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Abstract. We describe several bootstrapping techniques to construct new

Ad-equivariant maps from old. The base case of the bootstrap provides exam-

ples of exotic difeomorphisms and involutions, and therefore these techniques
produce candidates for new examples.

1. Introduction

An orientation-preserving diffeomorphism σ : Sn → Sn is said to be exotic if
it is not isotopic to the identity, i.e., there is no deformation through diffeomor-
phisms σt such that σ0 = σ and σ1 = IdSn . The existence of such diffeomorphisms
was inferred by Milnor [13] in his seminal paper on spheres homeomorphic but not
diffeomorphic to the Euclidean sphere, since differentiable structures on (oriented)
n+1-dimensional spheres are essentially in a bijective correspondence with isotopy
classes of orientation-preserving diffeomorphisms of Sn via the twisted sphere con-
struction. This is done by setting Σn+1

σ to be two disks glued by their boundaries
via σ ; see the preliminaries section of [1] for a quick review or [11, 12] for details.

However, no explicit formula for these diffeomorphisms existed until [4]: write

S6 =
{
(p, w) ∈ H×H

∣∣ <(p) = 0, |p|2 + |w|2 = 1
}

,

and

σ(p, w) =

{
w
|w|e

πp w̄
|w|p

w
|w|e

πp w̄
|w| ,

w
|w|e

πp w̄
|w|w

w
|w|e

πp w̄
|w| , w 6= 0

(p, 0), w = 0,

Then σ is an exotic diffeomorphism of S6.
The study of the structural properties of this diffeomorphism has provided many

insights into the general theme of exotic phenomena [1, 5, 6, 7]. Particularly, in
[1] it is observed that δ = −σ is an exotic free involution, where the exoticity is
reflected in the fact that the quotient Sn/δ is not diffeomorphic to the standard
real projective plane; having an explicit formula allows the analysis of the geometry
of such involutions [1, 2].

A natural development is then to abstract the structural principles that underlie
this one example, the long-term goal being to construct exotic phenomena in a more
algorithmic, less ad-hoc way. A begining was made in [9]: let G be a Lie groups
acting on a manifold M and consider an Ad-equivariant map α : M → G (that is
α(g · x) = gα(x)g−1; we abuse notation by calling both the conjugation action on
G and its derivative on the Lie algebra by Ad) . To such a map α we associate
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the equivariant reentrance α̂ : M → M given by α̂(m) = α(m) ·m, where the dot
denotes the group action. We have that α̂ is always a diffeomorphism of M , and
Ad-equivariant homotopy classes of maps α : M → G correspond to isotopy classes
of diffeomorphisms α̂ : M → M (see [9] for details). Furthermore, if in addition
there is an involution δ of M such that α(δ(m)) = α−1(m), and δ commutes with
the G-action (thus producing a G × Z2-action on M), then the reentrance δα̂ is
another involution of M .

A shortcoming of this result was that the only non-trivial example of the struc-
tural theorem was the one example we began with, namely the maps σ and α,
and their equivariant deformations; the Ad-equivariant map in this case being the
Blakers-Massey element b : S6 → S3 given by

b(p, w) =

{
w
|w|e

πp w̄
|w| , w 6= 0

−1 w = 0 .

Constructing (differentiably) such equivariant maps by hand leads to difficult prob-
lems regarding the structure of the orbit spaces near singular orbits.

The main result of this note is to provide several “bootstrapping” methods that
allow for the construction of new examples form old. In particular, the maps σ and α
are the initial step in infinite families of Ad-equivariant maps in the sense described
above; now there is an enormous wealth of candidates for exotic diffeomorphisms,
involutions and their corresponding spaces.

2. Bootstrapping equivariant maps

Here we describe the main bootstrapping construction; the first two are inspired
in traditional topological bootstrapping methods. We will postpone the differen-
tiability issues to section 4, where we treat the join construction.

