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Abstract

The aim of this article is to develop new proves for the basic for-
mulas of stochastic analysis in Lie groups, in particular the stochastic
exponential and logarithm. These formulas will lead to simple proves
of (multiplicative) Doob-Meyer decomposition and Girsanov theorem
for semimartingales in Lie groups.
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1 Introduction

Let G be a Lie group with the corresponding Lie algebra G. We denote by
ω the Maurer-Cartan form in G, i.e. if v ∈ TgG, then ωg(v) = Lg−1∗(v). It
corresponds to the unique G-valued left invariant 1–form in G. We recall
that in the case of G = (R>0, ·) the Maurer-Cartan form is ωg = 1

gdg, and in
the case of the general linear group GL(n,R) the Maurer-Cartan form ω is
g−1dg = (xij)−1(dxij) where (xij) are the coordinate functions on GL(n,R).

The aim of this articles is to develop a set of formulas which are basic in
the construction of stochastic analysis in Lie groups, in particular we start
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search supported by FAPESP grant n◦ 01/13158-4.

2Research partially supported by CNPq grant n◦ 300670/95-8.

1



with basic properties of the stochastic exponential and logarithm. These for-
mulas will lead naturally to a Doob-Meyer decomposition and an extension
of the Girsanov theorem for semimartingales in Lie groups.

We recall that given a 1–form θ in a differentiable manifold M , and a
differentiable curve γ : [a, b] → M , the integral of θ along γ is the well known
line integral: ∫

γ
θ =

∫
θ dγ =

∫ b

a
θ(γ̇(s)) ds.

(See e.g. the classical Spivak [12]). The generalization of this formula along
γ to an integral of an adapted stochastic 1-form θXt ∈ T ∗Xt

M along an M -
valued semimartingale Xt was proposed by Ikeda and Manabe [5] (see also
[3], [9]). LOcally this integral can be described like that: let (U, x1, . . . , xn)
be a local system of coordinates in M . Then, with respect to this chart the
1-form θ can be written as θx = θ1(x) dx1 + . . . θn(x) dxn, where θ1(x) are
(C∞, say) functions in M . Then, the Stratonovich integral of θ along Xt is
defined by: ∫

θ ◦ dXt =
j=n∑

j=1

∫
θi(Xt) ◦ dXi

t .

Let Mt be a semimartingale in the Lie algebra G. We recall that the
(left) stochastic exponential ε(M) of Mt is the stochastic process Xt which
is solution of the left invariant equation on G:

{
dXt = LXt∗ ◦ dMt,
X0 = e.

An interesting geometric characterization of the exponential ε(M) is the fact
that it corresponds to the stochastic development of Mt ∈ TeG to the group
G with respect to the left invariant connection ∇L, i.e. ∇L

XY = 0 for all
X,Y ∈ G.

Let the logarithm of a process Xt on G is the following semimartingale
in the Lie algebra:

(log X)t =
∫ t

0
ω ◦ dXs.

where ω is the Maurer-Cartan form in G. One easily checks that the loga-
rithm as defined above is the inverse of the stochastic exponential ε.

This article is organized as follows: in the next section we present new
proves of the stochastic Campbell-Hausdorff formula in a simpler and more
direct way compared to Hakim-Dowek and Lépingle [4] or Arnaudon [1].
In the last section we apply these formulas to obtain simple proves of the
(multiplicative) Doob-Meyer and Girsanov theorems in Lie groups.
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2 Main results

We recall the following result, which characterizes ∇L–martingales in G.

Theorem 2.1 A process Xt on G is a ∇L–martingale if and only if Xt =
X0ε(M) for some local martingale M in G.

Proof:
See Hakim-Dowek and Lépingle [4].

¤
Next lemma concerns pull-back of Maurer-Cartan forms by homomor-

phisms of Lie groups, the formula will be useful along the article.

Lemma 2.1 Let ϕ : G → H be a homomorphism of Lie groups. Then the
pull-back ϕ∗ωH = ϕ∗ωG.

Proof:
Let v ∈ TgG, then a direct calculation leads to

ϕ∗ωH(v) = Lϕ(g)−1∗(ϕ∗(v))
= ϕ∗(Lg−1∗(v))
= ϕ∗(ωG(v))

¤
We shall denote by Ig : G → G the adjoint in the group G given by h 7→

ghg−1. The map Ig is a automorphism of G and its derivative corresponds to
the isomorphism of the Lie algebra called adjoint in G denoted by Ad(g) =
Ig∗ : G → G. We have the following well known relation of the adjoint of the
Maurer-Cartan form and the pull-back by the right action:

Proposition 2.2 The pull-back by the right action satisfies

R∗
gω = Ad(g−1)ω.

Proof:
The proof is a straightforward calculation from the definitions, see e.g.

Kobayashi and Nomizu [8].
¤

Proposition 2.3 Let m : G×G → G be the multiplication and i : G → G
be the inverse in the group. Then the pull-backs satisfy:
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1. m∗ω = (π∗2Ad−1)(π∗1ω) + π∗2ω;

2. i∗ω = −Ad ω.

