Simple Random Walk in Two Dimensions

A Guided Tour

Serguei Popov
Contents

Preface

Preface

Notations

Notations

1 Introduction

1.1 Markov chains and martingales: basic definitions and facts

2 Recurrence of the walk

2.1 Classical proof

2.2 Electric networks

2.3 Lyapunov functions

2.4 Exercises

3 Some potential theory for simple random walks

3.1 Transient case

3.2 Potential theory in two dimensions

3.3 Exercises

4 Simple random walk conditioned on not hitting the origin

4.1 Doob’s h-transforms

4.2 Conditioned SRW: basic properties

4.3 Range of the conditioned SRW

4.4 Exercises

5 Intermezzo: Soft local times and Poisson processes

5.1 Soft local times

5.2 Notations and results

5.3 Poisson processes of objects

iii
iv

Contents

5.4 Exercises 129

6 Two-dimensional random interlacements 134
6.1 Introduction: random interlacements in dimension \(d \geq 3 \) 134
6.2 The two-dimensional case 135
6.3 Proofs for random interlacements 142
6.4 Exercises 146
Hints and solutions to selected exercises 147

Hints and solutions to selected exercises 147

References 160

Index 164

Index 164
Preface

Ready by now:

- Section 1.1: Basic definitions and facts
- Section 2.1: Classical proof (of recurrence)
- Section 2.3: Lyapunov functions
- Section 2.4: Exercises (for Sections 2.1 and 2.3)
- Chapter 3: Potential theory
- Chapter 4: Conditioned SRW (except the range part)
- Chapter 5: Intermezzo (except the “exact coupling” for Markov chains part)

At the moment, other things in this book are mostly copy/paste.

**

How does it look like when a mathematician explains something to a fellow mathematician (postdocs included)? (rewrite it a bit)

Everyone knows: there are many pictures on the blackboard, there is a lot of intuition flying around, and so on. It is not surprising that mathematicians often prefer a conversation with a colleague instead of “simply” reading a book. So, the initial idea was to write a book as if I was just explaining things to a colleague or a research student. In such a book, there should be a lot of pictures, and plenty of detailed explanations, so that the reader would hardly have any questions left. After all, wouldn’t it be nice that a person could just read in a bus (bed, park, sofa, etc.) and still learn some ideas from contemporary mathematics? Write something like: the author has to confess that, unfortunately, as attested by many early readers, he ultimately failed in this endeavour. Still, hope that at least some pieces etc.

Sometimes the proof of a mathematical fact is difficult, with lots of technicalities which are hard to follow. It is not uncommon that
Preface

people have troubles with understanding such proofs without first getting a “general idea” about what is going on. Also, one forgets technicalities but general ideas remain (and if the ideas are not forgotten, the technical details can usually be reconstructed with some work). So, in this book the following approach is used. The author always prefers to explain the intuition first. If the proof is instructive and not too long, it will be there. Otherwise, we let the interested reader to look up the details in other books and/or papers.

In other words, our approach can be characterized in the following way: we want to understand all things through a direct probabilistic intuition. Yes, the author is aware that the latter is generally not possible. On the other hand, it is still easier to “claim the territory” using the means that one controls quite well and then extend one’s dominion over is by some additional means, than to try claiming that territory with unfamiliar tools.

This book revolves around the two dimensional simple random walk, seemingly simple but very special and fascinating mathematical object. The purpose of this book is not to provide a complete treatment of that object, but rather make an interesting tour around it. In the end we will come to a relatively new topic of random interlacements (which can be viewed as “canonical” nearest-neighbour loops through infinity), and on the way we will take our time to digress to some related topics which are somewhat under-represented in the literature, such as, for example, Doob’s h-transforms for Markov chains.

Readership and level

We expect our book to be of interest to research students and postdocs working with random walks, and to mathematicians in neighbouring fields.

It is better suited for those who want to “get the intuition first”, i.e., first obtain a general idea of what is going on, and only after that pass to technicalities. The author is aware that not everybody likes this approach but still hopes that the book will find its audience.

The technical prerequisites will be rather mild. The technical material in the book will be at a level accessible to graduate students in probability, for instance, with some background in mar-
tingales and Markov chains (at the level, for instance, of [21]); the book will be largely self-contained (we also recall all necessary definitions and results in Chapter 1).

As explained above, this book is designed primarily for self-study, but it can also be used for a one-semester course in additional topics in Markov chains.

The author would like to warn the reader already at this point that, in order to make the book more accessible, he prefers to sometimes exaggerate on explaining things and writing explicitly what a considerable proportion of the readers may consider too evident. Therefore, if you find that some arguments are simply too evident and/or too well-known, that’s probably because that they are so indeed. Please forgive the author for that and be guaranteed that it is certainly not a sign of disrespect.

Relation to other recent books

Many topics of this book are treated at length in the literature, e.g. [20, 33, 36]; on the other hand, it contains some recent advancements (namely, soft local times and two-dimensional random interlacements) that were not covered in other books. In any case, the main distinguishing feature of this book is not its content, but rather the way it is presented.

Special thanks are due to those whose collaborations directly relate to material presented in one or more of the chapters of this book: Francis Comets, Nina Gantert, Mikhail Menshikov, Augusto Teixeira, Marina Vachkovskaia, and Andrew Wade. I also thank Daniel Ungaretti Borges, Gustavo Henrique Tasca, Victor Freguglia Souza, Thainá Soares Silva, Matheus Gorito de Paula, who read the manuscript at different stages and made many useful comments and suggestions.
Notations

Here we list the notations recurrently used in this book.

- **shall we use** $x \cdot e$ **or** (x, e) **for scalar products??**
- \asymp means that ... also \preceq, \succeq, \ll, etc. – decide what looks better
- O's and o's are Landau notations ...
- $|A|$ is the cardinality of a finite set A
- $1\{\ldots\}$ is the indicator of the event $\{\ldots\}$
- $a \land b = \min\{a, b\}$, $a \lor b = \max\{a, b\}$
- $\| \cdot \|$ is the Euclidean norm in \mathbb{R}^d or \mathbb{Z}^d
- we write $x \sim y$ if x and y are neighbours in \mathbb{Z}^d (i.e., $x, y \in \mathbb{Z}^d$ and $\|x - y\| = 1$)
- for $A \subset \mathbb{Z}^d$, $A^c = \mathbb{Z}^d \setminus A$ is the complement of A, $\partial A = \{x \in A :$ there exist $y \in A^c$ such that $x \sim y\}$ is the boundary of A, and $\partial_e A = \partial A^c$ is the external boundary of A
- $(e_k, k = 1, \ldots, d)$ are the canonical coordinate vectors in \mathbb{R}^d or \mathbb{Z}^d
- $\mathcal{N} = \partial_e \{0\} \subset \mathbb{Z}^2$ is the set of the four neighbours of the origin (in two dimensions)
- $B(x, r) = \{y : \|y - x\| \leq r\}$ is the ball (disk) in \mathbb{R}^d or \mathbb{Z}^d; $B(r)$ stands for $B(0, r)$
- $(S_n, n \geq 0)$ is the simple random walk (also abbreviated as SRW) in \mathbb{Z}^d
- $(\hat{S}_n, n \geq 0)$ is the simple random walk in \mathbb{Z}^2 conditioned on never hitting the origin
- $\tau_A \geq 0$ and $\tau_A^+ \geq 1$ are entrance and hitting times of A by the SRW
- $\hat{\tau}_A \geq 0$ and $\hat{\tau}_A^+ \geq 1$ are entrance and hitting times of A by the conditioned SRW
- $G(\cdot, \cdot)$ is the Green’s function for the SRW in three or more
dimensions, $G_\Lambda(\cdot, \cdot)$ is the Green’s function restricted on Λ, and $a(\cdot, \cdot)$ is the potential kernel for the two-dimensional SRW.

- $N_x, N^{(k)}_x, N^y_x, N^z_x,$ what else?.. (for the visit counts)
Introduction

Introduction: why it is such a fascinating mathematical object. The two-dimensional case is really critical. Blablabla.

Let us recall the classical Polya’s theorem:

Theorem 1.1 *Simple random walk in dimension \(d \) is recurrent for \(d = 1, 2 \) and transient for \(d \geq 3 \).*

A well known interpretation of this fact, attributed to Kakutani, is: “a drunken man always returns home, but a drunken bird will be eventually lost”. This result may explain why birds do not drink vodka, a fact well-known to ornithologists.

Due to (3.42), probability to escape to \(\partial B(n) \) is approximately \((1.0293737 + \frac{2}{5} \ln n)^{-1}\).

Here: some funny examples for the above (step out of Paris starting in Louvre, step out of our galaxy, all before coming back to the origin).

Radius of Paris is around 5000m, and \((1.0293737 + \frac{2}{5} \ln 5000)^{-1} \approx 0.155\). Radius of the Milky Way galaxy is around \(10^{21}\)m, and \((1.0293737 + \frac{2}{5} \ln 10^{21})^{-1} \approx 0.031\). (Yes, when one starts in the center of our galaxy, there is a risk that the starting location happens to be in a big black hole; we restrict ourselves to purely mathematical aspects of the above question, though.)

Also: write about how is difficult to simulate the two-dimensional SRW. E.g., estimate how long shall we wait until it returns to the origin, say, a hundred times.

Future side quests include: E.g., Lyapunov functions etc.

About some interesing things that we will not discuss. A little blablabla about other things, also put some pictures of DLA, they are nice :)

Level: [21] should be enough. We assume that the reader is...
familiar with the basic concepts of probability theory, including
convergence of random variables and uniform integrability.

List literature, [33, 45] etc.

In the following, further contents of the book is described. At
the end of each chapter (except for the introduction) there is a
list of exercises, and at the end of the book there is a section
with hints and solutions to selected exercises. A note about the
exercises: they are mostly not meant to be easily solved during a
walk in the park; the purpose of at least some of them is to guide
an interested reader who wants to dive deeper into the subject.

1.1. Basic definitions. General overview of the book, and motiva-
tion. Some words about why the simple random walk in two
dimensions is such a fascinating mathematical object (in some
sense, the two-dimensional case is really critical).

Also, we recall here some basic definitions and facts for Markov
chains and martingales, mainly for reference purposes.

1. Recurrence of the walk. First, we recall two well-known proofs
of recurrence of two-dimensional simple random walk: the clas-
sical combinatorial proof, and the proof with electric networks.
We then observe that the first proof heavily relies on specific
combinatorics and so it is very sensitive to small changes of
the model’s parameters, and the second one only applies to
reversible Markov chains. Then, we present a very short in-
troduction to the Lyapunov functions method (which neither
requires reversibility nor is sensitive to small perturbations of
transition probabilities). Generally speaking, this method con-
sists of finding a function (from the state space of the stochastic
process to \mathbb{R}) such that the image under this function of the
stochastic process is, in some sense, “nice”. That is, this new
one-dimensional process satisfies some conditions that enable
one to obtain results about it and then transfer these results
to the original process.

2. Some potential theory for simple random walks. This chapter
will contain a gentle introduction to the potential theory for
simple random walks, first in the transient case ($d \geq 3$), and
then in two dimensions. The idea is only to recall and discuss
the basic concepts (such as Green’s function, potential kernel,
harmonic measure) needed in the rest of the book, and then ob-
tain explicit estimates of two-dimensional capacities and hitting
Introduction

probabilities, for many different kind of sets. These estimates will be heavily used in Chapters 4 and 6; also, hopefully, they may prove useful for the readers of the book in other circumstances.

3. Simple random walk conditioned on not hitting the origin. Here, we first recall the idea of Doob’s h-transform, which permits us to represent a conditioned (on an event of not hitting some set) Markov chain as a (unconditional) Markov chain with a different set of (possibly time-dependent) transition probabilities. We consider a few classical examples and discuss some properties of this construction. Then, we work with the Doob’s transform of the simple random walk in two dimensions, with respect to its potential kernel. It turns out that this conditioned simple random walk is a fascinating object on its own right; just to cite one of its properties, the probability that a site y is ever visited by the walk started somewhere close to the origin, converges to $1/2$ as $y \to \infty$. Perhaps even more surprisingly, the proportion of visited sites of “typical” large sets approaches in distribution a Uniform$[0, 1]$ random variable.

4. Intermezzo: Soft local times and Poisson processes of objects. This chapter is about two topics, apparently unrelated to simple random walks. One is called soft local times; generally speaking, the method of soft local times is a way to construct an adapted stochastic process on a general space Σ, using an auxiliary Poisson point process on $\Sigma \times \mathbb{R}_+$. In Chapter 6 this method will be an important tool for dealing with excursion processes. Another topic we discuss is “Poisson processes of infinite objects”, using as an introductory example the Poisson line process\footnote{judging from the author’s experience, many people working with random walks do not know how Poisson line processes are constructed}. While this example per se is not formally necessary for the book, it helps to get some intuition about of what will happen in the next chapter.

5. Two-dimensional random interlacements. In this chapter we discuss random interlacements, which are Poisson processes of simple random walk trajectories. First, we review Sznitman’s random interlacements model in dimension $d \geq 3$, \cite{Sznitman}. Then, we discuss the two-dimensional case recently introduced in \cite{Biskup}; it is here that various plot lines of this book finally meet. This
model will be constructed using the trajectories of the simple random walk conditioned on not hitting the origin, studied in Chapter 4. Using estimates on two-dimensional capacities and hitting probabilities from Chapter 3, we then prove several properties of the model, and the soft local times will enter as an important tool in some of these proofs. As stated by Sznitman in [49], “One has good decoupling properties of the excursions . . . when the boxes are sufficiently far apart. The soft local time technique . . . offers a very convenient tool to express these properties”.

The next section is intentionally kept dry and concise, since the author hopes that the reader would not really read it, but would rather occasionally use it for reference purposes.

1.1 Markov chains and martingales: basic definitions and facts

First, let us recall some basic definitions related to real-valued stochastic processes with discrete time. In the following, all random variables are defined on a common probability space \((\Omega, \mathcal{F}, \mathbb{P})\). We write \(\mathbb{E}\) for expectation corresponding to \(\mathbb{P}\), which will be applied to real-valued random variables. Set \(N = \{1, 2, 3, \ldots\}\), \(\mathbb{Z}_+ = \{0, 1, 2, \ldots\}\), \(\mathbb{Z}_+^\infty = \mathbb{Z}_+ \cup \{+\infty\}\).

Definition 1.2 (Basic concepts for discrete-time stochastic processes)

- A discrete-time real-valued **stochastic process** is a sequence of random variables \(X_n : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})\) indexed by \(n \in \mathbb{Z}_+\), where \(\mathcal{B}\) is the Borel sigma-field. We write such sequences as \((X_n, n \geq 0)\), with the understanding that the time index \(n\) is always an integer.
- A filtration is a sequence of \(\sigma\)-fields \((\mathcal{F}_n, n \geq 0)\) such that \(\mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{F}\) for all \(n \geq 0\). Let us also define \(\mathcal{F}_\infty := \sigma(\bigcup_{n \geq 0} \mathcal{F}_n) \subset \mathcal{F}\).
- A stochastic process \((X_n, n \geq 0)\) is **adapted** to a filtration \((\mathcal{F}_n, n \geq 0)\) if \(X_n\) is \(\mathcal{F}_n\)-measurable for all \(n \in \mathbb{Z}_+\).
- For a (possibly infinite) random variable \(\tau \in \mathbb{Z}_+\), the random variable \(X_\tau\) is (as the notation suggests) equal to \(X_n\) on \(\{\tau = n\}\).
1.1 Basic definitions

\[n \} \text{ for finite } n \in \mathbb{Z}_+ \text{ and equal to } X_\infty := \limsup_{n \to \infty} X_n \text{ on } \{ \tau = \infty \}.
\]

- A (possibly infinite) random variable \(\tau \in \mathbb{Z}_+ \) is a stopping time with respect to a filtration \((\mathcal{F}_n, n \geq 0) \) if \(\{ \tau = n \} \in \mathcal{F}_n \) for all \(n \geq 0 \).

- If \(\tau \) is a stopping time, the corresponding \(\sigma \)-field \(\mathcal{F}_\tau \) consists of all events \(A \in \mathcal{F}_\infty \) such that \(A \cap \{ \tau \leq n \} \in \mathcal{F}_n \) for all \(n \in \mathbb{Z}_+ \). Note that \(\mathcal{F}_\tau \subset \mathcal{F}_\infty \); events in \(\mathcal{F}_\tau \) include \(\{ \tau = \infty \} \), as well as \(\{ X_\tau \in B \} \) for all \(B \in \mathcal{B} \).

- For \(A \in \mathcal{B} \) let us define

\[\tau_A = \min \{ n \geq 0 : X_n \in A \}, \quad \text{(1.1)} \]

and

\[\tau_A^+ = \min \{ n \geq 1 : X_n \in A \}; \quad \text{(1.2)} \]

we may refer to either \(\tau_A \) or \(\tau_A^+ \) as the hitting time of \(A \) (also called the passage time into \(A \)). It is straightforward to check that both \(\tau_A \) and \(\tau_A^+ \) are stopping times.

Observe that, for any stochastic process \((X_n, n \geq 0) \), one can define the minimal filtration to which this process is adapted via \(\mathcal{F}_n = \sigma(X_0, X_1, \ldots, X_n) \). This is the so-called natural filtration.

To keep the notation concise, we will frequently write \(X_n \) and \(\mathcal{F}_n \) instead of \((X_n, n \geq 0) \) and \((\mathcal{F}_n, n \geq 0) \) and so on, when no confusion will arise.

Next, we need to recall some martingale-related definitions and facts.

Definition 1.3 (Martingales, submartingales, supermartingales)

A real-valued stochastic process \(X_n \) adapted to a filtration \(\mathcal{F}_n \) is a martingale (with respect to the given filtration) if, for all \(n \geq 0 \),

(i) \(\mathbb{E}|X_n| < \infty \), and

(ii) \(\mathbb{E}[X_{n+1} - X_n \mid \mathcal{F}_n] = 0. \)

If in (ii) “=” is replaced by “\(\geq \)” (respectively, “\(\leq \)”), then \(X_n \) is called a submartingale (respectively, supermartingale).

Evidently, if \(X_n \) is a submartingale then \(-X_n \) is a supermartingale, and vice versa; also, a martingale is both submartingale and supermartingale. Also, one can easily check the important
Introduction

fact that, if X_n is a (sub-, super-)martingale, then so is $X_{n \wedge \tau}$ for any stopping time τ.

Martingales have a number of remarkable properties; we do not even try to elaborate on this topic here. Let us only cite the paper [39], whose title speaks for itself. In the following, we mention only the results needed in this book.

One of fundamental results is the martingale convergence theorem:

Theorem 1.4 (Martingale convergence theorem) Assume that X_n is a submartingale such that $\sup_n E[X_n^+] < \infty$. Then there is an integrable random variable X such that $X_n \rightarrow X$ a.s. as $n \rightarrow \infty$.

Observe that, under the hypotheses of Theorem 1.4, the sequence $E[X_n]$ is non-decreasing (by the submartingale property) and bounded above by $\sup_n E[X_n^+]$, so $\lim_{n \rightarrow \infty} E[X_n]$ exists and is finite; however, it is not necessarily equal to $E[X]$.

Using Theorem 1.4 and Fatou’s lemma, it is straightforward to obtain that the following result holds:

Theorem 1.5 (Convergence of non-negative supermartingales) Assume that $X_n \geq 0$ is a supermartingale. Then there is an integrable random variable X such that $X_n \rightarrow X$ a.s. as $n \rightarrow \infty$, and $E[X] \leq E[X_0]$.

Another fundamental result that we will frequently use is the following:

Theorem 1.6 (Optional stopping theorem) Suppose that $\sigma \leq \tau$ are stopping times, and $X_{\tau \wedge n}$ is a uniformly integrable submartingale. Then $E[X_\sigma] \leq E[X_\tau] < \infty$ and $X_\sigma \leq E[X_\tau \mid F_\sigma]$ a.s.