2.1. Joins. Recall that the join X ∗ Y of two topological spaces is the quotient
X × Y × [0, 1]/ ≡, where (x, y1, 0) ≡ (x, y2, 0) and (x1, y, 1) ≡ (x2, y, 1). The
join Sn ∗ Sm of two Euclidean spheres is homeomorphic to the sphere Sm+n+1,
explicitly given by [(x, y, t)] 7→ (cos(t)x, sin(t)y), the interval given by t ∈ [0, π/2]
for geometric convenience (in such a way the join is realized by geodesics joining
totally geodesics Sn, Sm inside of Sm+n+1). Let us remark that exotic spheres can
also have geodesic join structures and the equivariant geometry of such codifies
some of the exoticity: see [6].

As in the equivariant reentrance construction, let “ · ” denote an action of the
Lie group SU(2) on Sn, and consider an Ad-equivariant map α : Sn → SU(2). We
could then form the equivariant reentrance α̂ : Sn → Sn, but we will not do that.
Instead, we identify S2 as the unit sphere of the Lie algebra of SU(2), and consider
the map α∗ : S2 ∗ Sn ≡ Sn+3 → SU(2) given by

α∗(ξ, x, t) = α(x) exp(π cos(t)ξ)α−1(x) .

We also endow Sn ∗ S2 with an action • of SU(2): given θ ∈ SU(2), set

θ • (ξ, x, t) = (Adθξ, θ · x, t)

A moment’s reflection will convince the reader that both α∗ and the action • are
well defined under the equivalence relation ≡ (and for this it is essential that our
Lie group is SU(2), so that the exponential map from the sphere of radius π in the
Lie algebra collapses to a point).
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Also, we have that

α∗(θ • (ξ, x, t)) = α∗(Adθξ, θ · x, t)
= α(θ · x) exp(π cos(t)Adθξ)α−1(θ · x)
= θα(x)θ−1θ exp(π cos(t)ξ)θ−1θα−1(x)θ−1

= θα∗(ξ, x, t)θ−1 ,

which means that now α∗ : Sn+3 → SU(2) satisfies the hypothesis of the reentrance
theory. Thus we can bootstrap in this way going in steps of 3.

Another interesting remark is that the exotic maps b and σ are not the first step
in the bootstrapping ladder: in fact, if we beging with α(x) = x, the identity of
SU(2) and the conjugation action, after one step we get exactly the Blakers-Massey
map b : S6 → S3 and the corresponding reentrance σ : S6 → S6.

2.2. Smash products. We consider now the smash product X∧Y = X×Y/(X×
{y0} ∪ {x0} × Y }). Again , the smash product Sn ∧ Sm is homeomorphic to the
sphere Sn+m. We will now use the commutator instead of conjugation: let again
α : Sn → SU(2) and consider α∧ : S3 ∨ Sn ∼= Sn+3 → SU(2), given by

α∧(q, x) = [q, α(x)] = qα(x)q−1α(x)−1 ,

where we have used that SU(2) ∼= S3, considered as the unit quaternions. The
map is well-defined choosing q = 1 and some preimage x0 of the identity (which
we assume exists) as the base points. The properties of the commutator produce
the desired Ad-equivariance properties for α∧, again providing a map satisfying the
hypothesis of the reentrance theorem in 3 dimensions more.

Let us also remark that the original expression for the Blakers-Massey element
as a generator of π6(S3) was given in this fashion: as the commutator map c :
S3 ∧ S3 ∼= S6 → S3 [10].

2.3. Hopf maps. We can use the Hopf map h : S3 → S2 to increase the bootstrap
number to 4, i.e., to go from Sn to Sn+4. First recall the presentation of the Hopf
map we use: given a unit quaternion q, h(q) = qiq−1. There are two –probably
related– ways of using the Hopf maps: either by pre- or post-composition.

Pre-composing is given as follows: given α : Sn → SU(2) as usual, let hα :
S3 ∗ Sn ∼= Sn+4 → SU(2) by

hα(x, q, t) = α∗(x, h(q), t) = α(x) exp(π cos(t)h(q))α−1(x) .

