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INTRODUCTION
In the field of financial time series, there are few works

on procedures to obtain prediction intervals (PI) for returns,
volatilities and covariances when are in multivariate case.
In general, PI is calculated under the assumption that the
model is known and has normal distribution errors, how-
ever features in financial time series make that the usual
approach is not adequate. An alternative to this problem
is to obtain PI using bootstrap procedures, which do not
require the choice of a distribution to the innovations and
can handle the problem of the estimation error. [3] present
a method for calculate bootstrap PI in GARCH models,
[4] adapt this methodology and calculate bootstrap PI for
models EGARCH and GJR-GARCH. Prediction intervals in
multivariate volatility models has been understudied. This
work is one first approach for obtain bootstrap prediction
intervals in multivariate volatility models.

METHODOLOGY
[3] proposed a bootstrap algorithm to obtain PI for re-

turns and volatilities in GARCH models. We adapt the algo-
rithm to Multivariate GARCH Model DCCE [1], [2].

ALGORITHM
Consider rT a sequence two dimensional of T observa-

tions generated by the process DCC(1,1)-GARCH(1,1). The
algorithm is described for process DCC(1,1)-GARCH(1,1)
with K = 2 dimensions, but it is easily generalized to a
DCC(m,n)-GARCH(p,q) process with more than K = 2 di-
mensions in a straightforward way.

• Step 1: Obtain estimates of the process parameters
DCC-GARCH(1,1) θ = (ω1, ω2, α1, α2, β1, β2, a, b) give
by θ̂ = (ω̂1, ω̂2, α̂1, α̂2, β̂1, β̂2, â, b̂). Calculate the vec-
tors of residues centered ε̂t − ¯̂ε, where ε̂t = D−1

t rt and
Dt is a diagonal matrix with components Dkkt = σ̂kt;

• Step 2: Obtain the residues standardized εt = ε̄tR̂t
−1/2

and denote by F̂T the empirical distribution of the
residues standardized;

• Step 3: Obtain the residues bootstrap ε∗t = ε∗t R̂
∗
t
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t =
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• Step 4: Generate a bootstrap series r∗T = (r∗1T , r
∗
2T ),

where r∗kT is calculated using the following recursion:
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• Step 6: Calculate forecasts of returns,volatilities and
covariance h steps ahead, h = 1, 2, ... using the fol-
lowing recursion: r∗T (h) = ε∗T (h)D∗

T (h) H∗
T (h) =

σ∗
T (h)R∗

Tσ
∗
T (h), where σ∗

T (h) = c(σ∗
1T (h), σ∗

2T (h)) and
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∗
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rkT (h) = ε∗T (h)σ∗
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T (h − 1) ε∗T (h) =

ε∗T (h)R
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• Step 7: Repeat steps 4 - 6, B times and there by obtain
B bootstrap replicates (r

∗(1)
T (h), ..., r

∗(B)
T (h)), where

y
∗(l)
T (h) is r∗(l)T (h), σ∗(1)

T (l) or Cov∗(1)T (l) respectively.
The limits of prediction for rT (h), σT (h) and CovT (h)
are defined as the quantiles of bootstrap r∗T (h), σ∗

T (h)
e Cov∗T (h).

SIMULATION STUDY
Here we analyze the performance of the suggested al-

gorithm through Monte Carlo simulation. We consider the
model DCC-GARCH(1,1) with normal distribution in the
disturbances. The model is:

rt = H
1/2
t εt

Ht = DtRtDt

(4)

where
Rt = Q

′−1/2
t QtQ

′−1/2
t (5)

Qt = (1− 0.015− 0.94)Q̄+ 0.015εt−1ε
T
t−1 + 0.94Qt−1 (6)

Q
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[ √
q11t 0
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q22t
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[
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0 σ2,t
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and

σ2
1,t = 0.01 + 0.1r21,t−1 + 0.86σ2

1,t−1 (7)

σ2
2,t = 0.005 + 0.07r22,t−1 + 0.88σ2
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The persistence in the two models GARCH(1,1) are 0.96
and 0.95 respectively.

