
BOOTSTRAP PREDICTION IN UNIVARIATE VOLATILITY
MODELS WITH LEVERAGE EFFECT

CARLOS TRUCIOS MAZA AND LUIZ K. HOTTA

INTRODUCTION
The prediction of future values is a key objective in time

series analysis, and it is of interest in many areas of knowl-
edge. In general, prediction intervals (PI) is calculated un-
der the assumption that the model is known and has nor-
mal distribution errors, because under these assumptions,
PI may be easily obtained knowing only the mean and stan-
dard deviation. The field of financial time series is no excep-
tion, there are also few works on procedures to obtain PI for
returns and volatilities. Because financial time series have
some especial features like leverage effect and asymmetric
distribution the innovations, the usual approach is not ade-
quate. An alternative is to obtain PI using bootstrap proce-
dures, which do not require the choice of a distribution to
the innovations.

METHODOLOGY
We present an adaptation of the PRR algorithm proposed

by Pascual, Romo, and Ruiz (2006) for the GARCH process
for application in EGARCH (Nelson,1991) and GJR-GARCH
models (Glosten et al., 1993). These modifications keep the
original idea of PRR, i.e., incorporating the element of uncer-
tainty in parameter estimation and making no assumptions
about the distribution of the innovations.

ALGORITHM FOR GJR-GARCH MODELS
Consider RT a sequence of T observations generated by

the process GJR-GARCH(1,1). The algorithm is described
for process GJR-GARCH (1,1), but it is easily generalized to
a GJR-GARCH (p,q) process in a straightforward way.

• Step 1: Estimate the model with the observed data and
calculate the centered residuals. Denote by F̂T the em-
pirical distribution of the centered residuals.

• Step 2: Generate a bootstrap series r∗t , t = 1, ..., T using
the following recursion:

σ̂∗2
t = ω̂ + α̂r∗2t−1 + β̂σ̂∗2

t−1 + γ̂r∗2t−1I(r
∗
t−1 < 0))

r∗t = ε∗t σ̂
∗
t ,

(1)

where ε∗t ∼ i.i.d F̂T . Finally adjust the boot-
strap sequence r∗T to obtain the bootstrap estimates
(ω̂∗, α̂∗, β̂∗, γ̂∗).

• Step 3: Calculate forecasts of returns and volatilities h
steps ahead, h = 1, 2, ... using the following recursion:

σ̂∗2
T (h) = ω̂∗ + α̂∗r∗2T (h− 1) + β̂∗σ̂∗2

T (h− 1)

+ γ̂∗r∗2T (h− 1)I(r∗T (h− 1) < 0)

r∗T (h) = ε∗T (h)σ̂
∗
T (h),

(2)

where ε∗T (h) ∼ i.i.d F̂T , r∗T = rT and

σ∗2
T (0) =

ω∗

1− α∗ − β∗ − γ∗P
+ α∗

T−2∑
i=0

β∗ir2T−i−1

− (α∗ + γ∗P )
ω∗

1− α∗ − β∗ − γ∗P

T−2∑
i=0

β∗i

+ γ∗
T−2∑
i=0

β∗ir2T−i−1I(rT−i−1 < 0),

(3)

where P = Prob(rt < 0).

• Step 4: Repeat steps 2 and 3, B times to ob-
tain B bootstrap replicates (r

∗(1)
T (h), ..., r

∗(B)
T (h)) and

(σ
∗(1)
T (h), ..., σ

∗(B)
T (h)). Then a 100(1−γ)% PI for r∗T (h)

is given by:

[Q∗
r,B(

γ
2 ), Q

∗
r,B(1−

γ
2 )],

where: Q∗
r,B = G∗−1

r,B , and G∗
r,B(h) =

#(r∗bT (h)≤h)
B . Simi-

larly, obtain a PI for volatility.

ALGORITHM FOR EGARCH MODELS
Let RT be a sequence of T observations generated by the

EGARCH(1,1) process. Steps 1, 2 and 4 are similar to those
described in the previous algorithm. Step 3 is modified as
follows:

• Step 3: Calculate forecasts of returns and volatilities h
steps ahead, h = 1, 2, ... using the following recursion:

log(σ̂∗2
T (h)) = ω̂∗ + α̂∗ r

∗
T (h)

σ∗
T (h)

+ γ̂∗[

∣∣∣∣ r∗T (h− 1)

σ∗
T (h− 1)

∣∣∣∣−M ]

+ β̂∗log(σ∗2
T (h− 1))

r∗T (h) = ε∗T (h)σ̂
∗
T (h),

(4)

where ε∗T (h) ∼ i.i.d F̂T , M = E(|εT |), r∗T = rT and:

log(σ̂∗2
T (0)) =

ω∗

1− β∗ + α∗
T−2∑
i=0

β∗j rT−1−j

σ∗
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(5)