Note that, if X_n is a uniformly integrable submartingale and τ is any stopping time, then it can be shown that $X_{\tau \wedge n}$ is also uniformly integrable: see e.g. Section 5.7 of [21]. Also, observe that two applications of Theorem 1.6, one with $\sigma = 0$ and one with $\tau = \infty$, show that for any uniformly integrable submartingale X_n and any stopping time τ, it holds that $E[X_0] \leq E[X_\tau] \leq E[X_\infty] < \infty$, where $X_\infty := \limsup_{n \rightarrow \infty} X_n = \lim_{n \rightarrow \infty} X_n$ exists and is integrable, by Theorem 1.4.

Theorem 1.6 has the following corollary, obtained on setting $\sigma = 0$ and using well-known sufficient conditions for uniform integrability (see e.g. Sections 4.5 and 4.7 of [21]).
1.1 Basic definitions

Corollary 1.7 Let X_n be a submartingale and τ a finite stopping time. For a constant $c > 0$, suppose that at least one of the following holds:

(i) $\tau \leq c$ a.s.;
(ii) $|X_{n\wedge\tau}| \leq c$ a.s. for all $n \geq 0$;
(iii) $\mathbb{E} \tau < \infty$ and $\mathbb{E}[|X_{n+1} - X_n| \mid \mathcal{F}_n] \leq c$ a.s. for all $n \geq 0$.

Then $\mathbb{E}X_\tau \geq \mathbb{E}X_0$. If X_n is a martingale and at least one of the above conditions (i)–(iii) holds, then $\mathbb{E}X_\tau = \mathbb{E}X_0$.

Next, we recall some fundamental definitions and facts on Markov processes with discrete time and countable state space, also known as countable Markov chains. In the following, $(X_n, n \geq 0)$ is a sequence of random variables taking values on a countable set Σ.

Definition 1.8 (Markov chains)

- A process X_n is a Markov chain if, for any $y \in \Sigma$, any $n \geq 0$, and any $m \geq 1$,
 $$\mathbb{P}[X_{n+m} = y \mid X_0, \ldots, X_n] = \mathbb{P}[X_{n+m} = y \mid X_n], \text{ a.s.} \quad (1.3)$$
 This is the Markov property.
- If there is no dependence on n in (1.3), the Markov chain is homogeneous in time (or time-homogeneous). Unless explicitly stated otherwise, all Markov chains considered in this book are assumed to be time-homogeneous. In this case, the Markov property (1.3) becomes
 $$\mathbb{P}[X_{n+m} = y \mid \mathcal{F}_n] = p_m(X_n, y), \text{ a.s.,} \quad (1.4)$$
 where $p_m : \Sigma \times \Sigma \to [0, 1]$ are the m-step Markov transition probabilities, for which the Chapman–Kolmogorov equation holds: $p_{n+m}(x, y) = \sum_{z \in \Sigma} p_n(x, z)p_m(z, y)$. Also, we write $p(x, y) := \mathbb{P}[X_1 = y \mid X_0 = x] = p_1(x, y)$ for the one-step transition probabilities of the Markov chain.
- We use the shorthand notation $\mathbb{P}_x[\cdot] = \mathbb{P}[\cdot \mid X_0 = x]$ and $\mathbb{E}_x[\cdot] = \mathbb{E}[\cdot \mid X_0 = x]$ for probability and expectation for the time-homogeneous Markov chain starting from initial state $x \in \Sigma$.
- A time-homogeneous, countable Markov chain is irreducible if for all $x, y \in \Sigma$ there exists $n_0 = n_0(x, y) \geq 1$ such that $p_{n_0}(x, y) > 0$.
Introduction

• For an irreducible Markov chain, we define its *period* as the greatest common divisor of \(\{n \geq 1 : p_n(x,x) > 0\} \) (it is not difficult to show that it does not depend on the choice of \(x \in \Sigma \)). An irreducible Markov chain with period 1 is called *aperiodic*.

• Let \(X_n \) be a Markov chain, and \(\tau \) be a stopping time with respect to the natural filtration of \(X_n \). Then, for all \(x, y_1, \ldots, y_k \in \Sigma \), \(n_1, \ldots, n_k \geq 1 \), it holds that

\[
P[X_\tau+n_j = y_j, j = 1, \ldots, k \mid \mathcal{F}_\tau, X_\tau = x] = P_x[X_\tau+n_j = y_j, j = 1, \ldots, k]
\]

(this is the *strong Markov property*).

Suppose now that \(X_n \) is a countable Markov chain. Recall the definitions of hitting times \(\tau_A \) and \(\tau_A^+ \) from (1.1)–(1.2). For \(x \in \Sigma \), we use the notation \(\tau_x^+ := \tau_x^+ \) and \(\tau_x := \tau_x \) for hitting times of one-point sets. Note that for any \(x \in A \) it holds that \(P_x[\tau_A = 0] = 1 \), while \(\tau_A^+ \geq 1 \) is then the *return time* to \(A \). Also note that \(P_x[\tau_A = \tau_A^+] = 1 \) for all \(x \in \Sigma \setminus A \).

Definition 1.9 For a countable Markov chain \(X_n \), a state \(x \in \Sigma \) is called

• **recurrent** if \(P_x[\tau_x^+ < \infty] = 1 \);
• **transient** if \(P_x[\tau_x^+ < \infty] < 1 \).

A recurrent state \(x \) is classified further as

• **positive recurrent** if \(E_x \tau_x^+ < \infty \);
• **null recurrent** if \(E_x \tau_x^+ = \infty \).

It is straightforward to see that the four properties in Definition 1.9 are *class properties*, which entails the following statement.

Proposition 1.10 For an irreducible Markov chain, if a state \(x \in \Sigma \) is recurrent (respectively, positive recurrent, null recurrent, transient) then all states in \(\Sigma \) are recurrent (respectively, positive recurrent, null recurrent, transient).

By the above fact, it is legitimate to call an irreducible Markov chain itself recurrent (positive recurrent, null recurrent, transient).

Next, the following proposition is an easy consequence of the strong Markov property:
1.1 Basic definitions

Proposition 1.11 For an irreducible Markov chain, if a state \(x \in \Sigma \) is recurrent (respectively, transient), then, regardless of the initial position of the process, it will be visited infinitely (respectively, finitely) many times almost surely.

Finally, let us state also the following simple result which sometimes helps to prove recurrence/transience of Markov chains:

Lemma 1.12 Let \(X_n \) be an irreducible Markov chain on a countable state space \(\Sigma \).

(i) If for some \(x \in \Sigma \) and some non-empty \(A \subset \Sigma \) it holds that \(\mathbb{P}_x[\tau_A < \infty] < 1 \), then \(X_n \) is transient.

(ii) If for some finite non-empty \(A \subset \Sigma \) and all \(x \in \Sigma \setminus A \) it holds that \(\mathbb{P}_x[\tau_A < \infty] = 1 \), then \(X_n \) is recurrent.

The reader will probably find that the above fact is evident, but we still mention that its proof can be found e.g. in [36] (cf. Lemma 2.5.1 there).
Recurrence of the walk

2.1 Classical proof

In this section we present the classical combinatorial proof of recurrence of the two-dimensional simple random walk.

Let us start with some general observations on recurrence and transience of random walks, which, in fact, are valid in a much broader setting. Namely, we will prove that the number of visits to the origin is a.s. finite if and only if the expected number of visits to the origin is finite (note that this is something which is not true for general random variables). This is a useful fact, because, as it frequently happens, it is easier to control the expectation than the random variable itself.

Let $p_m(x, y) = \mathbb{P}_x[S_m = y]$ be the transition probability from x to y in m steps for the simple random walk in d dimensions. Let $q_d = \mathbb{P}_0[\tau_0^+ < \infty]$ be the probability that, starting at the origin, the walk eventually returns to the origin. If $q_d < 1$, then the total number of visits (counting the initial instance $S_0 = 0$ as a visit) is a Geometric random variable with success probability $1 - q_d$, which has expectation $(1 - q_d)^{-1} < \infty$. If $q_d = 1$, then, clearly, the walk visits the origin infinitely many times a.s.

So, the random walk is transient (i.e., $q_d < 1$) if and only if the expected number of visits to the origin is finite. This expected number equals\(^1\)

$$E_0 \sum_{k=0}^{\infty} 1\{S_k = 0\} = \sum_{k=0}^{\infty} E_0 1\{S_k = 0\} = \sum_{n=0}^{\infty} \mathbb{P}_0[S_{2n} = 0]$$

(observe that the walk can be at the starting point only after an even number of steps). We thus obtain that the recurrence of the

\(^1\) note that we can put the expectation inside the sum because of the Monotone Convergence Theorem
walk is equivalent to
\[\sum_{n=0}^{\infty} p_{2n}(0,0) = \infty. \] (2.1)

Before actually proving anything, let us try to understand why Theorem 1.1 should hold. One can represent the \(d \)-dimensional simple random walk \(S \) as
\[S_n = X_1 + \cdots + X_n, \]
where \((X_k, k \geq 1) \) are i.i.d. random vectors, uniformly distributed on the set \(\{±e_j, j = 1, \ldots, d\} \), where \(e_1, \ldots, e_d \) is the canonical basis of \(\mathbb{R}^d \). Since these random vectors are centered (expectation is equal to 0, component-wise), one can apply the (multivariate) Central Limit Theorem to obtain that \(S_n/\sqrt{n} \) converges in distribution to a (multivariate) centered Normal random vector with a diagonal covariance matrix. That is, it is reasonable to expect that \(S_n \) should be at distance of order \(\sqrt{n} \) from the origin.

So, what about \(p_{2n}(0,0) \)? Well, if \(x, y \in \mathbb{Z}^d \) are two even sites\(^2\) at distance of order at most \(\sqrt{n} \) from the origin, then our CLT-intuition tell us that \(p_{2n}(0, x) \) and \(p_{2n}(0, y) \) should be comparable, i.e., their ratio should be bounded away from 0 and \(\infty \). In fact, this statement can be made rigorous by using the local Central Limit Theorem (e.g., Theorem 2.1.1 from [33]). Now, if there are \(O(n^{d/2}) \) sites where \(p_{2n}(0, \cdot) \) are comparable, then the value of these probabilities (including \(p_{2n}(0,0) \)) should be of order \(n^{-d/2} \).

It remains only to observe that \(\sum_{n=1}^{\infty} n^{-d/2} \) diverges only for \(d = 1 \) and \(2 \) to convince oneself that Pólya’s theorem indeed holds. Notice, by the way, that for \(d = 2 \) we have the harmonic series which diverges just barely, its partial sums have only logarithmic growth\(^3\).

Now, let us prove that (2.1) holds for the one- and two-dimensional simple random walks. In the one-dimensional case, it is very simple to calculate \(p_{2n}(0,0) \): it is the probability that a Binomial(\(2n, 1/2 \))-random variable equals 0, so it is \(2^{-2n\binom{2n}{n}} \). Certainly, this expression is concise and beautiful; it is, however, not a priori clear which asymptotic behaviour it has (as it frequently

\(^2\) a site is called even if the sum of its coordinates is even; observe that the origin is even.

\(^3\) as some physicists say, “in practice, logarithm is a constant!”
Recurrence

happens with concise and beautiful formulas). To clarify this, we use the Stirling’s approximation, \(n! = \sqrt{2\pi n}(n/e)^n(1 + o(1)) \), to obtain that

\[
2^{-2n} \binom{2n}{n} = 2^{-2n} \frac{(2n)!}{(n!)^2} = 2^{-2n} \frac{\sqrt{4\pi n}(2n/e)^{2n}}{2\pi n(n/e)^{2n}}(1 + o(1))
\]

(fortunately, almost everything cancels)

\[
= \frac{1}{\sqrt{\pi n}}(1 + o(1)).
\]

(2.2)

The series \(\sum_{k=1}^{\infty} k^{-1/2} \) diverges, so (2.1) holds, and this implies recurrence in dimension 1.

Let us now deal with the two-dimensional case. For this, we first count the number of paths \(N_{2n} \) of length \(2n \) that start and end at the origin. For such a path, the number of steps up must be equal to the number of steps down, and the number to the right must be equal to the number of steps to the left. The total number of steps up (and, also, down) can be any integer \(k \) between 0 and \(n \); in this case, the trajectory must have \(n - k \) steps to the left and \(n - k \) steps to the right. So, if the number of steps up is \(k \), the total number of trajectories starting and ending at the origin is the polynomial coefficient \(\binom{2n}{k,k,n-k,n-k} \). This means that

\[
N_{2n} = \sum_{k=0}^{n} \binom{2n}{k,k,n-k,n-k} = \sum_{k=0}^{n} \frac{(2n)!}{(k!)^2((n-k)!)^2}.
\]

Note that

\[
\frac{(2n)!}{(k!)^2((n-k)!)^2} = \binom{2n}{n} \binom{n}{k} \binom{n}{n-k};
\]

the last two factors are clearly equal, but in a few lines it will become clear why we have chosen to write it this way. Since the probability of any particular trajectory of length \(m \) is \(4^{-m} \), we have

\[
p_{2n}(0,0) = 4^{-2n} N_{2n}
\]

\(\text{4 see e.g. http://mathworld.wolfram.com/StirlingsApproximation.html} \)
2.1 Classical proof

\[= 4^{-2n} \binom{2n}{n} \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}. \tag{2.3} \]

There is a nice combinatorial argument that allows one to deal with the sum in the right-hand side of (2.3). Consider a group of 2n children of which n are boys and n are girls. What is the number of ways to choose a subgroup of n children from that group? On one hand, since there are no restrictions on the gender composition of the subgroup, the answer is simply \(\binom{2n}{n} \). On the other hand, the number of boys in the subgroup can vary from 0 to n, and, given that there are \(k \) boys (and, therefore, \(n - k \) girls), there are \(\binom{n}{k} \binom{n}{n-k} \) ways to choose the subgroup; so, the answer is precisely the above sum. This means that the above sum just equals \(\binom{2n}{n} \), and we thus obtain that, in two dimensions,

\[p_{2n}(0,0) = \left(2^{-2n} \binom{2n}{n} \right)^2. \tag{2.4} \]

The calculation (2.2) then implies that

\[p_{2n}(0,0) = \frac{1}{\pi n} (1 + o(1)) \tag{2.5} \]

for the two-dimensional SRW, and, using the fact that the harmonic series diverges, we obtain (2.1) and therefore recurrence.

It is interesting to note that (2.4) means that the probability of being at the origin at time \(2n \) for the two-dimensional SRW is exactly the square of corresponding probability in one dimension. Such coincidences usually happen for a reason, and this case is no exception: in fact, it is possible to decouple the “one-dimensional components” of the two-dimensional SRW by considering its projections on the axes rotated \(\pi/4 \) anticlockwise; these projections are independent\(^5\). Indeed, it is straightforward to verify\(^6\) that \(S_n \cdot (e_1 + e_2) \) and \(S_n \cdot (e_1 - e_2) \) are independent one-dimensional SRWs.

\(^5\) this fact is folklore, but the author thanks Alejandro Ramirez for making him aware of it

\(^6\) please, do it
Recurrence

Figure 2.1 On the proof of the reversibility criterion.

2.2 Electric networks

The classical book [19] is an absolute must-read.

Let \(c(x, y) \) be the conductance of the edge \((x, y)\). The transition probabilities are then defined by

\[
p(x, y) = \frac{c(x, y)}{\pi(x)}, \quad \text{where } \pi(x) = \sum_{v : v \sim x} c(x, v). \tag{2.6}
\]

Definition 2.1 Consider a Markov chain with state space \(\Sigma \) and transition probabilities \((p(x, y), x, y \in \Sigma)\). A function \(f : \Sigma \to \mathbb{R} \) is called harmonic on a set \(A \subset \Sigma \), if

\[
f(x) = \sum_{y \in \Sigma} p(x, y)f(y),
\]

for all \(x \in A \).

Reversibility...

The following result is a useful criterion of reversibility: one can check if the Markov chain is reversible without actually calculating the reversible measure.

Theorem 2.2 A Markov chain is reversible if and only if for any cycle \(x_0, x_1, \ldots, x_{n-1}, x_n = x_0 \) of states it holds that:

\[
\prod_{k=0}^{n-1} p(x_k, x_{k+1}) = \prod_{k=1}^{n} p(x_k, x_{k-1}); \tag{2.7}
\]

that is, the product of the transition probabilities along the cycle does not depend on the direction.

Proof It is instructive (potential fields...)! \(\square \)
proof of recurrence with electric networks (infinite effective resistance to infinity). The harmonic series strikes again!

2.3 Lyapunov functions

The proofs of Sections 2.1 and 2.2 are simple and beautiful. This is good and bad. The problem with both proofs is that they are not robust. Assume that we change the transition probabilities of the two-dimensional simple random walk in only one site, say, (1,1). For example, let the walk go from (1,1) to (1,0), (1,2), (0,1), (2,1), with probabilities, say, $\frac{1}{7}$, $\frac{1}{7}$, $\frac{2}{7}$, $\frac{3}{7}$, respectively. We keep all other transition probabilities intact. Then, after this apparently innocent change, both proofs break down! Indeed, in the classical proof of Section 2.1 the weights of any trajectory that passes through (1,1) would no longer be equal to 4^{-2n}, and so the combinatorics would be hardly manageable (instead of simple formula (2.3), a much more complicated expression will appear). The situation with the proof of Section 2.2 is even worse: the random walk is no longer reversible (cf. Exercise 2.4), so the technique of the previous section does not apply at all! It is therefore a good idea to search for a proof which is more robust, i.e., less sensible to small changes of the model’s parameters.

In this section we present a very short introduction to the Lyapunov functions method. Generally speaking, this method consists of finding a function (from the state space of the stochastic process to \mathbb{R}) such that the image under this function of the stochastic process is, in some sense, “nice”. That is, this new one-dimensional process satisfies some conditions that enable one to obtain results about it and then transfer these results to the original process.

We emphasize that this method is usually “robust”, in the sense that the underlying stochastic process need not satisfy simplifying assumptions such as the Markov property, reversibility, or time-homogeneity, for instance, and the state space of the process need not be necessarily countable. In particular, this approach works for non-reversible Markov chains.

In this section we follow mainly [36] and [22]. Other sources on

\footnote{ it is one of the side quests that was promised.}
Recurrence

\[f(x) = c_3 \]
\[f(x) = c_2 \]
\[f(x) = c_1 \]

Figure 2.2 The drift vectors point inside the level sets (here, \(0 < c_1 < c_2 < c_3\)).

the Lyapunov functions method are e.g. [2, 4, 37]; see also [46] for a take on Lyapunov functions from a more applied perspective.

The next result is the main Lyapunov-functions-tool for proving recurrence of Markov chains.

Theorem 2.3 (Recurrence criterion) An irreducible Markov chain \(X_n\) on a countably infinite state space \(\Sigma\) is recurrent if and only if there exist a function \(f : \Sigma \rightarrow \mathbb{R}_+\) and a finite non-empty set \(A \subset \Sigma\) such that

\[\mathbb{E}[f(X_{n+1}) - f(X_n) \mid X_n = x] \leq 0, \text{ for all } x \in \Sigma \setminus A, \quad (2.8) \]

and \(f(x) \to \infty\) as \(x \to \infty\).

The quantity in (2.8) can be thought of as the drift vector at \(x\) with respect to the function \(f\). To understand the meaning of Theorem 2.3, recall first that, for a function \(f: \mathbb{R}^d \rightarrow \mathbb{R}\), the level sets are sets of the form \(\{x \in \mathbb{R}^d : f(x) = c\}\) for \(c \in \mathbb{R}\); in the following heuristics, we think of \(f\) as a function of continuous argument, just to be able to visualize the things better. If \(f\) converges to infinity as \(x \to \infty\), then\(^8\) the level sets will look as depicted on

\(^8\) The reader may wonder what “\(x \to \infty\)” might mean on an arbitrary countable set, with no particular enumeration fixed. Notice, however, that if a sequence of sites converges to infinity with respect to one enumeration, it will do so with respect to any other one; so, writing “\(x \to \infty\)” is legitimate even with no enumeration fixed.
2.3 Lyapunov functions

Figure 2.2, and Theorem 2.3 says that, to prove the recurrence, it is enough to find a function as above such that the drift vectors look inside its level sets. In fact, just by observing Figure 2.2 it is easy to believe that the Markov chain should be recurrent, since it has a “tendency” to “go inside”.