SIMULATION ALGORITHM
For the model we ran 100 replications. For each replica-

tion we have three steps. Thus for the k-th replication have:

• Step 1: Generate a two variate series with size T =
1000. That is generate rt and σt for t = 1, · · · , 1000;

• Step 2: Run steps 1 to 7 given in before subsection to
find the h = 1, 2, 3, 4, 5 steps-ahead 95%-PI for the re-
turns, volatilities and covariance of the two series;

• Step 3: Generate 1000 sets of future values {rik,T+j , j =

1, · · · , 5, i = 1, · · · , 1000}, {σik,T+j , j = 1, · · · , 5, i =

1, · · · , 1000} and {Covik,T+j , j = 1, · · · , 5, i =
1, · · · , 1000} considering that the previous observa-
tions are given in Step 1. For h = 1, 2, 3, 4, 5, denote
by prq(h) the proportions of the values {rik,T+h, i =
1, · · · , 1000} which are inside, below the lower and
above the upper limit of the PI found in step 2. De-
fine similarly pσq (h) and pCovq (h) for volatilities and the
covariance respectively.

RESULTS
Table 1: Summary of the Simulations of the prediction intervals for returns and volatilities of DCC-GARCH(1,1) models.

h-steps-ahead prediction. Nominal coverage 95%.

series 1 series 2

Horizon Average Standard Av. below Average Average Standard Av. below Average
coverage error coverage length coverage error coverage length

returns

h = 1 0.9476 0.0134 0.0256 1.8586 0.9477 0.0175 0.0255 1.2000
h = 2 0.9488 0.0136 0.0261 1.8716 0.9478 0.0158 0.0246 1.2058
h = 3 0.9492 0.0134 0.0251 1.8854 0.9468 0.0147 0.0255 1.2067
h = 4 0.9489 0.0136 0.0244 1.8806 0.9446 0.0149 0.0269 1.2005
h = 5 0.9483 0.0141 0.0255 1.8902 0.9474 0.0147 0.0252 1.2121

volatilities

h = 1 0.9300 0.2564 0.0200 0.0235 0.9300 0.2564 0.0400 0.0449
h = 2 0.9555 0.1063 0.0243 0.0398 0.9397 0.1302 0.0290 0.0752
h = 3 0.9452 0.0952 0.0318 0.0479 0.9392 0.1092 0.0291 0.0921
h = 4 0.9388 0.0947 0.0376 0.0541 0.9364 0.0953 0.0315 0.1042
h = 5 0.9350 0.0921 0.0396 0.0582 0.9310 0.0920 0.0343 0.1135

Table 2: Summary of the Simulations of the prediction intervals for covariances of DCC-GARCH(1,1) models. h-steps-ahead
prediction. Nominal coverage 95%.

Horizon Average Standard Av. below Av. above Average
coverage error coverage coverage length

h = 1 0.9300 0.2564 0.0200 0.0500 0.0235
h = 2 0.9555 0.1063 0.0243 0.0202 0.0398
h = 3 0.9452 0.0952 0.0318 0.0230 0.0479
h = 4 0.9388 0.0947 0.0376 0.0236 0.0541
h = 5 0.9350 0.0921 0.0396 0.0254 0.0582

APPLICATION VAR
The bootstrap V aR 95% was calculated considering that

the portfolio was built considering the same weighing to
each asset. We ran 100 replications, thus for each replication
we have:

• Obtain {r∗iT (h), h = 1, · · · , 5, i = 1, · · · , 1000}

• Compute the empirical distribution bootstrap
of the log-return h steps ahead of the portfolio

log(

K∑
k=1

pke

h∑
j=1

ri∗kT (j)

) where
K∑
k=1

pk = 1

• The V aRboot(h) 95% is obtain how the quantile 5% of
the log-return of the portfolio

RESULTS VAR
For each replication the V aRboot(h) 95% was compared

with the log-return of the portfolio h steps ahead obtained
by simulation. Is the value of the log-return of the portfolio
h steps ahead was less than V aRboot(h) 95% then the value
1 was assigned otherwise the value 0 was assigned. The re-
sults are in the Table 3.

Table 3: Summary of Value-at-Risk 95% h-steps-ahead
using bootstrap procedure.

VaR 95%

Steps ahead h = 1 h = 2 h = 3 h = 4 h = 5
Mean 0.0512 0.0503 0.0513 0.0512 0.0508
D.P 0.0125 0.0115 0.0109 0.0106 0.0111
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