The equivariance condition h(rq) = rh(q)r−1 satisfied by the Hopf map immedi-
ately gives the Ad-equivariance condition for hα, where the SU(2)-action on S3∗Sn

is now given by θ • (q, x) = (θq, θ · x).
Post-composition is inspired by the traditional expression for the Hopf map in

complex coordinates (z, w) 7→ (|z|2 − |w|2, 2zw̄), which in join coordinates of S3 ∼=
S1 ∗ S1 is written as (z, w, t) 7→ (cos(2t) + sin(2t)zw̄). Consider αh : S3 ∗ Sn ∼=
Sn+4 → SU(2) by

αh(q, x, t) = (cos(2t) + sin(2t)α(x)q−1) .

Note that for αh(q, x, 0) = 1 and αh(q, x, π/2) = −1, making the map well-defined.
If we let SU(2) act in S3 ∗ Sn by θ • (q, x) = (θq, θ · x) we obtain the required
equivariance properties.
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2.4. Involutions. With the exception of the smash product, all of these construc-
tions have easily defined maps δ : Sn+k → SU(2)(Sn+k) satisfying αδ = ια, where
ι is the group inverse, and therefore δα̂ is another (possibly exotic) involution; the
map δ is simply the antipodal map on S2 or S3 we are joining: for the join con-
struction, set δ(ξ, x, t) = (−ξ, x, t), and for both Hopf maps, δ(q, x, t) = (−q, x, t).
Thus we immediately have examples generalizing the exotic involutions of [1] (the
generalization being of the algebra, we still do not know about the exoticity of such
examples).

In addition to this, just the algebraic properties of the involutions δα̂ provide
many other involutions, whose commutation relations are interesting in themselves.

For example, we have

Proposition 2.1. Let α, δ as above. Then for all integers m,n, α̂nδα̂m are also
involutions.

Thus, there are many more involutions than the involution δα̂ given on [9].

Proof. Note that for all the constructions above we have αkδ = ιαk so

δ(αk(δm) · δm) = δδ(αk(δm) ·m) = ι(αk(m)) ·m = α̂−k(m)

and

(α̂nδα̂m)(α̂nδα̂m) = α̂n(δα̂m+nδ)αm = α̂n(α̂−(m+n))α̂m = identity.

�

In principle, all of these involutions are distinct. Note that (δα̂)−1 = δα̂ on the
one hand for being an involution, and on the other hand (δα̂)−1 = α̂−1δ, and we
have the commutation relation δα̂ = α̂−1δ. Then we have

α̂mδα̂n = α̂rδα̂s ⇐⇒ α̂m−rδα̂n−s = δ

⇐⇒ α̂m+s−r−nδ = δ, using the commutation relation above
⇐⇒ α̂m+s−r−n = identity ,

which generically does not happen if m + s− r− n 6= 0 (it indeed does not happen
in the primordial example given in the introduction).

In fact, we can relax the conditions; by asking not if these involutions are equal
but only if they commute. As an example, we have

Proposition 2.2. Let α, δ as above. Then α̂δ commutes δα̂ if and only if (̂αδ) is
a fourth root of unity.

Proof. We can consider both the sides of the comutator:

(α̂δ)(δα̂) = α̂2(2.1)

(δα̂)(α̂δ) = δα2δ.(2.2)

So the comutation of these involutions is equivalent to δα̂2 = α̂2δ. Now using the
identity α(δx) = α(x)−1 onde can deduce:

α̂2 = α(x)−2 · δx(2.3)

δα2δ = α2(x) · δx.(2.4)

This implies that δα̂2 = α̂2δ ⇐⇒ α4(x) · (δx) = δx. Calling δx = y and using
again that α(δx) = α(x)−1 we have α−4(y) · y = y what, by definition, means that
(̂αδ)4 = identity. �
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3. Bundles and geometric realizations

Say we have a twisted sphere Σn. In order to study its geometric properties,
or even computing basic differentiable invariants, one must construct some sort of
geometric model of it.