The term “Lyapunov function” comes from Differential Equations: there, a similar (in spirit) construction is used to prove stability\(^9\) of the solutions; see e.g. [32].

Proof of Theorem 2.3 To prove that having a function that satisfies (2.8) is sufficient for the recurrence, let \(x \in \Sigma\) be an arbitrary state, and take \(X_0 = x\). Let us reason by contradiction, assuming that \(\mathbb{P}_x[\tau_A = \infty] > 0\) (which would imply, in particular, that the Markov chain is transient). Set \(Y_n = f(X_n \wedge \tau_A)\) and observe that \(Y_n\) is a non-negative supermartingale. Then, by Theorem 1.5, there exists a random variable \(Y_\infty\) such that \(Y_n \to Y_\infty\) a.s. and

\[
\mathbb{E}_x Y_\infty \leq \mathbb{E}_x Y_0 = f(x),
\]

(2.9)

for any \(x \in \Sigma\). On the other hand, since \(f \to \infty\), it holds that the set \(G_M := \{y \in \Sigma : f(y) \leq M\}\) is finite for any \(M \in \mathbb{R}_+\); so, our assumption on transience implies that \(G_M\) will be visited only finitely many times, meaning that \(\lim_{n \to \infty} f(X_n) = +\infty\) a.s. on \(\{\tau_A = \infty\}\) (see Figure 2.3). Hence, on \(\{\tau_A = \infty\}\), we must have \(Y_\infty = \lim_{n \to \infty} Y_n = +\infty\), a.s.. This would contradict (2.9) under the assumption \(\mathbb{P}_x[\tau_A = \infty] > 0\), because then \(\mathbb{E}_x[Y_\infty] \geq \mathbb{E}_x[Y_\infty 1_{\{\tau_A = \infty\}}] = \infty\). Hence \(\mathbb{P}_x[\tau_A = \infty] = 0\) for all \(x \in \Sigma\), which means that the Markov chain is recurrent, by Lemma 1.12 (ii).

For the “only if” part (i.e., recurrence implies that there exist \(f\) and \(A\) as above), see the proof of Theorem 2.2.1 of [22]. See also Exercise 2.11. \(\square\)

As a (very simple) example of application of Theorem 2.3, consider the one-dimensional simple random walk \(S^{(1)}\), together with the set \(A = \{0\}\) and the function \(f(x) = |x|\). Then (2.8) holds with equality, which shows that \(S^{(1)}\) is recurrent.

Although in this chapter we are mainly interested in the recurrence, let us also formulate and prove a criterion for transience, for future reference:

\(^9\) which can be seen as deterministic analogue of recurrence
Theorem 2.4 (Transience criterion) An irreducible Markov chain X_n on a countable state space Σ is transient if and only if there exist a function $f : \Sigma \rightarrow \mathbb{R}_+$ and a non-empty set $A \subset \Sigma$ such that

$$E[f(X_{n+1}) - f(X_n) \mid X_n = x] \leq 0, \text{ for all } x \in \Sigma \setminus A, \quad (2.10)$$

and

$$f(y) < \inf_{x \in A} f(x), \text{ for at least one site } y \in \Sigma \setminus A. \quad (2.11)$$

Note that (2.10) by itself is identical to (2.8); the difference is in what we require of the nonnegative function f ((2.11) instead of convergence to infinity; in most applications of Theorem 2.4, the function f will converge to 0). Also, differently from the recurrence criterion, in the above result the set A need not be finite.

Proof of Theorem 2.4 Assume that $X_0 = y$ (where y is from (2.11)), and (similarly to the previous proof) define the process $Y_n = f(X_{n \wedge \tau_A})$. Then (2.10) implies that Y_n is a supermartingale (with respect to the filtration $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$). Since Y_n is also non-negative, Theorem 1.5 implies that there is a random variable
2.3 Lyapunov functions

\(Y_\infty \in \mathbb{R}_+ \) such that \(\lim_{n \to \infty} Y_n = Y_\infty \) a.s., and \(\mathbb{E}Y_\infty \leq \mathbb{E}Y_0 = f(y) \).

Observe that, if the Markov chain eventually hits the set \(A \), then the value of \(Y_\infty \) equals the value of \(f \) at some random site (namely, \(X_{\tau_A} \)) belonging to \(A \); formally, we have that, a.s.,

\[
Y_\infty 1\{\tau_A < \infty\} = \lim_{n \to \infty} Y_n 1\{\tau_A < \infty\} = f(X_{\tau_A}) 1\{\tau_A < \infty\} \geq \inf_{x \in A} f(x) 1\{\tau_A < \infty\}.
\]

So, we obtain

\[
f(y) = \mathbb{E}Y_0 \geq \mathbb{E}Y_\infty \geq \mathbb{E}Y_\infty 1\{\tau_A < \infty\} \geq \mathbb{P}_y[\tau_A < \infty] \inf_{x \in A} f(x),
\]

which implies

\[
\mathbb{P}_y[\tau_A < \infty] \leq \frac{f(y)}{\inf_{x \in A} f(x)} < 1,
\]

proving the transience of the Markov chain \(X_n \), by Lemma 1.12(i).

For the “only if” part, see Exercise 2.5.

Let us now think about how to apply Theorem 2.3 to the simple random walk in two dimensions. For this, we need to find a (Lyapunov) function \(f : \mathbb{Z}^2 \to \mathbb{R}_+ \), such that the “drift with respect to \(f \)”

\[
\mathbb{E}[f(S_{n+1}) - f(S_n) \mid S_n = x],
\]

is nonpositive for all but finitely many \(x \in \mathbb{Z}^2 \), and also such that \(f(x) \to \infty \) as \(x \to \infty \). The reader must be warned, however, that finding a suitable Lyapunov function is a kind of an art, which usually involves a fair amount of guessing and failed attempts. Still, let us try to understand how it works. In the following, the author will do his best to explain how it really works, with all the failed attempts and guessing.

First of all, it is more convenient to think of \(f \) as a function of real arguments. Now, if there is a general rule of finding a suitable Lyapunov function for processes that live in \(\mathbb{R}^d \), then it is the following: consider the level sets of \(f \) and think how they should look. In the two-dimensional case we speak about the level curves; of course, we need the function to be sufficiently “good” to ensure that the level curves are really curves in some reasonable sense of this word.

Now, we know that the simple random walk converges to the
Recurrence

Figure 2.4 The drift with respect to \(f(x) = \|x\| \) is positive

(two-dimensional) Brownian motion, if suitably rescaled. The Brownian motion is invariant under rotations, so it seems reasonable to search for a function that only depends on the Euclidean norm of the argument, \(f(x) = g(\|x\|) \) for some increasing function \(g : \mathbb{R} \mapsto \mathbb{R}_+ \). Even if we did not know about the Brownian motion, it would still be reasonable to make this assumption because, well, why not? It is easier to make calculations when there is some symmetry. Notice that, in this case, the level curves of \(f \) are just circles centered at the origin\(^{10}\).

So, let us begin by looking at the level curves of a very simple function \(f(x) = \|x\| \), and see what happens to the drift (2.12). Actually, let us just look at Figure 2.4; the level curves shown are \(\{\|x\| = k - 1\} \), \(\{\|x\| = k\} \), \(\{\|x\| = k + 1\} \) on the right, and \(\{\|x\| = \sqrt{j^2 + (j - 1)^2}\}, \{\|x\| = j \sqrt{2}\}, \{\|x\| = 2 \sqrt{2j - \sqrt{j^2 + (j - 1)^2}}\} \) on the left\(^{11}\). It is quite clear then that the drift with respect to \(f(x) = \|x\| \) is strictly positive in both cases. Indeed, one sees that, in the

\(^{10}\) there are many examples where they are not circles/spheres; let us mention e.g. Section 4.3 of [36], which is based on [38].

\(^{11}\) observe that, similarly to the previous case, these level curves have form

\(\{\|x\| = a - b\}, \{\|x\| = a\}, \{\|x\| = a + b\} \) with

\(a = j \sqrt{2}, b = j \sqrt{2} - \sqrt{j^2 + (j - 1)^2} \).
2.3 Lyapunov functions

Figure 2.5 What should the function g look like? (For x on the diagonal, we have $a = g(\|x\|), a \pm b = g(\|x \pm e_1\|)$; note that $\|x + e_1\| - \|x\| > \|x\| - \|x - e_1\|$.)

first case, the jumps to the left and to the right “compensate” each other, while the jumps up and down both slightly increase the norm. In the second case, jumps up and to the left change the norm by a larger amount than the jumps down and to the right.

In fact, it is even possible to prove that the drift is positive for all $x \in \mathbb{Z}^2$, but the above examples show that, for proving the recurrence, the function $f(x) = \|x\|$ will not work anyway.

Now, think e.g. about the “diagonal case”: if we move the third level curve a little bit out, then the drift with respect to the function would become nonpositive, look at Figure 2.5. It seems to be clear that, to produce such level curves, the function g should have a sublinear growth. Recall that we are “guessing” the form that g may have, so such nonrigorous reasoning is perfectly ac-
Acceptable; we just need to find a function that works, and the way how we arrived to it is totally unimportant from the formal point of view. A natural first candidate would be then $g(s) = s^\alpha$, where $\alpha \in (0, 1)$. So, let us try it! Let $x \in \mathbb{Z}^2$ be such that $\|x\|$ is large, and let e be a unit vector (actually, it is $\pm e_1$ or $\pm e_2$). Write (being (y, z) the scalar product of $y, z \in \mathbb{Z}^2$)

$$
\|x + e\|^{\alpha} - \|x\|^{\alpha} = \|x\|^{\alpha} \left(\left(\frac{\|x + e\|}{\|x\|} \right)^{\alpha} - 1 \right)
= \|x\|^{\alpha} \left(\left(\frac{(x + e, x + e)}{\|x\|^2} \right)^{\alpha/2} - 1 \right)
= \|x\|^{\alpha} \left(\left(\frac{\|x\|^2 + 2(x, e) + 1}{\|x\|^2} \right)^{\alpha/2} - 1 \right)
= \|x\|^{\alpha} \left(1 + \frac{2(x, e) + 1}{\|x\|^2} \right)^{\alpha/2} - 1).$$

Now, observe that $|(x, e)| \leq \|x\|$, so the term $\frac{2(x, e) + 1}{\|x\|^2}$ should be small (at most $O(\|x\|^{-1})$); let us also recall the Taylor expansion $(1 + y)^{\alpha/2} = 1 + \frac{\alpha}{2} y - \frac{\alpha}{4} (1 - \frac{\alpha}{2}) y^2 + O(y^3)$. Using that, we continue the above calculation:

$$
\|x + e\|^{\alpha} - \|x\|^{\alpha}
= \|x\|^{\alpha} \left(\frac{(x, e)}{\|x\|^2} + \frac{\alpha}{2\|x\|^2} - \frac{\alpha}{4} \left(1 - \frac{\alpha}{2} \right) \frac{(2(x, e) + 1)^2}{\|x\|^4} + O(\|x\|^{-3}) \right)
= \alpha\|x\|^{\alpha-2} (x, e) + \frac{1}{2} \left(1 - \frac{\alpha}{2} \right) \frac{(x, e)^2}{\|x\|^2} + O(\|x\|^{-1}). \quad (2.13)
$$

Observe that in the above display the $O(\cdot)$’s actually depend also on the direction of x (that is, the unit vector $x/\|x\|$), but this is not a problem since they are clearly uniformly bounded from above. Now, notice that, with $x = (x_1, x_2) \in \mathbb{Z}^2$,

$$
\sum_{e \in \{\pm e_1, \pm e_2\}} (x, e) = 0, \quad \sum_{e \in \{\pm e_1, \pm e_2\}} (x, e)^2 = 2x_1^2 + 2x_2^2 = 2\|x\|^2. \quad (2.14)
$$

Using (2.13) and (2.14), we then obtain for $f(x) = \|x\|^{\alpha}$, as $\|x\| \to \infty$,

$$
\mathbb{E}[f(S_{n+1}) - f(S_n) \mid S_n = x]
$$
2.3 Lyapunov functions

\[\frac{1}{4} \sum_{e \in \{ \pm e_1, \pm e_2 \}} (\|x + e\|^\alpha - \|x\|^\alpha)\]

\[= \alpha\|x\|^{\alpha-2} \left(\frac{1}{2} - \left(1 - \frac{\alpha}{2}\right) \frac{\|x\|^2}{2\|x\|^2} + O(\|x\|^{-1}) \right)\]

\[= \alpha\|x\|^{\alpha-2} \left(\frac{\alpha}{4} + O(\|x\|^{-1}) \right), \quad (2.15)\]

which, for all \(\alpha \in (0, 1)\), is positive for all sufficiently large \(x\). So, unfortunately, we had no luck with the function \(g(s) = s^\alpha\). That does not mean, however, that the above calculation was in vain; with some small changes, it will be useful for one of the exercises in the end of this chapter.

Since \(g(s) = s^\alpha\) is still “too much”, the next natural guess is \(g(s) = \ln s\) then\(^\text{12}\). Well, let us try it now (more precisely, we set \(f(x) = \ln \|x\|\) for \(x \neq 0\) and \(f(0) = 0\), but in the calculation below \(x\) is supposed to be far from the origin in any case). Using the Taylor expansion \(\ln(1 + y) = y - \frac{1}{2}y^2 + O(y^3)\), we write

\[\ln \|x + e\| - \ln \|x\| = \ln \left(1 + \frac{x, e + x}{\|x\|^2}\right)\]

\[= \ln \left(1 + \frac{2(x, e) + 1}{\|x\|^2}\right)\]

\[= \frac{2(x, e)}{\|x\|^2} + \frac{1}{\|x\|^2} - \frac{2(x, e)^2}{\|x\|^4} + O(\|x\|^{-3}), \quad (2.16)\]

so, using (2.14) again, we obtain (as \(x \to \infty\))

\[\mathbb{E}[f(S_{n+1}) - f(S_n) | S_n = x] = \frac{1}{4} \sum_{e \in \{ \pm e_1, \pm e_2 \}} (\ln \|x + e\| - \ln \|x\|)\]

\[= \frac{1}{\|x\|^2} - \frac{1}{4} \times \frac{4\|x\|^2}{\|x\|^4} + O(\|x\|^{-3})\]

\[= O(\|x\|^{-3}),\]

which gives us absolutely nothing. Apparently, we need more terms in the Taylor expansion, so let us do the work: with \(\ln(1 + y) = \)

\(^{\text{12}}\) the reader may have recalled that \(\ln \|x\|\) is a harmonic function in two dimensions, so \(\ln \|B_t\|\) is a (local) martingale, where \(B\) is a two-dimensional standard Brownian motion. But, lattice effects may introduce some corrections...
Recurrence

\[y - \frac{1}{2}y^2 + \frac{1}{3}y^3 - \frac{1}{4}y^4 + O(y^5) \] we have \(^{13}\)

\[
\ln \|x + e\| - \ln \|x\| = \ln \left(1 + \frac{2(x,e) + 1}{\|x\|^2} \right)
\]
\[
= \frac{2(x,e)}{\|x\|^2} + \frac{1}{\|x\|^2} - \frac{2(x,e)^2}{\|x\|^4} - \frac{2(x,e)}{\|x\|^4} - \frac{1}{2\|x\|^4}
\]
\[
+ \frac{8(x,e)^3}{3\|x\|^6} + \frac{4(x,e)^2}{\|x\|^6} - \frac{4(x,e)^4}{\|x\|^8} + O(\|x\|^{-5}).
\]

Then, using (2.14) together with the fact that

\[
\sum_{e \in \{\pm e_1, \pm e_2\}} (x,e)^3 = 0, \quad \text{and} \quad \sum_{e \in \{\pm e_1, \pm e_2\}} (x,e)^4 = 2(x_1^4 + x_2^4),
\]

we obtain

\[
\mathbb{E}[f(S_{n+1}) - f(S_n) \mid S_n = x]
\]
\[
= \frac{1}{\|x\|^2} - \frac{1}{\|x\|^2} - \frac{2\|x\|^2}{\|x\|^4} + \frac{2\|x\|^2}{\|x\|^6} - \frac{2(x_1^4 + x_2^4)}{\|x\|^8} + O(\|x\|^{-5})
\]
\[
= \|x\|^{-4} \left(\frac{3}{2} - \frac{2(x_1^4 + x_2^4)}{\|x\|^4} + O(\|x\|^{-1}) \right). \tag{2.17}
\]

We want the right-hand side of (2.17) to be nonpositive for all \(x\) large enough, and it is indeed so if \(x\) is on the axes or close enough to them (for \(x = (a,0)\) or \((0,a)\) the expression in the parentheses becomes \(\frac{3}{2} - 2 + O(\|x\|^{-1}) < 0\) for all large enough \(x\)). Unfortunately, when we check it for the “diagonal” sites (i.e., \(x = (\pm a, \pm a)\)), so that \(\frac{2(x_1^4 + x_2^4)}{\|x\|^4} = \frac{2(a^4 + a^4)}{4a^4} = 1\), we obtain that the expression in the parentheses is \(\frac{3}{2} - 1 + O(\|x\|^{-1})\), which is strictly positive for all large enough \(x\).

So, this time we were quite close, but still missed the target. A next natural candidate would be a function that grows even slower than the logarithm; so, let us try the function \(f(x) = \ln^\alpha \|x\|\) with \(\alpha \in (0,1)\). Hoping for the best, we write (using \((1 + y)^\alpha = 1 + \alpha y - \frac{(1-\alpha)\alpha y^2}{2} + O(y^3)\) in the last passage)

\[
\ln^\alpha \|x + e\| - \ln^\alpha \|x\|
\]
\[
= \ln^\alpha \|x\| \left(\frac{\ln^\alpha \|x + e\|}{\ln^\alpha \|x\|} - 1 \right)
\]

\(^{13}\) the reader is invited to check that only one extra term is not enough.
2.3 Lyapunov functions

\[
\ln \alpha \|x\| \left(\ln \left(\|x\|^2 \left(1 + \frac{(x,e) + 1}{\|x\|^2} \right) \right) \right) - 1
\]

\[
= \ln \alpha \|x\| \left(1 + (\ln \|x\|^2)^{-1} \ln \left(1 + \frac{2(x,e) + 1}{\|x\|^2} \right) \right)^{\alpha} - 1
\]

\[
= \ln \alpha \|x\| \left(1 + (\ln \|x\|^2)^{-1} \left(\frac{2(x,e)}{\|x\|^2} + \frac{1}{\|x\|^2} - \frac{2(x,e)^2}{\|x\|^4} + O(\|x\|^{-3}) \right) \right)^{\alpha} - 1
\]

\[
= \ln \alpha \|x\| \left(\alpha (\ln \|x\|^2)^{-1} \cdot \frac{2(x,e)}{\|x\|^2} + \frac{1}{\|x\|^2} - \frac{2(x,e)^2}{\|x\|^4} + O(\|x\|^{-3}) \right)
\]

\[
- \frac{\alpha(1-\alpha)}{2} \ln \|x\|^{\frac{1}{2}} \ln \|x\| \cdot 2(\ln \|x\|)^{-2} O(\|x\|^{-3} (\ln \|x\|)^{-2})
\]

Then, using (2.14) we obtain

\[
E[f(S_{n+1}) - f(S_n) \mid S_n = x]
\]

\[
= \frac{\alpha}{2} \ln^{\alpha-1} \|x\| \left(\frac{1}{\|x\|^2} - \frac{\|x\|^2}{\|x\|^4} + O(\|x\|^{-3}) \right)
\]

\[
- \frac{(1-\alpha)}{2} \ln \|x\|^{\frac{1}{2}} \ln \|x\| \cdot 2(\ln \|x\|)^{-2} O(\|x\|^{-3} (\ln \|x\|)^{-2})
\]

\[
= -\frac{\alpha}{2\|x\|^2 \ln^{2-\alpha} \|x\|} \left(\frac{1-\alpha}{2} + O(\|x\|^{-1} \ln \|x\|) \right),
\]

which is negative for all sufficiently large \(x\). Thus Theorem 2.3 shows that SRW on \(\mathbb{Z}^2\) is recurrent, proving Pólya’s theorem (Theorem 1.1) in the two-dimensional case.

