$\rm MA502$ Turma P $\rm 2S~2011$ - Prova $\rm 2$

Nome:	RA:	13/10/2011

- 1. Verifique a convergência das séries:
 - (a) $\sum_{n=1}^{\infty} \frac{\log n}{n^2}.$
 - (b) $\sum_{n=2} \frac{1}{n(\log n)^2}$
- 2. Sejam sequências (x_n) e (y_n) de números reais que satisfazem: para todo $\varepsilon > 0$ $\exists n_0$ tal que se $n > n_0$ então $|x_n y_n| < \varepsilon$. Mostre que (x_n) é uma sequência de Cauchy se e somente se (y_n) também for de Cauchy.
- 3. Prove que se uma sequência monótona de termos positivos a_n é tal que a série $\sum a_n$ converge então $\lim na_n = 0$.
- 4. Seja (x_n) uma sequência convergente. Construa uma nova sequência $s_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$. Prove que (s_n) é convergente.
- 5. Considere $\sum a_n$ uma série condicionalmente convergente. Mostre que se para uma certa reordenação $\varphi: \mathbb{N} \to \mathbb{N}$ temos $\sum b_n \neq \sum a_n$, com $b_n = a_{\varphi(n)}$, então a sequência $\varphi(n) n$ não é limitada.