One of the ways of accomplishing this is via non-cancellation phenomena: for
example, it is known that for any twisted sphere Σ7, Σ7×S3 is diffeomorphic to the
standard product S7 × S3 [3, 14]. Then on the one hand, Σ7 will be the quotient
of Σ7 × S3 by the standard left action of S3 on itself. On the other hand, we can
translate this action via a diffeomorphism Σ7 × S3 → S7 × S3 to an action on the
standard product, and we are left with the “cross” diagram

S3y
S3 −−−−→ S7 × S3 −−−−→ S7y

Σ7

where the horizontal diagram is the canonical projection onto the first coordinate,
and the vertical arrows come from the translated action on Σ7 × S3. This would
give a geometric presentation of Σ7 as a quotient of a free S3 action on S7 × S3.
Sadly, no explicit formula for such a non-cancellation diffeomorphism is known.

The natural next step is then to consider principal S3-bundles over spheres in-
stead of products. Total spaces of such bundles can be diffeomorphic, giving a
“twisted non-cancellation”. The first and most well-known example is the Gromoll-
Meyer presentation of the Milnor sphere Σ7

2,−1 as a quotient of the Lie group Sp(2),
giving the non-trivial cross diagram

S3y
S3 −−−−→ Sp(2) −−−−→ S7y

Σ7

Here the horizontal projection is simply the projection to the first column of the
given matrix in Sp(2). The geometry of this cross diagram has been extensively
analyzed [1, 4, 5, 6, 7]; and has also been generalized to include all exotic 7-spheres
[8].

We shall presently see that all twisted spheres coming from the equivariant reen-
trance construction for G = SU(2) allow such twisted non-cancellation: let α̂ be
an equivariant reentrance corresponding to the equivariant map α : Sn → SU(2).
Let Dn+1 be the disk of radius π with polar coordinates (t, x) ∈ [0, π]×Sn and the
functions f, g : (Dn+1 − {0})× S3 → (Dn+1 − {0})× S3 defined by

f(x, t, q) = (δα̂(x), π − t, q(α(x))−1); g(x, t, q) = (δ(x), π − t, qα(x)),

and the spaces Σp = Dn+1 × S3 ∪f Dn+1 × S3 and Sp = Dn+1 × S3 ∪g Dn+1 × S3.
Then we have
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Theorem 3.1. The total spaces Σp and Sp are diffeomorphic.

Proof. Consider the map F : Dn+1 × S3 → Dn+1 × S3 defined by (t, x, q) 7→
(t, q · x, q̄). It is straightforward to see that fF = Fg and gF = Ff so it extends
to well-defined function FΣ : Σp → Sp and FS : Sp → Σp wich are inverse to each
other since F is an involution (compare §6 of [1]).

�

Then for all these examples, and in particular the bootstrapping examples of
section 2, we have the corresponding cross diagram

S3y
S3 −−−−→ Sp −−−−→ Sn+1y

Σn+1
α̂

which can be used to compute differentiable invariants of Σα̂. However, in order to
take geometric advantage of this result, the geometry of principal S3-bundles over
Euclidean spheres should be thoroughly understood; the example to follow being
Sp(2) as the generator of S3-bundles over the 7-sphere.

4. Smoothness and analiticity

As the main concern of these procedures is explicit realization of differentiable
exotic phenomena it is essential to study the differentiability of our constructions.
We have the following:

Proposition 4.1. Let α : Sn → SU(2) be as above and with continuous first
derivative, then α∗,h α and αh are of class C1.

Proof. Since the Hopf map is analytic it will be enough to prove the result for α∗.
We start by considering the map α∗ with a direct identification of the join with
Sn+3, and of SU(2) as the unit quaternions:

α∗ : Sn+3 → S3(
ξ
w

)
7→ α

(
w

|w|

)
eπξα

(
w

|w|

)−1

,

where ξ is a pure quaternion, w ∈ Rn+1 and |ξ|2 + |w|2 = 1. It is clear that the
critical set is when w = 0. Spelling out the exponential we have

α∗(ξ, w) = cos(π|ξ|) + sin(π|ξ|)α
(

w

|w|

)
ξ

|ξ|
α

(
w

|w|

)−1

.