Now, it is time to explain why the author likes this method of proving recurrence (and many other things) of countable Markov chains. First, observe that the above proof does not use any trajectory-counting arguments (as in Section 2.1) or reversibility (as in Section 2.2), recall the example in the beginning of this section. Moreover, consider any Markov chain \(X_n\) on the two-dimensional integer lattice with asymptotically zero drift, and let us abbreviate \(D_x = X_1 - x\). Analogously to the above, we can obtain (still using

\[
\text{finally!}
\]
Recurrence

\[f(x) = \ln^\alpha \|x\| \text{ with } \alpha \in (0,1) \]

\[
\mathbb{E}[f(X_{n+1}) - f(X_n) \mid X_n = x] = -\frac{\alpha}{\|x\|^2 \ln^{2-\alpha} \|x\|} \left(-\ln \|x\|^2 \mathbb{E}_x(x, D_x) - \ln \|x\|^2 \mathbb{E}_x \|D_x\|^2 \\
+ \ln \|x\|^2 \frac{2 \mathbb{E}_x(x, D_x)^2}{\|x\|^2} + 2(1 - \alpha) \frac{\mathbb{E}_x(x, D_x)^2}{\|x\|^2} + O\left(\ln \|x\|^{-1}\right) \right).
\]

Now, if we can prove that the expression in the parentheses is positive for all large enough \(x\), then this would imply the recurrence. It seems to be clear that it will be the case if the transitions probabilities at \(x\) are sufficiently close to those of the simple random walk (and the difference converges to 0 sufficiently fast as \(x \to \infty\)). This is what we meant when saying that the method of Lyapunov functions is robust: if it works for a particular model (the simple random walk in two dimensions, in our case), then one may expect that the same (or almost the same) Lyapunov function will also work for “close” models. See also Exercise 2.10 for some further ideas.

2.4 Exercises

Combinatorial proofs (Section 2.1):

Exercise 2.1 Understand the original proof of Polya [40]. (Warning: it uses generating functions, and it is in German.)

Exercise 2.2 Let \(p_{2n}^{(d)}\) be the probability that \(d\)-dimensional SRW finds itself at its starting position after \(2n\) steps. In the end of Section 2.1 we have seen that \(p_{2n}^{(2)} = (p_{2n}^{(1)})^2\), because it is possible to decouple the components of a two-dimensional SRW. Can this decoupling be done for at least some \(d \geq 3\) as well (so that, in particular, \(p_{2n}(0,0) = (p_{2n}^{(1)}(0,0))^d\) would hold)?

Exercise 2.3 Find a direct (combinatorial) proof of the recurrence of simple random walk on some other regular lattice (e.g., triangular, hexagonal, etc.) in two dimensions.

Electrics networks (Section 2.2):

Exercise 2.4 Show that the random walk described in the beginning of Section 2.3 (the one where we changed the transition probabilities at the site \((1,1)\)) is not reversible.
2.4 Exercises

Lyapunov functions (Section 2.3):

Exercise 2.5 Prove the “only if” part of the transience criterion (Theorem 2.4).

Exercise 2.6 Find a Lyapunov-function proof of transience of one-dimensional nearest-neighbor random walk with drift.

Exercise 2.7 Now, consider a Markov chain \((X_n)\) on \(\mathbb{Z}^+\) such that

- there exists \(K > 0\) such that \(|X_{n+1} - X_n| \leq K\) a.s. (i.e., the jumps are uniformly bounded);
- there exists \(\varepsilon > 0\) such that \(E_x X_1 \geq x + \varepsilon\) for all \(x\) (i.e., the drift is uniformly positive).

Prove that it is transient.

Exercise 2.8 Using Theorem 2.4, prove that simple random walk in dimensions \(d \geq 3\) is transient. Hint: use \(f(x) = \|x\|^{-\alpha}\) for some \(\alpha > 0\).

Exercise 2.9 Prove that \(f(x) = \ln \ln \|x\|\) (suitably redefined at the origin and the sites at distance at most 2.71828 from it) would also work for proving the recurrence of the two-dimensional simple random walk.

Exercise 2.10 Using Lyapunov functions, prove the recurrence of a two-dimensional spatially homogeneous zero-mean random walk with bounded jumps.

Exercise 2.11 Understand the proof of the “only if” part of the recurrence criterion (Theorem 2.3) — see the proof of Theorem 2.2.1 of [22]. Can you find\(^{15}\) a simpler proof?

Exercise 2.12 Is it always possible to find a function which is a martingale outside the origin (i.e., in Theorem 2.3 \(A\) is a singleton and (2.3) holds with equality) for a recurrent Markov chain? Also, prove that the above is possible for a recurrent Markov chain on \(\mathbb{Z}_+\) with nearest-neighbour jumps by writing down such a function explicitly.

\(^{15}\) if you find it, please, let me know!
Recurrence

Exercise 2.13 The following result (also known as Foster’s criterion or Foster-Lyapunov theorem) provides a criterion for the positive recurrence of an irreducible Markov chain:

An irreducible Markov chain X_n on a countable state space Σ is positive recurrent if and only if there exist a positive function $f : \Sigma \to \mathbb{R}_+$, a finite non-empty set $A \subset \Sigma$, and $\varepsilon > 0$ such that

$$\mathbb{E}[f(X_{n+1}) - f(X_n) \mid X_n = x] \leq -\varepsilon, \text{ for all } x \notin \Sigma \setminus A, \quad (2.18)$$

$$\mathbb{E}[f(X_{n+1}) \mid X_n = x] < \infty, \text{ for all } x \in A. \quad (2.19)$$

(a) Prove the “only if” part.
(b) Understand the proof of the “if” part (see e.g. Theorems 2.6.2 and 2.6.4 of [36]).

Exercise 2.14 For the d-dimensional simple random walk, show that the first and the second moments of $\Delta_x := \|S_1\| - \|x\|$ under \mathbb{E}_x are given by

$$\mathbb{E}_x \Delta_x = \frac{d - 1}{2d\|x\|} + O(\|x\|^{-2}), \quad (2.20)$$

$$\mathbb{E}_x \Delta_x^2 = \frac{1}{d} + O(\|x\|^{-1}). \quad (2.21)$$

Exercise 2.15 Suppose now that $(X_n, n \geq 0)$ is a time-homogeneous Markov chain on an unbounded subset Σ of \mathbb{R}_+. Assume that X_n has uniformly bounded increments, so that

$$\mathbb{P}[\|X_{n+1} - X_n\| \leq B] = 1 \quad (2.22)$$

for some $B \in \mathbb{R}_+$. For $k = 1, 2$ define

$$\mu_k(x) := \mathbb{E}[(X_{n+1} - X_n)^k \mid X_n = x].$$

The first moment function, $\mu_1(x)$, is also called the one-step mean drift of X_n at x.

Lamperti [29, 30, 31] investigated the extent to which the asymptotic behaviour of such a process is determined by $\mu_1(x)$, in a typical situation when $\mu_1(x) = O(x^{-1})$ and $\mu_2(x) = O(1)$. The following three statements are particular cases of Lamperti’s fundamental results on recurrence classification:

(a) If $2x\mu_1(x) + \mu_2(x) < -\varepsilon$ for some $\varepsilon > 0$ and all large enough x,

then X_n is positive recurrent;
(b) If $2x\mu_1(x) - \mu_2(x) < -\varepsilon$ for some $\varepsilon > 0$ and all large enough x, then X_n is recurrent;
(c) If $2x\mu_1(x) - \mu_2(x) > \varepsilon$ for some $\varepsilon > 0$ and all large enough x, then X_n is transient.

Prove (a), (b), and (c).

Exercise 2.16 Let $d \geq 3$. Prove that for any $\varepsilon > 0$ there exists large enough $C_d = C_d(\varepsilon)$ such that $\|S_{n\wedge \tau}\|^{-(d-2)+\varepsilon}$ is a supermartingale and $\|S_{n\wedge \tau}\|^{-(d-2)-\varepsilon}$ is a submartingale, where $\tau = \tau^+_B(C_d)$. What happens in the case $\varepsilon = 0$?
Some potential theory for simple random walks

Disclaimer: this chapter is by no means a systematic treatment of the subject, not even remotely so. If the reader is looking for one, the author can recommend e.g. [43] or Chapters 4 and 6 of [33]. Here we rather adopt a “customer’s point of view”: we only recall a few general notions and tools that permit us to obtain estimates on what we are concerned about in this book — probabilities related to simple random walks. We also do not try to discuss the reason why it is called “potential theory” and what exactly are its relations to the classical theory of harmonic functions – this would take quite some time, and the author has to confess that he does not understand it quite well anyway.

We are going to consider the transient and the recurrent cases separately; it is true that in this book we are mainly concerned with the latter one, but it is still more convenient to begin with the transient case (i.e., SRW in dimensions $d \geq 3$) which is somehow conceptually simpler1. Let us begin, though, with the following result, which is dimension-independent:

Proposition 3.1 Let $h : \mathbb{Z}^d \to \mathbb{R}$ be a harmonic function, i.e.,

$$h(x) = \frac{1}{2d} \sum_{y \sim x} h(y) \quad \text{for all } x \in \mathbb{Z}^d. \quad (3.1)$$

Assume also that it is bounded, i.e., there exists $K > 0$ such that $|h(x)| \leq K$ for all $x \in \mathbb{Z}^d$. Then h is constant.

Proof Let us reason by contradiction: assume that a function h as above is not constant. Then it must be nonconstant on both the set of even2 sites and the set of odd sites. Indeed, its value

1 also, we’ll need some of these transient-case results in Chapter 6 when discussing the “classical” random interlacement model in dimensions $d \geq 3$

2 recall that even (odd) sites are sites with even (odd) sum of their coordinates
on an even site is the average of its values on the neighbouring odd sites and vice versa. So, if it is equal to a constant on one of these two sets, it will have to be the same constant on the other one. Now, we can find two sites \(x\) and \(y\) of the same parity such that \(x - y = \pm 2e_k\) for some \(k \in \{1, \ldots, d\}\) and \(h(x) \neq h(y)\). Note that, if \(h\) is harmonic in the sense of (3.1), then so are its translations/rotations/ reflections. Therefore, without restricting generality we can assume that \(h(e_1) \neq h(-e_1)\).

For \(x = (x_1, x_2, \ldots, x_d) \in \mathbb{Z}^d\), let us denote \(\bar{x} = (-x_1, x_2, \ldots, x_d)\) the “mirrored” site with respect to the hyperplane orthogonal to the first coordinate axis. Let \((S_n)\) be the SRW starting at \(e_1\), and \((\bar{S}_n)\) be the corresponding “mirrored” SRW (which, clearly, starts at \((-e_1)\)). Define the stopping time

\[
\sigma = \min\{k : S_k \cdot e_1 = 0\} = \min\{k : S_k = \bar{S}_k\}
\]

to be the moment when \(S\) meets \(\bar{S}\). Note that \(\sigma < \infty\) a.s., due to the recurrence of one-dimensional SRW.

Now, the harmonicity of \(h\) implies that \(h(S_n)\) is a martingale\(^3\); clearly, so is \(h(\bar{S}_n)\). Since \(h\) is bounded, Corollary 1.7 implies that

\[
\begin{align*}
 h(e_1) &= E h(S_\sigma) = E h(\bar{S}_\sigma) = h(-e_1),
\end{align*}
\]

which is the desired contradiction (recall that we just assumed that \(h(x) \neq h(y)\)).

\[\square\]

3.1 Transient case

First, let us go to dimensions \(d \geq 3\), where the simple random walk is transient. We specifically concentrate on the simple random walk case, although a similar theory can be developed for random walks with arbitrary jump distribution, or even general transient reversible Markov chains. We need first to recall some basic definitions related to simple random walks in higher dimensions.

The three main objects that we need are: the Green’s function, the capacity, and the harmonic measure. Specifically, it holds that:

- The Green’s function \(G\) is harmonic outside the origin, and so it gives rise to the martingale \(G(S_{n\wedge \tau_0})\). This yields a convenient

\(^3\) Indeed, \(E(h(S_{n+1}) \mid S_n = x) = (2d)^{-1} \sum_{y \sim x} h(y) = h(x)\) by (3.1)
Potential theory

tool for calculating certain exit probabilities via the Optional Stopping Theorem.4

• Informally speaking, the capacity of a set measures how big is this set from the point of view of the simple random walk. This permits us to obtain some refined bounds on probabilities of hitting sets.

• The harmonic measure lives on the boundary of a set, and is the “conditional entrance measure from infinity”. When we are concerned with entrance measures starting from some fixed site, sometimes it is possible to argue that this entrance measure is not much different from the harmonic measure, thus allowing us to have some control on where the random walk enters that set.

Let us now elaborate.

Green’s function.

For $d \geq 3$, the Green’s function $G : (\mathbb{Z}^d)^2 \to \mathbb{R}_+$ is defined in the following way:

$$G(x, y) = \mathbb{E}_x \left(\sum_{k=0}^{\infty} 1\{S_k = y\}\right) = \sum_{k=0}^{\infty} \mathbb{P}_x [S_k = y].$$

(3.2)

That is, $G(x, y)$ is equal to the mean number of visits to y starting from x. It is important to note that in the case $x = y$ we do count this as one “initial” visit (so, in particular, $G(x, x) > 1$ in all dimensions). By symmetry it holds that $G(x, y) = G(y, x) = G(0, y - x)$; thus, we can abbreviate $G(y) := G(0, y)$ so that $G(x, y) = G(x - y) = G(y - x)$. Now, a very important property of $G(\cdot)$ is that it is harmonic outside the origin, i.e.,

$$G(x) = \frac{1}{2d} \sum_{y \sim x} G(y) \quad \text{for all } x \in \mathbb{Z}^d \setminus \{0\}.$$ \hspace{1cm} (3.3)

Since, as observed above, $G(x)$ is the mean number of visits to the origin starting from x, one readily obtains the above from the total expectation formula, with only a little bit of thinking in the case when x is a neighbour of the origin. An immediate consequence of (3.3) is the following

Proposition 3.2 The process $G(S_{n \wedge \tau_0})$ is a martingale.

4 stated as Theorem 1.6 in this book; in fact, Corollary 1.7 will be usually enough
3.1 Transient case

Now, how should \(G(x) \) behave as \(x \to \infty \)? It is (almost) clear that it converges to 0 by transience, but how fast? It is not difficult to see\(^5\) that \(G(x) \) must be of order \(\|x\|^{-(d-2)} \), due to the following heuristic argument. Fix \(x \in \mathbb{Z}^d, x \neq 0 \). First, as is well-known (think e.g. of the Central Limit Theorem), the simple random walk is \textit{diffusive}, i.e., it needs time of order \(\|x\|^2 \) to be able to deviate from its initial position by distance \(\|x\| \) (which is a necessary condition if it wants to go to \(x \)). Then, at time \(m > \|x\|^2 \), the walk can be anywhere\(^6\) in a ball of radius roughly \(m^{1/2} \), which has volume of order \(m^{d/2} \). So, the chance that the walk is in \(x \) should be\(^7\) of order \(m^{-d/2} \); therefore, the Green’s function’s value in \(x \) is roughly

\[
\sum_{m=\|x\|^2}^{\infty} m^{-d/2} \approx \left(\|x\|^2\right)^{-d/2+1} = \|x\|^{-(d-2)}.
\]

Note also that

\[
G(x) = \mathbb{P}_x[\tau_0 < \infty]G(0);
\] (3.4)

indeed, starting from \(x \), the mean number of visits to 0 is zero given that \(\tau_0 = \infty \) and is \(G(0) \) given that \(\tau_0 < \infty \), so the above again comes out from the total expectation formula. This implies that the probability of ever visiting \(y \) starting from \(x \) (which is the same as the probability of ever visiting 0 starting from \(x - y \)) is also of order \(\|x - y\|^{-(d-2)} \).

Now, since the SRW is “roughly spherically symmetric”, it is reasonable to expect that the Green’s function should be asymptotically “well behaved” and, in particular, depend (almost) only on \(\|x\| \) as \(x \to \infty \). In fact, it is possible to obtain that

\[
G(x) = \frac{\gamma_d}{\|x\|^{d-2}} + O(\|x\|^{-d}),
\] (3.5)

with \(\gamma_d = \frac{\Gamma(d/2)^d}{\pi^{d/2}(d-2)} \), see Theorem 4.3.1 of [33]. We prefer not to include the complete proof here, but see Exercises 3.2, 3.3, and 3.4.

We are now able to obtain a straightforward (and useful) esti-

\(^5\) “to see” does not mean “to prove”\(^6\) well, not really (observe that the simple random walk has period two), but you understand what I mean\(^7\) note that we used a very similar heuristic argument in the beginning of Section 2.1
mate for the probability that the simple random walk escapes an annulus through its outer boundary:

Lemma 3.3 For all $x \in \mathbb{Z}^d$, $d \geq 3$, and $R > r > 0$ such that $x \in B(R) \setminus B(r)$ we have

$$
P_x \left[\tau^+_{\partial B(R)} < \tau^+_{\partial B(r)} \right] = \frac{r^{-(d-2)} - \|x\|^{-(d-2)} + O(r^{-(d-1)})}{r^{-(d-2)} - R^{-(d-2)} + O(r^{-(d-1)})}, \tag{3.6}
$$
as $r \to \infty$.

Proof This comes out of an application of the Optional Stopping Theorem to the martingale $G(S_{\tau^+_{\partial B(R)}})$, indeed, let us abbreviate by p the probability in the left-hand side of (3.5); also, let g_\downarrow and g_\uparrow be the expected values of $G(S)$ on first-hitting the inner and the outer boundaries of the annulus, i.e.,

$$
g_\downarrow = \mathbb{E}_x \left(G(S_{\tau^+_{\partial B(r)}}) \mid \tau^+_{\partial B(r)} < \tau^+_{\partial B(R)} \right),
g_\uparrow = \mathbb{E}_x \left(G(S_{\tau^+_{\partial B(r)}}) \mid \tau^+_{\partial B(R)} < \tau^+_{\partial B(r)} \right).
$$

Since $S_0 = x$, Corollary 1.7 implies that

$$
G(x) = G(S_0) = \mathbb{E}_x G \left(S_{\tau^+_{\partial B(r)}} \cup \partial B(R) \right) = pg_\uparrow + (1 - p)g_\downarrow,
$$

meaning that

$$
p = \frac{g_\downarrow - G(x)}{g_\downarrow - g_\uparrow}. \tag{3.7}
$$

Note that $S_{\tau^+_{\partial B(r)}} \in \partial B(r)$ because $x \notin B(r)$; since for any $y \in \partial B(h)$ it holds that $h - 1 < \|y\| \leq h$, we have by (3.5) that

$$
g_\downarrow = \frac{\gamma_d}{r^{d-2}} \left(1 + O(r^{-1}) \right),
$$

and

$$
g_\uparrow = \frac{\gamma_d}{R^{d-2}} \left(1 + O(R^{-1}) \right).
$$

Plugging (3.5) and the above into (3.7), we obtain (3.6). \qed

Sending R to infinity in (3.6), we obtain that, for any $x \notin B(r)$,

$$
P_x \left[\tau^+_{B(r)} = \infty \right] = 1 - \frac{\|x\|^{-(d-2)} + O(r^{-(d-1)})}{r^{-(d-2)} + O(r^{-(d-1)})}
$$

$$
= 1 - \left(\frac{r}{\|x\|} \right)^{d-2} + O(r^{-1}). \tag{3.8}
$$
3.1 Transient case

Let us now move on to the next fundamental notion of the (discrete) potential theory.

