie algebra G. We recall that the
(left) stochastic exponential e(M) of M, is the stochastic process X; which
is solution of the left invariant equation on G:

dXy = Lx,+« odM;,
Xp=e.

An interesting geometric characterization of the exponential e(M) is the fact
that it corresponds to the stochastic development of M; € T.G to the group
G with respect to the left invariant connection V%, i.e. V%Y = 0 for all
X, Y eg.

Let the logarithm of a process X; on G is the following semimartingale
in the Lie algebra:

t
(log X)¢ = / w o dXs.
0

where w is the Maurer-Cartan form in G. One easily checks that the loga-
rithm as defined above is the inverse of the stochastic exponential e.

This article is organized as follows: in the next section we present new
proves of the stochastic Campbell-Hausdorff formula in a simpler and more
direct way compared to Hakim-Dowek and Lépingle [4] or Arnaudon [1].
In the last section we apply these formulas to obtain simple proves of the
(multiplicative) Doob-Meyer and Girsanov theorems in Lie groups.



2 Main results
We recall the following result, which characterizes VZ—martingales in G.

Theorem 2.1 A process X; on G is a VF-martingale if and only if X; =
Xoe(M) for some local martingale M in G.

Proof:
See Hakim-Dowek and Lépingle [4].
O
Next lemma concerns pull-back of Maurer-Cartan forms by homomor-
phisms of Lie groups, the formula will be useful along the article.

Lemma 2.1 Let ¢ : G — H be a homomorphism of Lie groups. Then the
pull-back o*wg = prwa.

Proof:
Let v € TyG, then a direct calculation leads to

QO*WH(’U) - L<p(g)71*(90*(”)>
= @*(Lgfl*(v))
= Pu(wg(v))

O

We shall denote by I, : G — G the adjoint in the group G given by h —

ghg~!. The map I, ¢ is a automorphism of G and its derivative corresponds to

the isomorphism of the Lie algebra called adjoint in G denoted by Ad(g) =

Iy : G — G. We have the following well known relation of the adjoint of the
Maurer-Cartan form and the pull-back by the right action:

Proposition 2.2 The pull-back by the right action satisfies
* -1
Ryw = Ad(g™ " )w.

Proof:
The proof is a straightforward calculation from the definitions, see e.g.

Kobayashi and Nomizu [8].
O

Proposition 2.3 Let m : G x G — G be the multiplication and i : G — G
be the inverse in the group. Then the pull-backs satisfy:



1. m*w = (m3 Ad~Y)(1w) + miw;
2. i"w=—Ad w.

Proof:
Let w = (u,v) € Tiy G X G = TyG x Tj,G. Then
m'w(w) = w(mww) = w(Rpsu~+ Lgv)
= L(gh)*1*<Rh*u + Lg*?})
= thl*Rh*Lg—l*u + Lh71*L971*L9*1}
= Ad(h Hw(u) + w(v).
For the inverse function, consider the diagonal map A : G — G x G given

by A(g) = (g9,9). We have that m o (Id X i) o A = e then the pull-back
(mo (Id x i) o A)*w vanishes, hence:

0 = ((Idxi)oA)'m'w
= ((Id x i) o A)*((m5 Ad V) miw) + miw)
= (mpo(Idxi)oA)*Ad (m o (Id x i) o A)*w + (w0 (Id x i) 0 A)*w
= Adw+i‘w

O
Next lemma presents the main formulas which are useful in calculations
with the logarithm.

Lemma 2.2 Given semimartingales X and Y in G, we have the following
formulas:

1. If o : G — H is a homomorphism then

px(log X) = log(p(X));
2. log(XY) = [Ad(Y ') od(log X) + logY;
3. log(X~1) = [ Ad(X) o d(log X).

Proof:
For the first formula, note that

log(pX) = /@*wHodX

= /SD*WG odX

= i log X.



The second identity follows from the calculation:

log(XY) = / wodm(X,Y)

_ / m*w o d(X,Y)

— [ (m3Ad ) (miw) + 7)o d(X.Y)

= /Ad(Yl)od(/wodX)—l—/wodY

= /Ad(y—l) odlog X +logY.
Finally, for the last formula we have that
log(X™1) = /i*wodX
= /—Adw odX
= —/Ad(X)od(/w odX)
= —/Ad(X) o d(log X).

O

Corollary 2.4 We have the following stochastic Campbell-Hausdorff for-
mula:

1. e(M 4+ N) =¢€([ Ad(e(N)) o dM) e(N);
2. (M)~ = ¢ (— [ Ad(e(M)) 0 dM) .

Proof:
For the first formula we just have to check that:

o (e [ Aty anr) o)

/ Ad(e(N)™') odlog (e ( / Ad(e(N)) odM)) + log(e(N))

= M+ N.



And for the second formula:

o (¢ (- [ aaon) aanr))

S / Ad(e(M)) o dM

- -1/Ad&M@)Odbg@U@)
= log(e(M)™1).

3 Applications

Our first application of these formulas is a multiplicative version of the Doob-
Meyer decomposition. It was originally established by R. L. Karandikar in
the case of group of matrices [7] and by M. Hakim-Dowek, D. Lepingle [4]
(See also [1], [2]) in the general case.

Theorem 3.1 (Doob-Meyer decomposition in Lie groups) Let X =
Xoe(M) be a semimartingale in G with M = N + A, where N is a local
martingale and A is a process of finite variation in G. Then we have that

X =X,YZ = XoZ'Y’

where Y, Y are local martingales and Z,Z' are processes of finite variation.
The relation between them are given by Y = [ Ad(e(A)) odN, Y' = €¢(N),
Z =¢€(A) and Z' = ([ Ad(e(N) dA).

Proof:
Apply the stochastic Campbell-Hausdorff formula to the classical Doob-
Meyer decomposition M = N + A and use Theorem 2.1.
O
We call the decomposition of the above theorem X = XyYZ (X =
XoZ'Y") the left (right) multiplicative Doob-Meyer decomposition of X.
Now, we show a multiplicative version of the Girsanov theorem.

Theorem 3.2 (Girsanov-Meyer theorem in Lie groups) Let P and Q
be equivalent probability laws on the filtered space (2, F, Fi>0) with Radon-
Nikodyn derivative Ay = Ep(% | F1). Let X be a semimartingale in G with
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left multiplicative Doob-Meyer decomposition XoY Z with respect to P. Then
X has left multiplicative Doob-Meyer decomposition XoVW with respect to
Q@ where

V:e(/Ade(logZ+/ild[A,B])d(B/ild[A,B]))

and )
W =e(log Z + / Zd[A’ B])

where B is the semimartingale By =logY Z —log Z.

Proof:
Apply the classical Girsanov-Meyer theorem ( see e.g. [10, Thm. 20, p.
109]) to log(Y Z) and the stochastic exponential.
Il
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