It follows that the real part is also well behaved at a neighborhood of this set, so
we only need to deal with the imaginary part. Now consider x = (u, v) ∈ R3 × Rn

and the stereographic projection to Sn+3 given by:(
u
v

)
7→
(

ξ(u, v)
w(u, v)

)
=

(
2u

1+||x||2
||x||2+2v−1

1+||x||2

)
.
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Let θ : R3 × Rn − {0} → R3 × Rn − {0} be the map which normalizes the vectors,
then we have from the imaginary part:

Im(α∗(ξ, w)) = sin
2π|u|

1 + ||x||2
α(θ(w))θ(u)α(θ(w))−1.

As the derivative of the sine function is also good when |w| 6= 0, we can just worry
about the other part. For the existence of the derivative at |w| = 0 it is enough to
prove, for any given u with |u| = 1 and ξ(t) = (ξu(t), ξv(t)) ∈ R3 × Rn, a smooth
curve with ξ(0) = 0, that

lim
t→0

1
|ξ(t)|

∣∣∣∣sin 2π|u + ξu(t)|
1 + |x + ξ(t)|2

α(θ(w(x + ξ(t))))θ(u + ξu(t))α(θ(w(x + ξ(t))))−1

∣∣∣∣ = 0,

since in fact we are proving that the derivative is zero at those points.
As |α(θ(w)θ(u)α(θ(w))−1| = 1 for any u and w the above limit is equal to

lim
t→0

1
|ξ(t)|

∣∣∣∣sin 2π|u + ξu(t)|
1 + |x + ξ(t)|2

∣∣∣∣ = 0.

Now we have

π

|ξ|

(
1− 2|u + ξu|

1 + |x + ξ|2

)
=

π

|ξ|
· (|u + ξu| − 1)2 + |ξv|2

1 + |x + ξ|2
≤

≤ π

|ξ|
· (|u|+ |ξu| − 1)2 + |ξv|2

1 + |x + ξ|2
=

π

1 + |x + ξ|2
· |ξ|

2

|ξ|
.

With the first term going to π/2 and the second to zero. Knowing that sin(ξ) =
sin(π− ξ) a standard Taylor-expansion argument shows that the desired limit van-
ishes.

Letting now (u(t), v(t)) be a smooth curve with (u(0), v(0)) = (u, v) and w′ =
Dw(u,v)(u′(0), v′(0)), we set w(t) = (u(t), v(t)) and w(0) = w. Taking derivatives
we have:

d

dt
Adα(θ(w(t)))θ(u(t))

∣∣∣
t=0

=
[
Dαθ(w) ◦Dθw(w′)α(θ(w))−1, Adα(θ(w))θ(u)

]
(4.1)

+Adα(θ(w))(θ(u(t)))′(0).

The second term in the right-hand side of the expression is well behaved at
|w| → 0, for the first term we have

sinπ|ξ|Dθw =
sinπ(1− |ξ|)

1− |ξ|
1

1 + |ξ|

{
δi
j |w| −

wiwj

|w|

}
ij

.

As Dα has bounded norm as anmap from Sn to the linear operators algebra and
|α(θ(w))−1| = 1, the expression above goes to zero when |w| → 0 wich makes clear
that 4.1 goes to zero. Now a quick calculation shows that the derivative of sinπ|ξ|
vanishes as well in the desired set, and therefore α∗ is C1. �

For a restricted class of maps we can proceed in another way. Consider the
following composition
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S2 ∗ Sn → S2 ∗ S3 → S3(
ξ
w

)
7→

(
ξ

|w|α
(

w
|w|

)) 7→ b
(
ξ, |w|α

(
w
|w|

))
Noting that the last term is exactly α∗ we prove the following result:

Proposition 4.2. If for w ∈ Dn+1 the map w 7→ |w|α(w|w|−1) is analytic then α∗

is also analytic.
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