Capacity.

For finite \(A \subset \mathbb{Z}^d \) and \(x \in \mathbb{Z}^d \), let us denote

\[
Es_A(x) = \mathbb{P}_x[\tau_A^+ = \infty]1\{x \in A\}. \tag{3.9}
\]

By definition, this quantity is 0 outside \(A \), and, at \(x \in A \), it is the escape probability from \(A \). Note that \(Es_A(x) \) can be positive only if \(x \in \partial A \).

The capacity of a finite set \(A \subset \mathbb{Z}^d \) is defined by

\[
cap(A) = \sum_{x \in A} Es_A(x); \tag{3.10}
\]

clearly, it holds that the capacity is translationally invariant, and \(\text{cap}(A) = \text{cap}(\partial A) \).

What this notion of capacity is good for? To answer this question, we need some preparatory steps. Consider a finite \(A \subset \mathbb{Z}^d \).

Let us prove a relation that will be used many times later in this chapter: for any \(y \in \mathbb{Z}^d \), it holds that

\[
P_x[\tau_A < \infty] = \sum_{y \in A} G(x, y) Es_A(y) = \sum_{y \in \mathbb{Z}^d} G(x, y) Es_A(y). \tag{3.11}
\]

For the proof, we use an important idea called the last-visit decomposition. On the event \(\{\tau_A < \infty\} \), let

\[
\sigma = \max\{n : S_n \in A\}
\]

be the moment of the last visit to \(A \) (if the walk did not hit \(A \) at all, just set \(\sigma \) to be 0). By transience (recall that \(A \) is finite!), it is clear that \(\sigma \) is a.s. finite. It is important to note that \(\sigma \) is not a stopping time, which actually turns out to be good! To understand why, let us first observe that, by the strong Markov property, the walk’s trajectory after any stopping time is “free”, that is, it just behaves as simple random walk starting from the position it had at that stopping time. Now, if we know that \(\sigma \) happened at a given moment, then we know something about the future, namely, we know that the walk must not return to \(A \) anymore. In other words, after \(\sigma \) the walk’s law is the conditioned (on \(\tau_A^+ = \infty \)) one\(^8\).

\(^8\) strictly speaking, this statement needs a rigorous proof; we leave it to the reader as an exercise
Now, look at Figure 3.1: what is the probability that the walker visits $y \in A$ exactly k times (on the picture, $k = 2$), and then escapes to infinity, being y the last visited point of A?

This probability is the total weight of the trajectories such that, first, they visit y exactly k times and then escape to infinity not touching A anymore. This means that for any $y \in A$ and $k \geq 1$ it holds that

$$P_x[\text{exactly } k \text{ visits to } y, S_{\sigma} = y] = P_x[\text{at least } k \text{ visits to } y] E_{S_{\sigma}}(y).$$ \hfill (3.12)

OK, maybe, at first sight it is not clear why “exactly k visits” in the left-hand side became “at least k visits” in the right-hand side. To understand this, think again of the piece of the trajectory till σ. If we consider only such trajectories, they correspond to the event \{y is visited at least k times\} – indeed, if we only observe the trajectory till the kth visit, we then know that this last event occurred.

Then, summing (3.12) in k from 1 to ∞ we obtain\footnote{recall that, for a nonnegative integer-valued random variable ζ, it holds that $E\zeta = \sum_{k \geq 1} P[\zeta \geq k]$}

$$P_x[\tau_A < \infty, S_{\sigma} = y] = G(x,y) E_{S_{\sigma}}(y),$$ \hfill (3.13)

and summing the above in $y \in A$ we obtain (3.11).

Now, we are able to obtain the following useful corollary of (3.11):

$$\text{cap}(A) \min_{z \in A} G(x,z) \leq P_x[\tau_A < \infty] \leq \text{cap}(A) \max_{z \in A} G(x,z);$$ \hfill (3.14)

informally, at least in the case when $\min_{z \in A} ||x-z||$ and $\max_{z \in A} ||x-z||$ are of the same order, the above means that the probability of ever hitting the set A is proportional to its capacity, and (by (3.5))
3.1 Transient case

is inversely proportional to the distance to that set to power $d - 2$. This justifies the (already mentioned) intuition that the capacity measures how large is the set from the point of view of the simple random walk.

Next, let us obtain the exact expressions (in terms of the Green function G) for capacities of one- and two-point sets. We are going to prove that

$$\text{cap}(\{0\}) = \frac{1}{G(0)}, \quad (3.15)$$

$$\text{cap}(\{0, x\}) = \frac{2}{G(0) + G(x)} \quad (3.16)$$

(by translation invariance, the above also yeild the expressions for $\text{cap}(\{x\})$ and $\text{cap}(\{x, y\})$). Indeed, first, under P_0, the number of visits to the origin (counting the “initial” one at time 0) is a Geometric random variable with success probability $\text{Es}_{\{0\}}(0)$. So, its mean is $1/\text{Es}_{\{0\}}(0)$ on one hand and $G(0)$ on the other hand, meaning that $\text{Es}_{\{0\}}(0) = 1/G(0)$. Since, by definition, $\text{cap}(\{0\}) = \text{Es}_{\{0\}}(0)$, we obtain (3.15). The argument for two-point sets is very similar: let $p := \text{Es}_{\{0,x\}}(0)$; by symmetry, it holds also that $p = \text{Es}_{\{0,x\}}(x)$. So, the total number of visits to $\{0, x\}$ (starting from either 0 or x) has Geometric distribution with success probability p, meaning that $p^{-1} = G(0) + G(x)$. Since $\text{cap}(\{0, x\}) = \text{Es}_{\{0,x\}}(0) + \text{Es}_{\{0,x\}}(x) = 2p$, (3.16) follows.

The above argument can be also used to calculate the capacities of other symmetric sets, like e.g. the four vertices of a “spacial rectangle” or other similar things.

As for the capacity of a d-dimensional (discrete) ball, let us show that (with the constant γ_d from (3.5))

$$\text{cap}(B(r)) \sim \frac{r^{d - 2}}{\gamma_d} \quad \text{as } r \to \infty. \quad (3.17)$$

To understand why $\text{cap}(B(r))$ should be of order $r^{d - 2}$, consider x such that $\|x\| \in [r + c, r + c + 1]$, where $c > 0$ is a large enough constant, see Figure 3.2. Note that (3.8) yeilds

$$\mathbb{P}_x[\tau_{B(r)}^+ = \infty] = 1 - \left(\frac{r}{\|x\|}\right)^{d - 2} + O(r^{-1})$$

$$= 1 - \left(1 + \frac{\|x\| - r}{r}\right)^{-(d - 2)} + O(r^{-1})$$
Potential theory

\[B(r) \times r + c \times r + c + 1 \]

Figure 3.2 Escaping from a ball.

\[= - \frac{(d-2)c}{r} + O(r^{-1}) \]

(where there is no dependence on \(c \) in the \(O \)'s). The two terms in the above expression are of the same order, but we are allowed to make \(c \) as large as we want; this will imply that, for such \(x \), \(P_x[\tau_{B(r)} = \infty] \asymp r^{-1} \). This by its turn means that \(\text{Es}_{B(r)}(y) \asymp r^{-1} \) (observe that, clearly, from any boundary point of \(B(r) \) it is possible to walk to some \(x \) as above with uniformly positive probability). Since \(|\partial B(r)| \asymp r^{d-1} \), we see that the capacity of \(B(r) \) is indeed of order \(r^{d-1} \times r^{-1} = r^{d-2} \).

To obtain the more precise relation (3.17), we need the following

Proposition 3.4 For any finite \(A \subset \mathbb{Z}^d \) it holds that

\[
\text{cap}(A) = \lim_{x \to \infty} \frac{\|x\|^{d-2}}{\gamma_d} P_x[\tau_A < \infty].
\]

(3.18)

Proof This is a direct consequence of (3.14) and (3.5): as \(x \to \infty \), both \(\min_{z \in A} G(x, z) \) and \(\max_{z \in A} G(x, z) \) are asymptotically equivalent to \(\gamma_d \|x\|^{-(d-2)} \).

It remains to observe that the asymptotics of the capacity of a ball (relation (3.17)) follows from (3.8) and Proposition 3.4.

We are now going to present an interesting application of the technique we just developed. Let us recall the following

Definition 3.5 We say that \(A \subset \mathbb{Z}^d \) is recurrent, if \(P_x[\tau_A < \infty] = 1 \) for all \(x \in \mathbb{Z}^d \). Otherwise, we call the set \(A \) transient.

Clearly, the question if a set is recurrent or transient is, in principle, not so trivial. As a start, we obtain the following result:
Proposition 3.6 If A is recurrent, then

$$\sum_{k=1}^{\infty} 1\{S_k \in A\} = \infty \quad \mathbb{P}_x\text{-a.s.},$$

for all $x \in \mathbb{Z}^d$, that is, regardless of the starting point, A is visited infinitely many times a.s. If A is transient, then

$$\sum_{k=1}^{\infty} 1\{S_k \in A\} < \infty \quad \mathbb{P}_x\text{-a.s.},$$

for all $x \in \mathbb{Z}^d$.

Proof The first part (that recurrence implies that A is visited infinitely many times a.s.) is evident; let us prove the second part. Let A be a transient set and let us define the function h by

$$h(x) = \mathbb{P}_x[A \text{ is visited infinitely often}].$$

An immediate observation is that h is harmonic – just use the formula of total probability, conditioning on the first step. So, since h is also obviously bounded, Proposition 3.1 implies that this function is constant, $h(x) = p \in [0, 1]$ for all x.

Now, what can be the value of p? First, it has to be strictly less than 1 by transience of A (there is at least one site x_0 such that $\mathbb{P}_{x_0}[\tau_A < \infty] < 1$ and, obviously, $h(x_0) \leq \mathbb{P}_{x_0}[\tau_A < \infty]$). Next, write (conditioning on the first entrance to A, if any)

$$p = h(x_0) = \sum_{y \in A} \mathbb{P}_{x_0}[\tau_A < \infty, S_{\tau_A} = y]h(y) = p \sum_{y \in A} \mathbb{P}_{x_0}[\tau_A < \infty, S_{\tau_A} = y] = p \mathbb{P}_{x_0}[\tau_A < \infty],$$

and (since, as we just assumed, $\mathbb{P}_{x_0}[\tau_A < \infty] < 1$) this implies that $p = 0$.

As we know already, in dimensions $d \geq 3$ the one-point sets are transient; Proposition 3.6 then implies10 that all finite sets are transient as well. But what can we say about infinite sets? The answer is given by the following theorem:

10 how exactly?
Theorem 3.7 (Wiener’s criterion) For $d \geq 3$, $A \subset \mathbb{Z}^d$ is recurrent if and only if

$$
\sum_{k=1}^{\infty} \frac{\text{cap}(A_k)}{2^{(d-2)k}} = \infty,
$$

where

$$A_k = \{ x \in A : 2^{k-1} < \|x\| \leq 2^k \}
$$

is the intersection of A with the annulus $B(2^k) \setminus B(2^{k-1})$.

The proof is left to the reader (Exercises 3.10 and 3.11).

Harmonic measure.

As before, let A be a finite subset of \mathbb{Z}^d, $d \geq 3$. The harmonic measure $\text{hm}_A(\cdot)$ on A is defined by

$$
\text{hm}_A(x) = \frac{\text{Es}_A(x)}{\text{cap}(A)}, \quad x \in A,
$$

that is, the value of $\text{hm}_A(x)$ is proportional to the escape probability from x to infinity. Remarkably, it is also true that hm_A is the “entrance measure to A from infinity”, that is, the following result holds:

Theorem 3.8 For all $y \in A$, we have

$$
\text{hm}_A(y) = \lim_{x \to \infty} \mathbb{P}_x[S_{\tau_A} = y \mid \tau_A < \infty].
$$

Why should the above be valid? Let us first give an informal explanation. Consider $y, z \in \partial A$, such that $y \neq z$ and both $\text{Es}_A(y)$ and $\text{Es}_A(z)$ are strictly positive. Then, the ratio of the “total weights” of trajectories which escape A from, respectively, y and z, equals $\text{Es}_A(y) / \text{Es}_A(z)$. Now, if x is very far away from A and the walker that started somewhere at A happens to pass through x, it likely does not “remember” its exact starting position. Since the time reversal does not change the “weight” of the trajectory11, the ratio of the chances that a trajectory passing through x will end up in y (respectively, in z) should be then $\text{Es}_A(y) / \text{Es}_A(z)$ as well.

Now, the rigorous proof of the above result may look not very intuitive at first sight, but note that it also makes use of this reversibility property.

11 formally, for infinite trajectories this only means that $0 = 0$, but you understand what I wanted to say.
3.1 Transient case

Proof of Theorem 3.8. We now use a trajectory-counting argument very similar to the one in the proof of (3.11). For $x \notin A$, $y \in \partial A$, and $n \geq 1$, let us denote by $\Gamma^{(n)}_{x,y}$ the set of nearest-neighbour trajectories $\varphi = (z_0, \ldots, z_k)$ such that

- $z_0 = x$, $z_k = y$, and $z_j \notin A$ for all $j \leq k - 1$, i.e., the trajectory ends on the first entrance to A, which takes place in y;
- $\sum_{j=0}^{k} 1\{z_j = x\} = n$, i.e., the trajectory visits x exactly n times (note that we do count $z_0 = x$ as one visit);

see Figure 3.3. For such trajectory, we also write $|\varphi| = k$ to denote its length, and $P_{\varphi} = (2d)^{-|\varphi|}$ to denote its weight (a.k.a. probability). Let us also denote by

$$N_x = \sum_{j=0}^{\infty} 1\{S_j = x\}$$

the total number of visits to $x \notin A$, by

$$N^0_x = \sum_{j=0}^{\tau^{A}_x - 1} 1\{S_j = x\}$$

the number of visits to x before the first return to A, and by

$$N^1_x = \sum_{j=\tau^{A}_x}^{\infty} 1\{S_j = x\}$$

the number of visits to x after the first return to A (naturally, setting $N^0_x = 0$ on $\{\tau^{A}_x = \infty\}$).
Now, it is clear that

\[P_x[\tau_A < \infty, S_{\tau_A} = y] = \sum_{n=1}^{\infty} \sum_{\varphi \in \Gamma_{xy}^{(n)}} P_{\varphi} \] \hspace{1cm} (3.22)

(we just sum the weights of all trajectories starting at \(x \) and entering \(A \) at \(y \)). The next relation may seem a bit less clear, but it is here where we use the reversibility property:

\[P_y[N_y^+ \geq n] = \sum_{\varphi \in \Gamma_{xy}^{(n)}} P_{\varphi}. \] \hspace{1cm} (3.23)

Indeed (quite analogously to the proof of (3.11)), when, starting at \(y \), we see a reversal of a trajectory from \(\Gamma_{xy}^{(n)} \), we are sure that the event \(\{N_y^+ \geq n\} \) occurs. Therefore, we can write

\[P_x[S_{\tau_A} = y \mid \tau_A < \infty] = \frac{P_x[\tau_A < \infty, S_{\tau_A} = y]}{P_x[\tau_A < \infty]} \tag{by (3.22) and (3.23)} \]

\[= (P_x[\tau_A < \infty])^{-1} \sum_{n=1}^{\infty} P_y[N_y^+ \geq n] \]

\[= (P_x[\tau_A < \infty])^{-1} E_y N_y^+ \]

\[= (P_x[\tau_A < \infty])^{-1} (E_y N_x^+ - E_y N_x^-) \]

(conditioning on the position of the first re-entry to \(A \))

\[= (P_x[\tau_A < \infty])^{-1} \left(G(y, x) - \sum_{z \in \partial A} P_y[\tau_A^+ < \infty, S_{\tau_A} = z] G(z, x) \right). \] \hspace{1cm} (3.24)

Then, Proposition 3.4 together with (3.5) imply that, for any fixed \(z \in \mathbb{Z}^d \),

\[\frac{G(z, x)}{P_x[\tau_A < \infty]} \to \frac{1}{\text{cap}(A)} \] as \(x \to \infty \).

So, sending \(x \) to infinity in (3.24), we obtain

\[\lim_{x \to \infty} P_x[S_{\tau_A} = y \mid \tau_A < \infty] = \frac{1}{\text{cap}(A)} \left(1 - \sum_{z \in \partial A} P_y[\tau_A^+ < \infty, S_{\tau_A} = z] \right) \]
3.2 Potential theory in two dimensions

In this section, we try to do roughly the same as in the previous one, only in two dimensions. As we know, there is one big difference between the dimension two and higher dimensions: as shown in Chapter 2, unlike the higher-dimensional SRW, the two-dimensional SRW is recurrent. This means that the mean number of visits from any site to any other site equals infinity; this prevents us from defining the Green’s function in the same way as in Chapter 3.1. In spite of this unfortunate circumstance, we still would like to use martingale arguments, so a “substitute” of the Green’s function is needed. Now, here comes the key observation: while the mean number of visits to the origin is infinite, the difference between the mean number of visits to the origin starting from 0 and starting from x is finite, if suitably defined. Let us do it now.

Potential kernel.

Namely, let us define the potential kernel $a(\cdot)$ by

$$a(x) = \sum_{k=0}^{\infty} (\mathbb{P}_0[S_k = 0] - \mathbb{P}_x[S_k = 0]), \quad x \in \mathbb{Z}^2. \quad (3.25)$$

By definition, it holds that $a(0) = 0$. To see that the limit (finite or infinite) in (3.25) actually exists is a little bit more subtle, but still quite elementary. Indeed, Exercise 3.22 (iii) implies that

- if x is an even site (i.e., the sum of its coordinates is even),

Thus concluding the proof of Theorem 3.8. \hfill \Box

Many other interesting things can be said about the transient case, but we prefer to stop here and pass to the recurrent one. 12
Figure 3.4 The coupling of two random walks starting at 0 and \(x = (4, 2) \). Note that their first coordinate become equal at time 3 (when the first walk is at \((2, -1) \) and the second one is at \((2, 3) \)), and the walks meet at time 6 at site \((1, 1) \).

then all terms in the summation (3.25) are nonnegative (more precisely, they are positive for even \(k \) and zero for odd \(k \));

• if \(x \) is an odd site, then we have a series with alternating signs in (3.25), but the sums of each two consecutive terms (i.e., \(\mathbb{P}_0[S_{2k} = 0] - \mathbb{P}_x[S_{2k+1} = 0] \)) are again strictly positive and converge to zero, which clearly implies that the sum is well-defined.

Note that the above argument also implies that \(a(x) > 0 \) for all \(x \neq 0 \).