SIMULATION STUDY
Here we analyze the performance of the suggested algo-

rithm through Monte Carlo simulation. We consider four
models, EGARCH (1,1) and GJR-GARCH(1,1) models with
skew-normal (SN) and skew-t (ST) distributions for the in-
novations. The models are:

• EGARCH(1, 1)

log(σ2
t ) = −0.3474− 0.1420εt + 0.2195(|εt−1|
− E(|εt−1|)) + 0.9496log(σ2

t−1)
(6)

• GJR−GARCH(1, 1)

σ2
t = 0.01 + 0.05ε2t−1 + 0.15ε2t−1I(εt−1 < 0)

+ 0.83σ2
t−1

(7)

where εt are innovations. In the EGARCH(1,1) model we
considered innovations with SN(λ = 0.7) and ST(λ = 0.8,
shape = 6) distributions, while for the GJR-GARCH(1,1)
model we considered innovations with SN(λ = 0.7) and ST
(λ = 0.8, shape = 7) distributions. The distributions were
parameterized as in Fernandez and Steel (1998), such that,
when λ = 1, the ST (λ,shape) distribution is symmetric. For
each model we ran 1000 replications

SIMULATION ALGORITHM
For each replication we have three steps. For the k-th replication the steps are:

Step 1: Generate a series with size T = 1000. That is generate {rt, t = 1, · · · , 1000} and {σt, t = 1, · · · , 1000}.
Step 2: Run the algorithm for GJR model or EGARCH model to find the h = 1, 3, 5 steps-ahead 95%-PI for the returns and
volatilities.
Step 3: Generate 1000 sets of future values values riT+j and σiT+j , j = 1, · · · , 5, i = 1, · · · , 1000 considering that the previous
observations are the same as given in Step 1. Calculated the proportions of the values {riT+h, i = 1, · · · , 1000} which are
inside the PI found in step 2, below the lower limit of the PI and above the PI, respectively. Similarly for the volatilities.

RESULTS
The analysis of the results shows that the performance of the proposed bootstrap procedure to obtain PI for the returns

and volatilities for all the models was very good, with the empirical coverage close to the nominal values. However, while
for the returns we have approximately the same proportion of observations below and above the PI, for the volatilities the
proportion of values above the PI is larger than below the PI. We ran further analysis to study the effect of additive outliers
in the PI. We found out that when an additive outlier is inserted in the series, the effect can be very large when the outlier is
near the end of the series. Thus, the presence of an additive outlier must be treated with care.

Table 1: Summary of the Simulations of the prediction intervals for returns and volatilities of EGARCH(1,1) and
GJR-GARCH(1,1) models. h-steps-ahead prediction. Nominal coverage 95%.

Horizon Innovations Average Standard Av. below Av. above Average
distrib. coverage error coverage coverage length

EGARCH

Returns

h=1
SN 0.94801 0.01521 0.02548 0.02652 0.13060
ST 0.94842 0.01593 0.02517 0.02641 0.13720

h=3
SN 0.94839 0.01463 0.02547 0.02614 0.13315
ST 0.94891 0.01554 0.02492 0.02618 0.13998

h=5
SN 0.94802 0.01454 0.02556 0.02642 0.13531
ST 0.94842 0.01608 0.02527 0.02631 0.14163

Volatilities

h=1
SN 0.94700 0.22415 0.02300 0.03000 0.00581
ST 0.94000 0.23761 0.02700 0.03300 0.00774

h=3
SN 0.95122 0.06246 0.02019 0.02859 0.02210
ST 0.94815 0.07980 0.02370 0.02815 0.02501

h=5
SN 0.95116 0.04329 0.01980 0.02904 0.02915
ST 0.94795 0.05861 0.02338 0.02868 0.03303

GJR-GARCH

Returns

h=1
SN 0.94792 0.01445 0.02547 0.02661 1.87202
ST 0.94756 0.01492 0.02551 0.02693 1.82846

h=3
SN 0.94797 0.01451 0.02552 0.02651 1.90349
ST 0.94756 0.01508 0.02585 0.02660 1.85562

h=5
SN 0.94846 0.01451 0.02503 0.02651 1.93542
ST 0.94792 0.01496 0.02552 0.02656 1.88851

Volatilities

h=1
SN 0.94500 0.22809 0.02300 0.03200 0.08118
ST 0.94500 0.22809 0.01700 0.03800 0.10075

h=3
SN 0.95052 0.07615 0.02163 0.02785 0.30929
ST 0.95229 0.07738 0.01834 0.02937 0.32566

h=5
SN 0.94821 0.05833 0.02361 0.02818 0.40440
ST 0.94804 0.06531 0.02171 0.03025 0.42995
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