Proof:
Let w = (u, v) ∈ T(g,h)G×G ' TgG× ThG. Then

m∗ω(w) = ω(m∗w) = ω(Rh∗u + Lg∗v)
= L(gh)−1∗(Rh∗u + Lg∗v)
= Lh−1∗Rh∗Lg−1∗u + Lh−1∗Lg−1∗Lg∗v

= Ad(h−1)ω(u) + ω(v).

For the inverse function, consider the diagonal map ∆ : G → G × G given
by ∆(g) = (g, g). We have that m ◦ (Id × i) ◦ ∆ = e then the pull-back
(m ◦ (Id× i) ◦∆)∗ω vanishes, hence:

0 = ((Id× i) ◦∆)∗m∗ω
= ((Id× i) ◦∆)∗((π∗2Ad−1)π∗1ω) + π∗2ω)
= (π2 ◦ (Id× i) ◦∆)∗Ad−1(π1 ◦ (Id× i) ◦∆)∗ω + (π2 ◦ (Id× i) ◦∆)∗ω
= Adω + i∗ω

¤
Next lemma presents the main formulas which are useful in calculations

with the logarithm.

Lemma 2.2 Given semimartingales X and Y in G, we have the following
formulas:

1. If ϕ : G → H is a homomorphism then

ϕ∗(log X) = log(ϕ(X));

2. log(XY ) =
∫

Ad(Y −1) ◦ d(log X) + log Y ;

3. log(X−1) =
∫

Ad(X) ◦ d(log X).

Proof:
For the first formula, note that

log(ϕX) =
∫

ϕ∗ωH ◦ dX

=
∫

ϕ∗ωG ◦ dX

= ϕ∗ log X.
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The second identity follows from the calculation:

log(XY ) =
∫

ω ◦ dm(X, Y )

=
∫

m∗ω ◦ d(X,Y )

=
∫

((π∗2Ad−1)(π∗1ω) + π∗2ω) ◦ d(X,Y )

=
∫

Ad(Y −1) ◦ d(
∫

ω ◦ dX) +
∫

ω ◦ dY

=
∫

Ad(Y −1) ◦ d log X + log Y.

Finally, for the last formula we have that

log(X−1) =
∫

i∗ω ◦ dX

=
∫
−Ad ω ◦ dX

= −
∫

Ad(X) ◦ d(
∫

ω ◦ dX)

= −
∫

Ad(X) ◦ d(log X).

¤

Corollary 2.4 We have the following stochastic Campbell-Hausdorff for-
mula:

1. ε(M + N) = ε
(∫

Ad(ε(N)) ◦ dM
)
ε(N);

2. ε(M)−1 = ε
(− ∫

Ad(ε(M)) ◦ dM
)
.

Proof:
For the first formula we just have to check that:

log
(

ε

(∫
Ad(ε(N) ◦ dM

)
ε(N)

)

=
∫

Ad(ε(N)−1) ◦ d log
(

ε

(∫
Ad(ε(N)) ◦ dM

))
+ log(ε(N))

= M + N.
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And for the second formula:

log
(

ε

(
−

∫
Ad(ε(M) ◦ dM

))

= −
∫

Ad(ε(M)) ◦ dM

= −
∫

Ad(ε(M)) ◦ d log(ε(M))

= log(ε(M)−1).

¤

3 Applications

Our first application of these formulas is a multiplicative version of the Doob-
Meyer decomposition. It was originally established by R. L. Karandikar in
the case of group of matrices [7] and by M. Hakim-Dowek, D. Lepingle [4]
(See also [1], [2]) in the general case.

Theorem 3.1 (Doob-Meyer decomposition in Lie groups) Let X =
X0ε(M) be a semimartingale in G with M = N + A, where N is a local
martingale and A is a process of finite variation in G. Then we have that

X = X0Y Z = X0Z
′Y ′

where Y, Y ′ are local martingales and Z, Z ′ are processes of finite variation.
The relation between them are given by Y =

∫
Ad(ε(A)) ◦ dN , Y ′ = ε(N),

Z = ε(A) and Z ′ = ε(
∫

Ad(ε(N) dA).

Proof:
Apply the stochastic Campbell-Hausdorff formula to the classical Doob-

Meyer decomposition M = N + A and use Theorem 2.1.
¤

We call the decomposition of the above theorem X = X0Y Z (X =
X0Z

′Y ′) the left (right) multiplicative Doob-Meyer decomposition of X.
Now, we show a multiplicative version of the Girsanov theorem.

Theorem 3.2 (Girsanov-Meyer theorem in Lie groups) Let P and Q
be equivalent probability laws on the filtered space (Ω,F ,Ft≥0) with Radon-
Nikodyn derivative At = EP (dQ

dP | Ft). Let X be a semimartingale in G with
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left multiplicative Doob-Meyer decomposition X0Y Z with respect to P . Then
X has left multiplicative Doob-Meyer decomposition X0V W with respect to
Q where

V = ε(
∫

Adε(log Z +
∫

1
A

d[A,B])d(B −
∫

1
A

d[A, B]))

and
W = ε(log Z +

∫
1
A

d[A, B])

where B is the semimartingale Bt = log Y Z − log Z.

Proof:
Apply the classical Girsanov-Meyer theorem ( see e.g. [10, Thm. 20, p.

109]) to log(Y Z) and the stochastic exponential.
¤
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[4] Hakim-Dowek, M. and Lépingle, D. – L’exponentielle stochastique
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