Now, let us convince ourselves that the series converges (i.e., \(a(x) \) is finite) for all \(x \in \mathbb{Z}^2 \), and figure out how large \(a(x) \) should be. The “normal” approach would be employing the local Central Limit Theorem\(^{13}\) for this, but we prefer using another interesting and very useful tool called coupling\(^{14}\). It will be a long argument (sorry for that!) since we will need to do a three-parts divide-and-conquer, but it is still nice and instructive. Assume that both coordinates of \(x \neq 0 \) are even, so, in particular, two random walks simultaneously started at \(x \) and at the origin can meet. Next, we construct these two random walks together, that is, on the same probability space. We do this in the following way: we first choose one of the two coordinates at random, and then make the walks

\(^{13}\) analogous to the De Moivre-Laplace one, only in two dimensions; see e.g. Theorem 2.1.1 of [33]

\(^{14}\) we used it already (without calling it so) in the proof of Proposition 3.1; here, we take it further
jump in the opposite directions if the values of the chosen coordinates of the two walks are different, and in the same direction in case they are equal, see Figure 3.4. Formally, assume that, at a given moment n the positions of the walks are S'_n and S''_n; we have then $S'_0 = 0$, $S''_0 = x$. Let J_n and Z_n be independent random variables assuming values in $\{1, 2\}$ and $\{-1, 1\}$ respectively, with equal (to $\frac{1}{2}$) probabilities. Then, we set:

\[(S'_{n+1}, S''_{n+1}) = \begin{cases}
(S'_n + Z_n e_{J_n}, S''_n - Z_n e_{J_n}), & \text{if } S'_n \cdot e_{J_n} \neq S''_n \cdot e_{J_n}, \\
(S'_n + Z_n e_{J_n}, S''_n + Z_n e_{J_n}), & \text{if } S'_n \cdot e_{J_n} = S''_n \cdot e_{J_n}.
\end{cases} \]

Note that if the first (second) coordinates of the two walks are equal at some moment, then they will remain so forever. This means, in particular, that, when the two walks meet, they stay together. Let us assume, for definiteness, that x belongs to the first quadrant, that is, $x = (2b_1, 2b_2)$ for $b_{1,2} \geq 0$. Let

\[T_j = \min \{ n \geq 0 : S'_n \cdot e_j = S''_n \cdot e_j \} \]

for $j = 1, 2$; that is, T_j is the moment when the jth coordinates of S' and S'' coincide for the first time. Notice that, alternatively, one can express them in the following way:

\[T_j = \min \{ n \geq 0 : S'_n \cdot e_j = b_j \} = \min \{ n \geq 0 : S''_n \cdot e_j = b_j \} \quad (3.26) \]

(clearly, they have to meet exactly in the middle). Let also $T = T_1 \lor T_2$ be the coupling time, i.e., the moment when the two walks meet and stay together.

Now, we go back to (3.25) and use the strategy usually called “divide and conquer”: write

\[a(x) = \sum_{k < \|x\|} (P_0[S_k = 0] - P_x[S_k = 0])
+ \sum_{k \in \|x\|, \|x\| + 1} (P_0[S_k = 0] - P_x[S_k = 0])
+ \sum_{k > \|x\| + 1} (P_0[S_k = 0] - P_x[S_k = 0])
=: M_1 + M_2 + M_3, \]

and then let us deal with the three terms separately.
First, let us recall the calculations from Section 2.1: we have obtained there that
\[P_0[S_{2k} = 0] \asymp \frac{1}{k}. \] (3.27)
To deal with the term \(M_1 \), just observe that \(P_x[S_k = 0] = 0 \) for \(k < \|x\| \) — there is simply not enough time for the walker to go from \(x \) to 0. The relation (3.27) then implies that
\[M_1 \asymp \ln \|x\|. \] (3.28)
For the second term, we have already observed that all summands there are nonnegative, so (3.27) implies that
\[0 \leq M_2 \lesssim \ln \|x\|. \] (3.29)
That is, \(M_1 \) is of order \(\ln \|x\| \), and \(M_2 \) is nonnegative and at most of order \(\ln \|x\| \); this clearly implies that the sum of them is also of order \(\ln \|x\| \).
It remains to deal with the term \(M_3 \). It is here that we use the coupling idea: let us write
\[
\sum_{k > \|x\|^3} (P_0[S_k = 0] - P_x[S_k = 0])
= E \sum_{k > \|x\|^3} (1 \{S'_k = 0\} - 1 \{S''_k = 0\})
\]
(write \(1 = 1 \{T \leq k\} + 1 \{T > k\} \), and note that the \(k \)th term is 0 on \(\{T \leq k\} \))
\[
= E \sum_{k > \|x\|^3} (1 \{S'_k = 0\} - 1 \{S''_k = 0\}) 1 \{T > k\}
\]
(if \(T > k \) then \(S''_k \) cannot be at the origin, recall (3.26))
\[
= E \sum_{k > \|x\|^3} 1 \{S'_k = 0\} 1 \{T > k\}
= \sum_{k > \|x\|^3} \mathbb{P}[S'_k = 0, T > k]
\]
(since \(\{T > k\} = \{T_1 > k\} \cup \{T_2 > k\} \))
\[
\leq \sum_{k > \|x\|^3} \mathbb{P}[S'_k = 0, T_1 > k] + \sum_{k > \|x\|^3} \mathbb{P}[S'_k = 0, T_2 > k]
\]
(by symmetry)
\[
= 2 \sum_{k > \|x\|^3} \mathbb{P}[S'_k = 0, T_1 > k]. \] (3.30)
We are now going to prove that the terms in the above sum are at most of order $k^{-4/3}$. For this, we first prove that, for all $m \geq b_1^3$,
\[
P_0[X_{2m} = 0, \hat{T}(b_1) > 2m] \leq m^{-5/6},
\]
(3.31)
where X is a one-dimensional simple random walk, and $\hat{T}(s) = \min\{\ell > 0 : X_\ell = s\}$. To show (3.31), we use the following well-known fact:

Proposition 3.9 (The Reflection Principle) Let us consider oriented paths in \mathbb{Z}^2, such that from x the path can go to either to \(x + e_1 - e_2\) or to \(x + e_1 + e_2\) (that is, it can go to north-east and south-east directions). Let two sites $x = (x_1, x_2)$ and $y = (y_1, y_2)$ be such that $x_1 < y_1$, $x_2 > 0$, $y_2 > 0$. Then the number of paths that go from x to y and have at least one common point with the horizontal axis is equal to the total number of paths that go from $\tilde{x} = (x_1, -x_2)$ to y.

Proof Just look at Figure 3.5 (on the right). In a way, it is the same coupling as before, only in dimension 1. \(\square\)

Now, we write
\[
P_0[X_{2m} = 0, \hat{T}(b_1) \leq 2m] = P_{b_1}[X_{2m} = b_1, \hat{T}(0) \leq 2m]
\]
\(^{15}\) these are the space-time paths of one-dimensional simple random walk, the horizontal axis represents time and the vertical axis represents space.
Potential theory
(by the Reflection Principle)

\[= P_{-b_1}[X_{2m} = b_1] \]
\[= 2^{-2m} \left(\frac{2m}{m - b_1} \right). \]

So, we have for \(m \geq b_1^2 \),

\[\mathbb{P}_0[X_{2m} = 0, \hat{T}(b_1) > 2m] \]
\[= 2^{-2m} \left(\frac{2m}{m} \right) - \left(\frac{2m}{m - b_1} \right) \]
\[= 2^{-2m} \left(\frac{2m}{m} \right) \left(1 - \frac{(k - b_1 + 1) \cdots (k - 1)k}{(k + 1) \cdots (k + b_1)} \right) \]
\[= 2^{-2m} \left(\frac{2m}{m} \right) \left(1 - \left(1 - \frac{b_1}{k + 1} \right) \cdots \left(1 - \frac{b_1}{k + b_1} \right) \right) \]
\[\leq 2^{-2m} \left(\frac{2m}{m} \right) \left(1 - \left(1 - \frac{1}{k} \right)^{b_1} \right) \]

(\text{with some simple calculus})

\[\lesssim 2^{-2m} \left(\frac{2m}{m} \right) \times \frac{b_1^2}{m} \]

(recall the calculation (2.2) from Section 2.1 and use that \(b_1^2 \leq m^{2/3} \))

\[\lesssim \frac{1}{m^{1/2}} \times \frac{m^{2/3}}{m} \]
\[= \frac{1}{m^{5/6}}, \]

thus proving (3.31). Note also that, if \(N_1 \) is a Binomial\((2k, \frac{1}{2})\) random variable (think of the number of steps in vertical direction of two-dimensional simple random walk up to time \(2k \)), then it holds that\(^{16}\)

\[\mathbb{P}\left[\frac{2}{3}k \leq N_1 \leq \frac{4}{3}k \right] = \mathbb{P}\left[|N_1 - \mathbb{E}N_1| \leq \frac{1}{3}k \right] \geq 1 - e^{-ck}. \tag{3.32} \]

So, we have

\[\mathbb{P}[S_{2k} = 0, T_1 > 2k] \]

\(^{16}\) use e.g. the Chernoff’s bound
\[= \sum_{m=0}^{k} \mathbb{P}[N_1 = m] \mathbb{P}_0[X_{2m} = 0, \hat{T}(b_1) > 2m] \mathbb{P}_0[X_{2(k-m)} = 0] \]

(due to (3.32), only the “middle terms” matter, and they are all of the same order)

\[\lesssim \frac{1}{k^{5/6}} \times \frac{1}{k^{1/2}} = k^{-4/3};\]

going back to (3.30) we find that the term \(M_3\) is bounded above by a constant (in fact, even polynomially small in \(\|x\|\)), and this finally shows that, for \(x \in \mathbb{Z}^2\) with both coordinates even, \(a(x)\) exists and is of order \(\ln \|x\|\). We are finally done with the long proof of existence, but the reader is advised to see Exercise 3.23.

The above argument can be tweaked to treat all \(x \in \mathbb{Z}^2\), but, as we will see now, this is unnecessary. Let us show that the function \(a\) is harmonic outside the origin, i.e.,

\[a(x) = \frac{1}{4} \sum_{y \sim x} a(y) \quad \text{for all } x \neq 0. \quad (3.33)\]

Then, assuming that (3.33) holds, it is clear that the fact that \(a(x) < \infty\) for some \(x \neq 0\) implies that \(a(x) < \infty\) for all \(x \in \mathbb{Z}^2\) (indeed, if \(a(x) < \infty\) then \(a(y)\) should also be finite for all \(y \sim x\), etc.). Also, if \(x, y \neq 0\) and \(y \sim x\), then (3.33) implies that \(\frac{1}{4}a(x) \leq a(y) \leq 4a(x)\), and this shows that \(a(x)\) should be of order \(\ln \|x\|\) as \(x \to \infty\) indeed.

Now, we prove (3.33); this is again a consequence of the total expectation formula, we only need to take some more care this time because of the limits involved. Let

\[N_z^{(k)} = \sum_{j=0}^{k} \mathbb{1}\{S_k = 0\} \quad (3.34)\]

be the number of visits to \(z\) up to time \(k\); we thus have \(a(x) = \lim_{k \to \infty} (E_0 N_0^{(k)} - E_y N_0^{(k)})\). The total expectation formula (conditional on the first step) gives us that, for \(x \neq 0\),

\[E_x N_0^{(k)} = \frac{1}{4} \sum_{y \sim x} E_y N_0^{(k-1)},\]
\[E_0 N_0^{(k)} - E_x N_0^{(k)} = E_0 N_0^{(k)} - \frac{1}{4} \sum_{y \sim x} E_y N_0^{(k-1)} \]

\[= E_0 N_0^{(k-1)} + P_0[S_k = 0] - \frac{1}{4} \sum_{y \sim x} E_y N_0^{(k-1)} \]

\[= P_0[S_k = 0] + \frac{1}{4} \sum_{y \sim x} (E_0 N_0^{(k-1)} - E_y N_0^{(k-1)}). \]

Sending \(k \) to infinity in the above, we obtain (3.33).

Let \(\mathcal{N} = \{ \pm e_i, i = 1, 2 \} \) be the set of the four neighbours of the origin. Another useful fact is that

\[a(x) = 1 \text{ for all } x \in \mathcal{N}. \]

(3.35)

To see this, first, observe that, by symmetry, \(a(\cdot) \) must have the same value on the sites of \(\mathcal{N} \). Then, again by the total expectation formula,

\[E_0 N_0^{(k)} = 1 + \frac{1}{4} \sum_{y \in \mathcal{N}} E_y N_0^{(k-1)} = 1 + E_{e_1} N_0^{(k-1)} \]

(note that the time-zero visit counts, and then use symmetry). The above implies that

\[E_0 N_0^{(k)} - E_{e_1} N_0^{(k-1)} = (1 + E_{e_1} N_0^{(k-1)}) - (E_{e_1} N_0^{(k-1)} + P_{e_1}[S_k = 0]) \]

\[= 1 - P_{e_1}[S_k = 0], \]

and, sending \(k \) to infinity, we obtain (3.35).

Again, as with the Green’s function in the previous section (expression (3.5)), we argue that the common wisdom suggests that the potential kernel should be roughly spherically symmetric, and “well-behaved” in general. Indeed, it is possible to prove that, as \(x \to \infty \),

\[a(x) = \frac{2}{\pi} \ln \|x\| + \gamma' + O(\|x\|^{-2}), \]

(3.36)

where, being \(\gamma = 0.5772156 \ldots \) the Euler-Mascheroni constant\(^\text{17} \),

\[\gamma' = \frac{2\gamma + \ln 8}{\pi} = 1.0293737 \ldots, \]

(3.37)

\(^\text{17}\) \(\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \cdots + \frac{1}{n} - \ln n \right) \)
3.2 Potential theory in two dimensions

cf. Theorem 4.4.4 of [33], and see Exercises 3.25 and 3.26. We also note that it is possible to obtain exact values of \(a(\cdot) \) in other sites (close to the origin); for example, it holds that \(a(e_1 + e_2) = \frac{4}{\pi} \), \(a(2e_1) = 4 - \frac{8}{\pi} \), and so on, see Section III.15 of [45].

Observe that the harmonicity of \(a \) outside the origin (established in (3.33)) immediately implies that the following result holds:

Proposition 3.10 The process \(a(S_{k\wedge \tau_0}) \) is a martingale.

We will repeatedly use this fact in the sequel. What we will also repeatedly use, is that, due to (3.36),

\[
a(x + y) - a(x) = O(\|y\|^{1/2})
\]

for all \(x, y \in \mathbb{Z}^2 \) such that (say) \(\|x\| > 2\|y\| \).

With some (slight) abuse of notation, we also consider the function

\[
a(r) = \frac{2}{\pi} \ln r + \gamma'
\]

of a real argument \(r \geq 1 \). Note that, in general, \(a(x) \) need not be equal to \(a(\|x\|) \), although they are of course quite close for large \(x \). The advantage of using this notation is e.g. that, due to (3.36) and (3.38), we may write (for fixed \(x \) or at least \(x \) such that \(2\|x\| \leq r \))

\[
\sum_{y \in \partial B(x, r)} \nu(y)a(y) = a(r) + O\left(\frac{\|x\|^{1/2}}{r}\right)
\]

as \(r \to \infty \) (3.39)

for any probability measure \(\nu \) on \(\partial B(x, r) \).

As in the higher-dimensional case, we need an asymptotic expression for the probability that a random walk in an annulus leaves it through its outer boundary. Quite analogously to the proof of Lemma 3.3, we can obtain the following result from (3.36), Proposition 3.10, and the Optional Stopping Theorem:

Lemma 3.11 For all \(x \in \mathbb{Z}^2 \) and \(R > r > 0 \) such that \(x \in B(y, R) \setminus B(r) \) we have

\[
\mathbb{P}_x[\tau_{\partial B(y, R)} < \tau_{B(r)}] = \frac{a(x) - a(r) + O(r^{-1})}{a(R) - a(r) + O(r^{-1} + \frac{\|y\|^2}{r})},
\]

as \(r, R \to \infty \). The above also holds with \(\tau_{\partial B(y, R)} \) on the place of \(\tau_{\partial B(y, R)} \).
Potential theory

We do not write its proof here (since it is really analogous); but, in case the reader prefers to see a similar proof again, we prove the following result for the probability of escaping the origin:

Lemma 3.12 Assume that \(x \in B(y, r) \) and \(x \neq 0 \). Then

\[
P_x \left[\tau_{\partial B(y, r)} < \tau_0^+ \right] = \frac{a(x)}{a(r) + O(\frac{||y||+1}{r})},
\]

as \(r \to \infty \). As before, the above also holds with \(\tau_{\partial B(y, r)} \) on the place of \(\tau_{\partial B(y, r)} \).

Proof Indeed, use Proposition 3.10, and the Optional Stopping Theorem to write (recall that \(a(0) = 0 \))

\[
a(x) = P_x \left[\tau_{\partial B(y, r)} < \tau_0^+ \right] E_x \left(a(S_{\tau_{\partial B(y, r)}}) \mid \tau_{\partial B(y, r)} < \tau_0^+ \right),
\]

and then use (3.39).

Note that Lemma 3.12 implies that (since, from the origin, on the next step the walk will go to a site of \(N \) where the potential kernel equals 1)

\[
P_0 \left[\tau_{\partial B(r)} < \tau_0^+ \right] = \frac{1}{a(r) + O(r^{-1})} = \left(\frac{2}{\pi} \ln r + \gamma + O(r^{-1}) \right)^{-1}.
\]

(3.42)

The reader may have recalled that this was the formula that was used in the introduction to calculate the probability of going to the edge of our galaxy before returning to the initial point.

Green’s function.

Wait, but didn’t we agree in the beginning of this section that there is no Green’s function in two dimensions? Well, this applies to the Green’s function in the whole space, but we also can define a “restricted Green’s function”, which can be still quite useful. Let \(\Lambda \) be a (typically, finite) subset of \(\mathbb{Z}^2 \). Here and in the sequel, we will denote \(\Lambda^c := \mathbb{Z}^2 \setminus \Lambda \). For \(x, y \in \Lambda \) let us define

\[
G_\Lambda(x, y) = E_x \sum_{k=0}^{\tau_{\Lambda^c}-1} 1\{S_k = y\}
\]

(3.43)

to be the mean number of visits to \(y \) starting from \(x \) before stepping out of \(\Lambda \). Notice that this definition formally makes sense\(^{18}\) with the usual convention that \(\sum_{k=0}^{-1} = 0 \).
3.2 Potential theory in two dimensions

also in the case when at least one of the arguments is outside of \(\Lambda \), in which case \(G_\Lambda(x, y) = 0 \).

This notion is, of course, less convenient than that of the Green’s function in the whole space, since we (clearly) lose the translation invariance, and also (apparently) lose the symmetry. It is quite remarkable, however, that, in fact, the symmetry is not lost! Indeed, let us prove that

\[
G_\Lambda(x, y) = G_\Lambda(y, x) \quad \text{for any } x, y \in \Lambda. \tag{3.44}
\]

To prove the above, we use the usual trick of getting rid of random sums (such as the one in (3.43)):

\[
\mathbb{E}_x \sum_{k=0}^{\tau_{\Lambda^c} - 1} 1\{S_k = y\} = \mathbb{E}_x \sum_{k=0}^{\infty} 1\{S_k = y, \tau_{\Lambda^c} > k\} = \sum_{k=0}^{\infty} \mathbb{P}_x [S_k = y, \tau_{\Lambda^c} > k]
\]

and so, to prove (3.44), it is enough to show that

\[
\mathbb{P}_x [S_k = y, \tau_{\Lambda^c} > k] = \mathbb{P}_y [S_k = x, \tau_{\Lambda^c} > k]
\]

for any \(k \). But this is quite evident: indeed, the number of \(k \)-step trajectories that lie fully inside \(\Lambda \), start at \(x \) and end at \(y \), is obviously the same as the number of such trajectories that start at \(y \) and end at \(x \).

