

MS519 - Lista 02

Prof. Christian Rodrigues

Entrega: 12 de abril de 2019

1. Mostre explicitamente que:

- a) todo espaço normado de dimensão finita n sobre \mathbb{K} é isomorfo ao espaço obtido com a norma euclidiana $(\mathbb{K}^n, ||\cdot||_2)$.
- b) se E e F forem espaços normados de mesma dimensão finita, sobre o mesmo corpo, então E e F serão isomorfos.
- 2. Considere o conjunto das matrizes reais $m \times n$ (com $m \in n$ fixos). Mostre que o espaço M formado por essas matrizes é isomorfo a algum \mathbb{R}^d .
- 3. Encontre ou demonstre que não existe uma constante de Lipschitz nos domínios indicados para:
 - a) $f(t,x) = x^{1/3}$ |x| < 1.
 - **b)** f(t,x) = 1/x $1 \le x < \infty$
- 4. Seja $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \sqrt{|y|}$. Considere a equação diferencial $\frac{dy}{dx} = f(x, y)$ com condição inicial y(0) = 0.
 - a) Dê uma solução desta equação (utilize o método de separação de variáveis).
 - b) Ela é única?
 - c) Caso a resposta de b) seja negativa, contradiz o Teorema de Picardi? Justifique.
- 5. Prove o Teorema 6 utilizando o Teorema 5 (apresentados em aula).
- 6. Prove o corolário do Teorema 5 enunciado em aula: se G for \mathbb{C}^k nas variáveis $x \in \mu$, então $(t,\mu) \mapsto \gamma_{\mu}(t) \in C^k$ em μ .
- 7. Considere a equação diferencial:

$$\begin{cases} x'' = -gsen(x) \\ x'(t_0) = v_0 \\ x(t_0) = x_0 \end{cases}$$

- e denote $\gamma_{t_0,x_0,v_0,q}$ sua solução maximal. Mostre que
- a) $\gamma_{t_0,x_0,v_0,q}$ está definida para todo $t \in (-\infty,\infty)$.
- **b)** $(t, t_0, x_0, v_0, g) \mapsto \gamma_{t_0, x_0, v_0, g}(t) \notin C^{\infty} \text{ em } \mathbb{R}^5.$
- 8. Seja $G:V\to\mathbb{R}^d,\,(t,x,\mu)\mapsto G(t,x,\mu)$ contínua e C^1 na segunda e terceira variáveis, com V aberto de \mathbb{R}^{1+d+p} . Seja D o conjunto de (t,μ) , tal que t pertença ao domínio da solução maximal φ_{μ} de

$$\begin{cases} x' = G(t, x, \mu) \\ x(t_0) = x_0. \end{cases}$$

Dado $\mu_0 \in D$, mostre que:

$$\varphi(t, t_0, x_0, \mu) = \varphi(t, t_0, x_0, \mu_0) + \partial_{\mu} \varphi(t, t_0, x_0, \mu_0) (\mu - \mu_0) + \rho(\mu - \mu_0),$$

onde $\rho(\mu-\mu_0)$ tende a zero uniformemente quando $\mu \to \mu_0$ em subconjuntos compactos de D contendo μ_0 . Este fato é útil para encontrar expressões aproximadas de soluções em torno de algum parâmetro.