Moment Lyapunov Exponents for i.i.d. Random Products and Semigroups

Luiz A. B. San Martin

We consider an independent and identically distributed (i.i.d.) random sequence y_n in a semi-simple Lie group G with common law μ and form its random product $g_n = y_n \cdots y_1$. (For example if $G = \text{Sl}(d, \mathbb{R})$ then g_n is a product of random matrices.) The purpose is to describe geometric properties of the semigroup S_{μ} generated by the support of μ via the asymptotics of the random product g_n .

The asymptotic properties of g_n are described by limits of cocycles $\rho_{\lambda}(g, x)$ over the flag manifolds. These cocycles are defined after the Iwasawa decomposition G = KAN through the function $\rho : G \times K \to A$ given by $gu = v\rho(g, u) n$ with $v \in K$, $\rho(g, x) \in A$ and $n \in N$ and the parameter λ is a linear map on $\mathfrak{a} = \log A$.

The Lyapunov exponents of the random product g_n are defined by

$$\Lambda_{\lambda}(x) = \lim_{n \to \infty} \frac{1}{n} \log \rho_{\lambda}(g_n, x).$$

In case $G = \operatorname{Sl}(d, \mathbb{R})$ then \mathfrak{a} is the space of diagonal matrices and if $\lambda_1(D)$ is the first eigenvalue of the diagonal matrix D then $\rho_{\lambda_1}(g, x)$ is the cocycle $\|gv\| / \|v\|$ over the projective space whose Lyapunov exponents are given by the multiplicative ergodic theorem. The same way the cocycles $\rho_{\lambda_1+\dots+\lambda_k}(g,x)$ over the Grassmannians yield sums of Lyapunov exponents.

The moment Lyapunov exponent of the random product depending on $\lambda \in \mathfrak{a}^*$ and x is defined by

$$\gamma_{\lambda}(x) = \lim \sup_{n \to \infty} \frac{1}{n} \log \int \rho_{\lambda}(g, x) \mu^{*n}(dg)$$
$$= \lim \sup_{n \to \infty} \frac{1}{n} \log \mathbb{E} \left[\rho_{\lambda}(g_n, x) \right]$$

where μ^{*n} is the *n*-th convolution power of μ .

We assume that $\operatorname{int} S_{\mu} \neq \emptyset$ (that is, μ is an *étalée* measure). The socalled flag type of S_{μ} is a flag manifold associated to it that reveals several geometric and algebraic properties of the semigroup (for instance the Jordan form of its elements).

We relate the flag type of S_{μ} with the behavior as $p \to -\infty$ of the functions $p \mapsto \gamma_{p\lambda}(x)$. The point is that for the interesting values of λ , $\frac{1}{n} \log \rho_{\lambda}(g_n, x)$ converges a.s. to a constant ("top" Lyapunov exponent) which is positive. Hence the behavior of $\mathbb{E} \left[\rho_{\lambda}(g_n, x)^p \right]$ for large p < 0 tells if there are "late comers" to the limit of $\frac{1}{n} \log \rho_{\lambda}(g_n, x)$ showing the location of g_n in G.

The moment Lyapunov exponent $\gamma_{\lambda}(x)$ is related to the spectral radius of the operator

$$(U_{\lambda}(\mu) f)(x) = \int_{G} \rho_{\lambda}(g, x) f(gx) \mu(dg)$$

acting in spaces of continuous functions. The good properties of $\gamma_{\lambda}(x)$ are obtained via the pertubation theory of these operators.

An stochastic differential equation

$$dg = X(g) dt + \sum_{j=1}^{m} Y_j(g) \circ dW_j$$

on G (where X and Y_j are right invariant vector fields) yields a one-parameter semigroup μ_t of probability measures. When the results are applied to the measures μ_t the moment Lyapunov exponents are related to the principal eigenvalue of the differential operator

$$L_{\lambda}^{\Theta} = \widetilde{L} + \frac{1}{2} \sum_{j=1}^{m} \lambda\left(q_{Y_{j}}\right) \widetilde{Y}_{j} + \lambda\left(q_{X}\right) + \frac{1}{2} \sum_{j=1}^{m} \lambda\left(r_{Y_{j}}\right) + \frac{1}{2} \sum_{j=1}^{m} \left(\lambda\left(q_{Y_{j}}\right)\right)^{2}$$

where $\widetilde{L} + \frac{1}{2} \sum_{j=1}^{m} \lambda(q_{Y_j}) \widetilde{Y}_j$ is a second order hyperbolic differential operator and the other terms are functions defined from the vector fields X and Y_j .

References

 Arnold, L.: A formula connecting sample and moment stability of linear stochastich systems. SIAM J. Appl. Math. 44 (1984), 793-802.

- [2] Arnold, L; W. Kliemann and E. Oeljeklaus: Lyapunov Exponents of Linear Stochastic Systems. In Lyapunov Exponents, Proceedings Bremen 1984, Lecture Notes in Mathematics - Springer Verlag 1186 (1985), 85-128.
- [3] Arnold, L; E. Oeljeklaus and E. Pardoux: Almost Sure and Moment Stability for Linear Ito Equations. In Lyapunov Exponents, Proceedings Bremen 1984, Lecture Notes in Mathematics - Springer Verlag 1186 (1985), 129-159.
- [4] Guivarc'h, Y. and A. Raugi: Frontière de Furstenberg, proprietés de contraction et théorèmes de convergence. Probability theory and related topics (ZW). 69 (1985), 187-242.
- [5] San Martin, L.A.B.: Moment Lyapunov Exponents and Semigroups in Semi-simple Lie Groups. To appear.