Next, there is a useful relation connecting the restricted Green’s function to the potential kernel:

Theorem 3.13 Assume that \(\Lambda \) is finite. Then, it holds that

\[
G_\Lambda(x, y) = \mathbb{E}_x (S_{\tau_{\Lambda^c}} - y) - a(x - y). \tag{3.45}
\]

Proof First, Proposition 3.10 together with (3.35) imply that the process \(a(S_n - y) \) is a submartingale: indeed, when the walk is not at \(y \), its expected drift equals zero, while, when it is at \(y \), its value is 0 and will become 1 on the next step (so the expected drift equals 1). With a moment of thought, one can see\(^{19} \) that the process (recall the notation from (3.34))

\[
Y_n = a(S_n - y) - N^{(n-1)}_y \tag{3.46}
\]

is a martingale – the drift of \(a(S_n - y) \) which is present when

\(^{19} \) exercise: prove it formally
the walker is at \(y \) is "compensated" by the increase of the value of \(N_y \). Since \(G_\Lambda(x, y) = E_x N_y^{(\tau_\Lambda - 1)} \), it is enough to apply the Optional Stopping Theorem\(^{20}\) to the martingale \(Y_n \) and the stopping time \(\tau_\Lambda \):

\[
a(x - y) = E_x Y_0 = E_x Y_{\tau_\Lambda} = E_x a(S_{\tau_\Lambda} - y) - G_\Lambda(x, y),
\]

thus proving (3.45). \(\square \)

We use the above theorem to obtain a convenient expression for the restricted Green’s function in the case \(\Lambda = B(R) \), with a large \(R \). Let \(x, y \in B(R) \). Note that, for any \(z \in \partial B(R) \), it holds that

\[
a(z - y) = a(R) + O(\|y\| + 1)
\]

(indeed, analogously to (3.38) just observe that \(|\|z - y\| - R| \leq \|y\| + 1 \) and use that \(\ln \|z - y\| = \ln R + \ln (1 + \frac{\|z - y\|}{R}) \)). So, Theorem 3.13 implies that, for \(x, y \in B(R) \)

\[
G_{B(R)}(x, y) = a(R) - a(x - y) + O\left(\frac{1 + \|x\| \wedge \|y\|}{R}\right) \tag{3.47}
\]

(as \(\|x - y\| \to \infty \))

\[
= \frac{2}{\pi} \ln \frac{R}{\|x - y\|} + O\left(\frac{1 + \|x\| \wedge \|y\|}{R} + \frac{1}{\|x - y\|} \right) \tag{3.48}
\]

(note that, by the symmetry property (3.44), we can assume without loss of generality that \(\|y\| \leq \|x\| \), so we can choose “the better term” in the above \(O \)'s).

Harmonic measure.

Here (I mean, in two dimensions) we take a different route: we first define and discuss the notion of harmonic measure, and only then pass to that of capacity. For a finite \(A \subset \mathbb{Z}^2 \) and \(x \in \mathbb{Z}^2 \) let us define

\[
q_A(x) = a(x - y_0) - E_x a(S_{\tau_A} - y_0), \tag{3.49}
\]

where \(y_0 \) is some site of \(A \) (later we will prove that the value of \(q_A(x) \) does not depend on the choice of this \(y_0 \)). Note that \(q_A(x) = 0 \) for all \(x \in A \) (since \(\tau_A = 0 \) when the walk starts at \(x \in A \)); also, the above definition is invariant under translations,
i.e., \(q_{A+z}(x+z) = q_A(x) \) for any \(z \in \mathbb{Z}^2 \). The importance of this quantity is underlined by the following fact:

Proposition 3.14 For any finite \(A \subset \mathbb{Z}^2 \) and any \(x, y \in \mathbb{Z}^2 \) it holds that

\[
q_A(x) = \lim_{R \to \infty} a(R) \mathbb{P}_x[\tau_{B(y,R)^c} < \tau_A] = \frac{2}{\pi} \lim_{R \to \infty} \mathbb{P}_x[\tau_{B(y,R)^c} < \tau_A] \ln R.
\]

(3.50)

Proof We use a martingale argument similar to the proofs of Lemmas 3.3 and 3.11–3.12; we only need to take a bit more care in order to "separate" the term \(\mathbb{E}_x a(S_{\tau_A}) \) so that it remains "free from conditioning". Assume without restricting generality that \(y_0 = 0 \) (otherwise we can just "shift" the origin there) and let us apply the Optional Stopping Theorem\(^{21}\) to the martingale \(a(S_{n\wedge\tau_0} - y_0) \) with the stopping time \(\tau_A \wedge \tau_{B(y,R)^c} \):

\[
a(x) = \mathbb{E}_x a(S_{\tau_A \wedge \tau_{B(y,R)^c}})
\]

\[
= \mathbb{E}_x a(S_{\tau_{B(y,R)^c}}) \mathbb{1}_{\{\tau_{B(y,R)^c} < \tau_A\}} + \mathbb{E}_x a(S_{\tau_A}) \mathbb{1}_{\{\tau_A < \tau_{B(y,R)^c}\}}
\]

writing \(\mathbb{1}_{\{\tau_A < \tau_{B(y,R)^c}\}} = 1 - \mathbb{1}_{\{\tau_{B(y,R)^c} < \tau_A\}} \) in the second term

\[
= \mathbb{P}_x[\tau_{B(y,R)^c} < \tau_A] \mathbb{E}_x(\mathbb{1}_{\{\tau_{B(y,R)^c} < \tau_A\}} a(S_{\tau_{B(y,R)^c}}) - a(S_{\tau_A}) \mathbb{1}_{\{\tau_{B(y,R)^c} < \tau_A\}})
\]

so, abbreviating \(b = 1 + \max_{x \in A} \|x\| \), we obtain from (3.39) that

\[
\mathbb{P}_x[\tau_{B(y,R)^c} < \tau_A] = \frac{a(x) - \mathbb{E}_x a(S_{\tau_A})}{\mathbb{E}_x(\mathbb{1}_{\{\tau_{B(y,R)^c} < \tau_A\}} a(S_{\tau_{B(y,R)^c}}) - a(S_{\tau_A}) \mathbb{1}_{\{\tau_{B(y,R)^c} < \tau_A\}})}
\]

(3.51)

\[
= \frac{q_A(x)}{a(R) - O(\ln b) + O\left(\frac{\|y\|+1}{R}\right)},
\]

(3.52)

and this indeed implies (3.50). \(\square \)

Since the limit in (3.50) does not depend on \(y \), this means that Proposition 3.14 indeed implies that the definition (3.49) of \(q_A \) does not depend on the choice of \(y_0 \in A \) (since "moving \(y_0 \) within \(A \) effectively amounts to changing \(y \) in (3.50)).

\(^{21}\) formally, to justify its use, Corollary 1.7 (ii) is enough
Now, we are ready to define the notion of the harmonic measure in two dimensions:

Definition 3.15 For a finite set \(A \subset \mathbb{Z}^2 \), the harmonic measure \(\text{hm}_A(y), y \in A \) is defined as follows:

\[
\text{hm}_A(y) = \frac{1}{4} \sum_{z \sim y} q_A(z) = \frac{1}{4} \sum_{z \in A} (a(z) - E_z a(S_{\tau_A})). \tag{3.53}
\]

Admittedly, at this point it may be not completely clear why \(\text{hm}_A(\cdot) \) should be even nonnegative (it is because of Proposition 3.14); what is definitely not clear, is why it sums to 1 on \(\partial A \).

Things start to make sense, though, when we observe that the above definition is very similar to (3.20) (i.e., the many-dimensional one): the harmonic measure is proportional to the escape probability. To see this, observe that Proposition 3.14 implies that

\[
\text{hm}_A(y) = \lim_{R \to \infty} a(R) P_y[\tau_A^+ > \tau_{B(R)^c}] = \frac{2}{\pi} \lim_{R \to \infty} P_y[\tau_A^+ > \tau_{B(R)^c}] \ln R; \tag{3.54}
\]

indeed, just write, conditioning on the first step,

\[
P_y[\tau_A^+ > \tau_{B(R)^c}] = \frac{1}{4} \sum_{z \in A} P_z[\tau_{B(R)^c} < \tau_A],
\]

then multiply both sides by \(a(R) \) and pass to the limit.

To complete the analogy with the many-dimensional case, we have to prove that the harmonic measure is the entrance law “starting at infinity” (compare to Theorem 3.8; since the walk is recurrent in two dimensions, we do not need to condition on \(\{\tau_A < \infty\} \):

Theorem 3.16 For all finite \(A \subset \mathbb{Z}^2 \) and all \(y \in A \) we have

\[
\text{hm}_A(y) = \lim_{x \to \infty} P_x[S_{\tau_A} = y]. \tag{3.55}
\]

Proof First, it is clear that, without restricting generality, we can assume that \(0 \in A \). Recall the notation \(N^b_x = \sum_{k=0}^{\tau_{\alpha(x)}^b} 1\{S_k = x\} \) from the proof of Theorem 3.8; also, let us define

\[
N^b_{x,R} = \sum_{k=0}^{(\tau_{\alpha(x)}^b)^+ \wedge \tau_{B(R)^c}} 1\{S_k = x\}, \quad N^2_{x,R} = \sum_{k=\tau_{\alpha(x)}^b}^{\tau_{B(R)^c}} 1\{S_k = x\},
\]
and \(N_{x,R} := N^>_{x,R} + N^\leq_{x,R} = \sum_{k=0}^{\tau_{B(R)}} 1\{S_k = x\} \) be the corresponding (i.e., before the first re-entry, after the first re-entry, and total) visit counts “restricted” on \(B(R) \). Quite similarly to the proof of Theorem 3.8 one can write

\[
P_x[S_\tau_A = y] = E_y N_x^\uparrow
\]

(by the Monotone Convergence Theorem)

\[
= \lim_{R \to \infty} E_y N_{x,R}^\uparrow
\]

\[
= \lim_{R \to \infty} (E_y N_{x,R} - E_y N_{x,R}^\leq)
\]

\[
= \lim_{R \to \infty} \left(G_{B(R)}(y,x) - \sum_{z \in A} P_y[S_\tau_A^+ < \tau_{B(R)^c}, S_\tau_A^+ = z] G_{B(R)}(z,x) \right)
\]

(using (3.47))

\[
= \lim_{R \to \infty} \left(a(R) - a(y - x) + O\left(\frac{\|y\|+1}{R} \right) \right.
\]

\[
- \left. \sum_{z \in A} P_y[S_\tau_A^+ < \tau_{B(R)^c}, S_\tau_A^+ = z] (a(R) - a(z - x) + O\left(\frac{\|z\|+1}{R} \right)) \right)
\]

(note that \(P_y[S_\tau_A^+ < \tau_{B(R)^c}, S_\tau_A^+ = z] \to P_y[S_\tau_A^+ = z] \) as \(R \to \infty \))

\[
= \lim_{R \to \infty} a(R) \left(1 - \sum_{z \in A} P_y[S_\tau_A^+ < \tau_{B(R)^c}, S_\tau_A^+ = z] \right)
\]

\[
- a(y - x) + \sum_{z \in A} P_y[S_\tau_A^+ = z] a(z - x)
\]

(observe that, in the first parentheses, we have \(P_y[S_\tau_A^+ > \tau_{B(R)^c}] \), then use (3.54))

\[
= \lim_{R \to \infty} a(R) \left(1 - \sum_{z \in A} P_y[S_\tau_A^+ < \tau_{B(R)^c}, S_\tau_A^+ = z] \right)
\]

\[
- a(y - x) + \sum_{z \in A} P_y[S_\tau_A^+ = z] a(z - x)
\]

From (3.38) it is straightforward to obtain that

\[
a(y - x) - \sum_{z \in A} P_y[S_\tau_A^+ = z] a(z - x)
\]

\[
= \sum_{z \in A} P_y[S_\tau_A^+ = z] (a(y - x) - a(z - x))
\]

\[
= O\left(\frac{\text{diam}(A)}{\|x\|} \right)
\]

which converges to 0 as \(x \to \infty \), and so the proof of (3.55) is concluded. \(\square \)
Then, Theorem 3.16 implies that $h_{m_A}(\cdot)$ is indeed a probability measure (because, due to recurrence, the entrance measure to A is so for any fixed starting point).

Now, we are happy with Theorem 3.16, but not completely so. This is because it is a qualitative result, which does not say how fast the convergence occurs. Imagine, for example, that the set A is “large” (say, a disk of radius r^2), and the distance from x to A is even larger (say, of order r^3). How the entrance measure from x to A compares to the harmonic measure then? Well, in the end of the proof of Theorem 3.16 we obtained some estimate, but it is not quite sharp – in the example we just considered, the term $O\left(\frac{\text{diam}(A)}{\|x\|}\right)$ would be of order r^{-1}, while $h_{m_A}(y)$ itself would be of order r^{-2} (since there are $O(r^2)$ sites on the boundary of the disk), which, to put it mildly, is not quite satisfactory. The following theorem gives a much better estimate:

Theorem 3.17 Let A be a finite subset of \mathbb{Z}^2 and assume that $\text{dist}(x, A) \geq 3 \text{diam}(A) + 1$. Then it holds that

$$P_x[S_{\tau_A} = y] = h_{m_A}(y) \left(1 + O\left(\frac{\text{diam}(A)}{\text{dist}(x, A)}\right)\right).$$

(3.57)

Proof Again, without restricting generality, we assume that $0 \in A$ and $|A| \geq 2$, so $\text{diam}(A) \geq 1$. Recall that in the calculation (3.56) we obtained

$$P_x[S_{\tau_A} = y] - h_{m_A}(y) = -a(y - x) + \sum_{z \in A} P_y[S_{\tau_A} = z]a(z - x).$$

(3.58)

The idea is to estimate the right-hand side of the above expression using a martingale argument similar to that in the proof of Proposition 3.14. We need some preparations, though. From the asymptotic expression (3.36) for a it is straightforward to obtain that there exist constants $\theta_{1,2} > 0$ such that whenever $\|x\| > \theta_1$ and $2\|y\| \leq \|x\|$ it holds that $a(x) - a(y) > \theta_2$ (in fact, it is even clear that for any $\theta_2 < \frac{\pi}{2} \ln 2$ it is possible to choose a large enough θ_1 such that the above holds, but we do not need to be so precise).

Let us now abbreviate $V = \partial_r B((2 \text{diam}(A)) \vee \theta_1)$, so that, by the above,

$$a(v) - a(z) \geq \theta_2 \quad \text{for all } v \in V \text{ and } z \in A.$$

(3.59)

We assume additionally that $\|x\| > \theta_1$; the reader is invited to
check (or to just accept) that this assumption does not restrict
generality.

Let us apply the Optional Stopping Theorem to the martingale
\(a(S_{\tau_A} - x) \) and the stopping time \(\tau_A^- \land \tau_V \) (see Figure 3.6; observe that \(\tau_V < \tau_x \) for the walk that starts at \(y \in \partial A \))

\[
a(y - x) = E_y(a(S_{\tau_A^-} - x) \mathbb{1}_{\{\tau_A^- < \tau_V\}}) + E_y(a(S_{\tau_V} - x) \mathbb{1}_{\{\tau_V < \tau_A^-\}})
\]

(writing \(\mathbb{1}_{\{\tau_A^- < \tau_V\}} = 1 - \mathbb{1}_{\{\tau_V < \tau_A^-\}} \) in the first term)

\[
= E_y(a(S_{\tau_A^+} - x) + E_y((a(S_{\tau_V} - x) - a(S_{\tau_A^-} - x)) \mathbb{1}_{\{\tau_V < \tau_A^-\}})
\]

\[
= \sum_{z \in A} P_y[S_{\tau_A^+} = z]a(z - x)
\]

\[
+ E_y(a(S_{\tau_V} - x) - a(S_{\tau_A^-} - x) | \tau_V < \tau_A^-) P_y[\tau_V < \tau_A^-].
\]

So, the above together with (3.58) imply that

\[
\text{hm}_A(y) - P_x[S_{\tau_A} = y] = E_y(a(S_{\tau_V} - x) - a(S_{\tau_A^-} - x) | \tau_V < \tau_A^-)
\]

\[
\times P_y[\tau_V < \tau_A^-].
\] (3.60)

Let us now recall the expression (3.51) from the proof of Proposition 3.14 together with the definition (3.53) of the harmonic measure. For the second factor in the right-hand side of (3.60),
we have

\[
\mathbb{P}_y[\tau_V < \tau_A^+] = \frac{1}{4} \sum_{z \in A \setminus y} \mathbb{P}_u[\tau_V < \tau_A^+]
\]

\[
= \frac{1}{4} \sum_{z \in A \setminus y} q_A(z) \mathbb{P}_z(a(S_{\tau_V}) - a(S_{\tau_A}) \mid \tau_V < \tau_A)
\]

by our choice of \(V\) and (3.59)

\[
\leq \frac{\text{hm}_A(y)}{\theta_2}.
\]

We also to observe that, for any \(v \in V\) and \(z \in A\), from (3.38) we obtain that \(a(x - v) - a(x - z) = O\left(\frac{\text{diam}(A)}{\text{dist}(x,A)}\right)\) (look again at Figure 3.6), so the first factor in the right-hand side of (3.60) is \(O\left(\frac{\text{diam}(A)}{\text{dist}(x,A)}\right)\) as well. This shows that the right-hand side of (3.60) is indeed \(O\left(\frac{\text{diam}(A)}{\text{dist}(x,A)}\right) \times \text{hm}_A(y)\) and therefore concludes the proof of Theorem 3.17.

Capacity.

When one learns something new, it is a good idea to review one’s old notes and see if there was something interesting that went unnoticed at that time. Specifically, let us revisit the calculations in and around Proposition 3.14. Recall that, for a finite \(A \subset \mathbb{Z}^2\) and \(y_0 \in A\), we defined in (3.49) the quantities

\[
q_A(x) = a(x - y_0) - \mathbb{E}_x a(S_{\tau_A} - y_0), \quad x \in \mathbb{Z}^2,
\]

and proved that \(q_A(x)\) does not depend on the choice of \(y_0\) (as long as \(y_0 \in A\)). Let us re-examine the second term in that definition in the light of Theorem 3.17. If \(x\) is far away from \(A\), the entrance measure to \(A\) is “almost harmonic” and, quantitatively,

\[
\mathbb{E}_x a(S_{\tau_A} - y_0) = \sum_{z \in A} \mathbb{P}_z[S_{\tau_A} = z] a(z - y_0)
\]

\[
= \sum_{z \in A} \text{hm}_A(z) a(z - y_0)(1 + O\left(\frac{\text{diam}(A)}{\text{dist}(x,A)}\right)). \quad (3.61)
\]

The main term in (3.61) does not depend on \(x\) and therefore looks as something important. It is so indeed:
Definition 3.18 For a finite set A with $y_0 \in A$, we define its capacity by

$$\text{cap}(A) = \sum_{x \in A} a(x - y_0) \text{hm}_A(x).$$

(3.62)

First, we need to show that the above definition does not depend on the choice of $y_0 \in A$. Basically, this is a consequence of the fact that $q_A(x)$ does not depend on the choice of $y_0 \in A$. Indeed, if $y_1 \in A$, we also have $q_A(x) = a(x - y_1) - \mathbb{E}_x a(S_{\tau_A} - y_1)$ and so, by (3.61),

$$a(x-y_0) - a(x-y_1) = \left(\text{cap}(A) - \sum_{z \in A} \text{hm}_A(z) a(z-y_1) \right) \left(1 + O \left(\frac{\text{diam}(A)}{\text{dist}(x,A)} \right) \right).$$

Since the left-hand side of the above clearly converges to 0 as $x \to \infty$, the expression in the first parentheses in the right-hand side must be equal to 0 (since it does not depend on x).

Now, assume that $y_0 \in A \subset B(r_A)$. Then, (3.61) implies that

$$q_A(x) = a(x - y_0) - \text{cap}(A) + O \left(\frac{r_A \ln r_A}{\|x\|} \right),$$

and then, recalling the calculation (3.51), we can write

$$\mathbb{P}_x [\tau_{B(R)^c} < \tau_A] = \frac{a(x - y_0) - \text{cap}(A) + O \left(\frac{r_A \ln r_A}{\|x\|} \right)}{a(R) - \text{cap}(A) + O \left(\frac{r_A \ln r_A}{R} \right)}. \quad (3.63)$$

That is, if we know the capacity of A, we are then able to compute the escape probabilities as above with higher precision. Notice that, the larger $\text{cap}(A)$ is, the smaller is the probability in (3.63).

This again justifies the intuition “the capacity measures how big is the set from the point of view of SRW”; only in two dimension it enters to the second term (and not to the principal one, as in the higher-dimensional case).

Now, let us discuss the simplest cases where the two-dimensional capacities can be calculated. To start with, what can we say about capacities of one- and two-point sets? The first question is easy: since $a(0) = 0$, it holds that $\text{cap} \left(\{x\} \right) = 0$ for any $x \in \mathbb{Z}^2$. As for two-point sets, observe that, by symmetry, the harmonic measure of any two-point set is uniform, so $\text{cap} \left(\{x,y\} \right) = \frac{1}{2} a(y-x)$ for

\footnote{observe also that $\mathbb{E}_x (S_{\tau_{B(R)^c}} < \tau_A)$ is also quite close to $\text{cap}(A)$, as can be seen by conditioning on the location of $S_{\tau_{B(R)^c}}$.}
any \(x, y \in \mathbb{Z}^2, x \neq y\). As for the capacity of a disk, (3.39) implies that

\[
\text{cap}(B(r)) = a(r) + O(r^{-1}).
\] (3.64)

It is remarkable to observe that the capacities of a two-point set \(\{0, x\}\) with \(\|x\| = r\) and the whole disk \(B(r)\) only differ by a factor of 2 (this is asymptotically, as \(r \to \infty\)). Dimension two sometimes brings surprises.

Next, it is not difficult to obtain from (3.63) that

\[
\text{cap}(A) = \lim_{x \to \infty} \left(a(x - y_0) - \lim_{R \to \infty} a(R)P_x[\tau_{B(R)\cap} < \tau_A]\right)
\] (3.65)

(first, multiply it by \(a(R)\) and let \(R \to \infty\) to get rid of the denominator, then “separate” the term \(\text{cap}(A)\) from the numerator). An easy corollary of this fact is the following

Proposition 3.19

(i) Assume that \(A \subset B\) are finite subsets of \(\mathbb{Z}^2\). Then

\[
\text{cap}(A) \leq \text{cap}(B).
\]

(ii) Let \(A, B\) be finite subsets of \(\mathbb{Z}^2\) such that \(A \cap B\) is nonempty. Then

\[
\text{cap}(A \cup B) \leq \text{cap}(A) + \text{cap}(B) - \text{cap}(A \cap B).
\]

Proof Note that, in both cases, we may choose \(y_0\) which belongs to both \(A\) and \(B\). The part (i) is easy: just observe that \(P_x[\tau_{B(R)\cap} < \tau_A] \geq P_x[\tau_{B(R)\cap} < \tau_B]\) for \(A \subset B\) (indeed, it is easier to avoid a smaller set), and use (3.65). The proof of part (ii) is only a bit more complicated: write

\[
P_x[\tau_{B(R)\cap} < \tau_{A\cup B}]
\]

\[
= 1 - P_x[\{\tau_A < \tau_{B(R)\cap}\} \cup \{\tau_B < \tau_{B(R)\cap}\}]
\]

\[
= 1 - P_x[\tau_A < \tau_{B(R)\cap}] - P_x[\tau_B < \tau_{B(R)\cap}] + P_x[\tau_A \cup \tau_B < \tau_{B(R)\cap}]
\]

\[
\geq 1 - P_x[\tau_A < \tau_{B(R)\cap}] - P_x[\tau_B < \tau_{B(R)\cap}] + P_x[\tau_{A\cap B} < \tau_{B(R)\cap}]
\]

\[
= P_x[\tau_{B(R)\cap} < \tau_A] + P_x[\tau_{B(R)\cap} < \tau_B] - P_x[\tau_{B(R)\cap} < \tau_{A\cap B}],
\]

and then use (3.65) again.

Observe that it is essential to require in (ii) that the two sets have nonempty intersection – otherwise \(A = \{x\}\) and \(B = \{y\}\) with \(x \neq y\) would, sort of, provide a counterexample. A possible way to get around it (so that (ii) would be valid for all \(A, B\)) would be to declare the capacity of an empty set to be equal to \((-\infty)\) – this is formally in agreement with (3.65), by the way.
3.3 Exercises

Transient case (Section 3.1):

Exercise 3.1 Prove that $G(0) - G(e_1) = 1$.

Exercise 3.2 Prove the following exact expression for the Green’s function:

$$ G(x) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{e^{i(\theta,x)}}{1 - \Phi(\theta)} \, d\theta, \quad (3.66) $$

where $\Phi(\theta) = d^{-1} \sum_{k=1}^d \cos \theta_k$. In particular, it holds that

$$ G(0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - \Phi(\theta)} \, d\theta. \quad (3.67) $$

Exercise 3.3 Follow the proof of Theorem 4.3.1 of [33] to see how to obtain (3.5) from the local CLT.

Exercise 3.4 Assume that we only know that $G(x) \sim \gamma_d \|x\|^{(d-2)}$ as $x \to \infty$. Prove that $\frac{d^2}{2\gamma_d}$ equals the volume of the unit ball in \mathbb{R}^d.

Exercise 3.5 Obtain a direct proof (i.e., a proof that does not use (3.5)) that $\mathbb{E}_{B(r)}(y) \asymp r^{-1}$ for any $y \in B(R)^{c}$ (and therefore also that $\text{cap}(B(r)) \asymp r^{d-2}$) using Lyapunov functions.

Exercise 3.6 For $A \subset \mathbb{Z}^d$ and $x \in \mathbb{Z}^d$, denote $G(x, A) = \sum_{y \in A} G(x, y)$ to be the mean number of visits to A starting from x. Prove that, for finite A,

$$ \max_{y \in A} G(y, A) \leq \text{cap}(A) \leq \min_{y \in A} G(y, A) \quad (3.68) $$

Exercise 3.7 For a finite $A \subset \mathbb{Z}^d$, let \mathcal{K}_A be a class of nonnegative functions, defined in the following way:

$$ \mathcal{K}_A = \left\{ h : \mathbb{Z}^d \to \mathbb{R}_+ \text{ such that } h(x) = 0 \text{ for all } x \notin A \right\} $$

and

$$ \sum_{x \in \mathbb{Z}^d} G(y, x) h(x) \leq 1 \text{ for all } y \in \mathbb{Z}^d \right\}.$$

Prove that

$$ \text{cap}(A) = \sup_{h \in \mathcal{K}_A} \sum_{x \in A} h(x).$$

Exercise 3.8 Prove that the capacity (defined as in (3.10)) of any infinite transient set is infinite.
Exercise 3.9 Estimate (in the sense of “≈”) the capacities of various sets (and in various dimensions), such as

- a line segment (i.e., a sequence of neighboring sites lying on a straight line);
- a “plaquette” (i.e., a discrete two-dimensional square immersed in \(Z^d \));
- a cylinder (product of a line segment with a \((d-1)\)-dimensional plaquette), with height/width ratio varying arbitrarily;
- whatever else you can imagine.

Exercise 3.10 Prove the “only if” part of Theorem 3.7.

Exercise 3.11 Prove the “if” part of Theorem 3.7.

Exercise 3.12 Using the Wiener’s criterion, prove that, in three dimensions, the “ray” \(\{(0,0,k), k \geq 0\} \subset Z^3 \) is a recurrent set.

Exercise 3.13 Give an example of a transient set such that the expected number of visits there is infinite.

Exercise 3.14 Let \(f : \mathbb{R}_+ \to (0,1] \) be a monotonously decreasing function with \(\lim_{s \to \infty} f(s) = 0 \). Let us construct a random set \(A_f \subset Z^d \) in the following way: \(x \in Z^d \) is included to \(A_f \) with probability \(f(\|x\|) \), independently.

(i) Is it true that, for any such \(f \), \(P[A_f \text{ is transient}] \) must be either 0 or 1?

(ii) Give (nontrivial) examples of functions for which the resulting random set is recurrent/transient. What should be the “critical rate of decay” of \(f \) which separates recurrence from transience?

Exercise 3.15 Give an example of a transient set \(A \subset Z^d \) such that \(P_x[\tau_A < \infty] = 1 \) for infinitely many \(x \in Z^d \).

Exercise 3.16 For any transient set \(A \) and any \(\varepsilon > 0 \) prove that \(P_x[\tau_A < \infty] < \varepsilon \) for infinitely many \(x \in Z^d \).

Exercise 3.17 Prove that, for finite \(A \),

\[
\sum_{y \in A} \text{hm}_A(y)G(y,A) = \frac{|A|}{\text{cap}(A)}. \quad (3.69)
\]
3.3 Exercises

Exercise 3.18 Prove that the harmonic measure is consistent, in the sense that, for any finite $A \subset B$
\[
\mathbb{P}_{hm_B}[S_{\tau_A} = y \mid \tau_A < \infty] = hm_A(y)
\] (3.70)
for all $y \in A$ (here \mathbb{P}_{hm_B} means the probability for the walk with the initial position chosen according to the measure hm_B).

Exercise 3.19 Can you obtain an analogue of Theorem 3.17 in the many-dimensional case (i.e., $d \geq 3$)? That is, prove that
\[
\mathbb{P}_x[S_{\tau_A} = y \mid \tau_A < \infty] = hm_A(y)(1 + O(\frac{\text{diam}(A)}{\text{dist}(x,A)}))
\] (3.71)

Exercise 3.20 Let $A \subset \mathbb{Z}^d$ be finite and $x \notin A$, $y \in \partial A$.
(i) Prove that
\[
\mathbb{P}_x[\tau_A < \infty, S_{\tau_A} = y] = \mathbb{P}_y[\tau_x < \tau_A^+] (G(0) - O(\frac{\text{diam}(A)^{d-2}}{\text{dist}(x,A)^{d-2}})),
\] (3.72)
and that $\mathbb{P}_x[\tau_A < \infty, S_{\tau_A} = y] > G(0)\mathbb{P}_y[\tau_x < \tau_A^+]$ (that is, the $O(\cdot)$ in (3.72) is always strictly positive).
(ii) Prove that
\[
\mathbb{P}_y[\tau_x < \infty, \tau_A^+ = \infty] = \mathbb{P}_y[\tau_x < \infty] \text{Es}_A(y)(1 + O(\frac{\text{diam}(A)}{\text{dist}(x,A)}))
\] (3.73)
that is, the events \{eventually hit x\} and \{escape from A\} are approximately independent under \mathbb{P}_y when $\frac{\text{diam}(A)}{\text{dist}(x,A)} \to 0$.

Exercise 3.21 Consider a transient and reversible Markov chain with the reversible measure μ. Prove that (for the Green’s function G defined in the usual way)
\[
\mu(x)G(x,y) = \mu(y)G(y,x)
\]
for any x,y. Prove that the above also holds for the restricted Green’s function G_A.

Recurrent case (Section 3.2):

Exercise 3.22 Prove, preferably without any combinatorial calculations, that
(i) $\mathbb{P}_0[S_{2n} = 0] > \mathbb{P}_0[S_{2n} = e_1 + e_2]$ for all n.
(ii) $\mathbb{P}_0[S_k = x] \geq \mathbb{P}_0[S_k = x + 2e_1]$, for all k and x such that $x \cdot e_1 \geq 0$, and the inequality is strict in the case when the first probability is strictly positive.
(iii) Use the above to conclude that, for any \(x \neq 0 \) and any \(n \)
\[
\mathbb{P}_0[S_{2n} = 0] > \mathbb{P}_0[S_{2n} = x] + \mathbb{P}_0[S_{2n+1} = x].
\] (3.74)

Exercise 3.23 Can you simplify the proof of existence of the potential kernel \(a \) using the coordinate decoupling idea from the end of Section 2.1?

Exercise 3.24 Give a rigorous proof that for any \(d \) and any finite \(\Lambda \subset \mathbb{Z}^d \) it holds that \(\mathbb{E}_x \tau_\Lambda < \infty \) for all \(x \).

Exercise 3.25 Prove that
\[
a(x) = \frac{1}{(2\pi)^2} \int_{[-\pi,\pi]^2} \frac{1 - \cos(\theta_1 x_1 + \theta_2 x_2)}{1 - \frac{1}{2} (\cos \theta_1 + \cos \theta_2)} \, d\theta.
\] (3.75)

Exercise 3.26 Derive (3.36) either by analysing (3.75) (cf. Section III.12 of [45]) or by analysing (3.25) directly, via the Local Central Limit Theorem (cf. Section 4.4 of [33]).

Exercise 3.27 In the proof of Theorem 3.13, show that
\[
a(x - y) = \mathbb{E}_x Y_{\tau_A}
\]
without invoking the Optional Stopping Theorem.

Exercise 3.28 Let \(x \neq 0 \) and define
\[
\eta_x = \sum_{k=0}^{\tau_x} 1\{S_k = x\}
\]
to be the number of visits to \(x \) before hitting the origin. Prove that \(\mathbb{E}_x \eta_x = 2a(x) \) and \(\mathbb{E}_0 \eta_x = 1 \).

Exercise 3.29 Prove that the harmonic measure is consistent in two dimensions as well (recall Exercise 3.18): for any finite \(A \subset B \)
\[
\mathbb{P}_{hm_A}[S_{\tau_A} = y] = hm_A(y)
\] (3.76)
for all \(y \in A \).

Exercise 3.30 Prove that
\[
\text{cap}(A) = \left(\sup_{y \in A} f(y) \right)^{-1},
\]
where the supremum is over all nonnegative functions \(f \) on \(A \) such that \(\sum_{y \in A} a(x - y) f(y) \leq 1 \) for all \(x \in A \).
Exercise 3.31 Let \(x_1, x_2, x_3 \in \mathbb{Z}^2 \) be three distinct sites, and abbreviate \(v_1 = x_2 - x_1, v_2 = x_3 - x_2, v_3 = x_1 - x_3 \). Prove that the capacity of the set \(A = \{x_1, x_2, x_3\} \) is given by the formula
\[
a(v_1)a(v_2)a(v_3) - \frac{1}{2}(a^2(v_1) + a^2(v_2) + a^2(v_3))
\]
(3.77)

Exercise 3.32 What if we try to develop the same theory as in Section 3.1, only on a finite set \(\Lambda \subset \mathbb{Z}^2 \) instead of the whole space \(\mathbb{Z}^d \), \(d \geq 3 \)? The analogy is clear: we regard the outside of \(\Lambda \) as “infinity”. Let \(A \subset \Lambda \). Analogously to (3.9), let us define for any \(x \in \Lambda \)
\[
E_{A,\Lambda}(x) = \mathbb{P}_x[\tau_\Lambda^+ > \tau_{\Lambda^c}]1\{x \in A\};
\]
on \(A \) this equals the probability of “escaping from \(A \) within \(\Lambda \)”. Also, let
\[
u_{A,\Lambda}(x) = \mathbb{P}_x[\tau_\Lambda < \tau_{\Lambda^c}]
\]
be the probability of “hitting \(A \) within \(\Lambda \)”; note that \(\nu_{A,\Lambda} = 1 \) for all \(x \in A \).

(i) Prove a relation analogous to (3.11):
\[
u_{A,\Lambda}(y) = \sum_{x \in \Lambda} G_{\Lambda}(y, x) E_{A,\Lambda}(x),
\]
(3.78)
or, in the matrix form, \(\nu_{A,\Lambda} = G_{\Lambda} E_{A,\Lambda} \).

(ii) Let us define
\[
cap_{\Lambda}(A) = \sum_{x \in \Lambda} E_{A,\Lambda}(x).
\]
(3.79)
What general properties of this notion of capacity can one obtain?

(iii) Now, consider the case \(\Lambda = B(R) \), and let \(R \) grow to infinity. What happens then to the objects we just considered? How does the “canonical” two-dimensional capacity (as defined in (3.18)) then relates to the one defined in (3.79)?

Exercise 3.33 Lemma 3.11 permits us to obtain good approximations for probabilities of exiting annuli at inner/outer boundaries, in the case when the two circumferences are (almost) concentric. But what can be said about the situation depicted on
Figure 3.7 The walk hits the outer boundary

Figure 3.7 (of course, in the regime when the radii of the circumferences are large)? Can you propose a method of obtaining a good approximation for that probability?

Exercise 3.34 Can you prove the existence of the potential kernel (defined as in (3.25)) for the one-dimensional SRW? Can you actually *calculate* it?

Exercise 3.35 Obtain an explicit formula (that is, more explicit than (3.45)) for the one-dimensional Green’s function (defined as in (3.43)) restricted on an interval Λ.
Simple random walk conditioned on not hitting the origin

4.1 Doob’s h-transforms

Let us start with a one-dimensional example. Let $(S_n, n \geq 0)$ be the simple random walk in dimension 1. It is well known that for any $0 < x < R$

$$\mathbb{P}_x[\tau_R < \tau_0] = \frac{x}{R} \quad (4.1)$$

— this is the solution of the Gambler’s Ruin Problem (found in elementary probability books, most of them) for players of equal strength. For the purposes of this chapter, however, it is also important to notice that the above fact follows, in a quite straightforward way, from the Optional Stopping Theorem applied to the martingale (S_n) and the stopping time $\tau_0 \wedge \tau_R$. Now, how will the walk behave if we condition it to reach R before reaching the origin? Using (4.1), we write

$$\mathbb{P}_x[S_1 = x + 1 \mid \tau_R < \tau_0] = \frac{\mathbb{P}_x[S_1 = x + 1, \tau_R < \tau_0]}{\mathbb{P}_x[\tau_R < \tau_0]} = \frac{\mathbb{P}_x[S_1 = x + 1] \mathbb{P}_x[\tau_R < \tau_0 | S_1 = x + 1]}{\mathbb{P}_x[\tau_R < \tau_0]} = \frac{\frac{1}{2} \mathbb{P}_x[S_1 = x + 1, \tau_R < \tau_0]}{\mathbb{P}_x[\tau_R < \tau_0]} = \frac{\frac{1}{2} \times \frac{x + 1}{R}}{\frac{x}{R}} = \frac{1}{2} \times \frac{x + 1}{x},$$

which also implies that $\mathbb{P}_x[S_1 = x - 1 \mid \tau_R < \tau_0] = \frac{1}{2} \times \frac{x - 1}{x}$. Notice that, by the way, the drift at x of the conditioned walk is of
order $\frac{1}{2}$ – this is the so-called Lamperti’s process which we have already seen in this book: recall Exercises 2.14 and 2.15. The above calculation does not yet formally show that the conditioned walk is a Markov process (strictly speaking, we would have needed to condition on the whole history, to begin with), but let us forget about that for now, and examine the new transition probabilities we just obtained, $\hat{p}(x, x-1) = \frac{1}{2} \times \frac{x-1}{x}$ and $\hat{p}(x, x+1) = \frac{1}{2} \times \frac{x+1}{x}$.

First, it is remarkable that they do not depend on R, which suggests that we can just send R to infinity and obtain “the random walk conditioned on never returning to the origin”. Secondly, just look at the arguments of \hat{p}’s and the second fraction in the right-hand sides: these new transition probabilities are related to the old ones (which are $p(x, y) = \frac{1}{2}$ for $x \sim y$) in a special way:

$$\hat{p}(x, y) = p(x, y) \times \frac{h(y)}{h(x)} \quad (4.2)$$

with $h(x) = |x|$ (soon it will be clear why do we prefer to keep the function nonnegative). What is special about this function h is that it is harmonic outside the origin, so that $h(S_{n\wedge \tau_0})$ is a martingale. It is precisely this fact that permitted us to obtain (4.1) with the help of the Optional Stopping Theorem.

Keeping the above in mind, let us spend some time with generalities. Consider a countable Markov chain on a state space Σ, and let $A \subset \Sigma$ be finite. Let $h : \Sigma \to \mathbb{R}_+$ be a nonnegative function which is zero on A and strictly positive and harmonic outside A, i.e., $h(x) = \sum_y p(x, y)h(y)$ for all $x \notin A$. We assume also that $h(x) \to \infty$ as $x \to \infty$; this clearly implies that the Markov chain is recurrent, recall Theorem 2.3. Another assumption we need, for technical reasons1, is the following: there exists $c > 0$ such that $|h(x) - h(y)| \leq c$ for all $x \sim y$ (for general Markov chains, $x \sim y$ means $p(x, y) + p(y, x) > 0$).

For $R > 0$, let us define

$$\Lambda_R = \{x \in \Sigma : h(x) \leq R\};$$

under the above assumptions, Λ_R is finite for any R. Note that the Optional Stopping Theorem implies that, for $x_0 \in \Lambda_R \setminus A$

$$h(x_0) = \mathbb{P}_{x_0} [\tau_{\partial_A \Lambda_R} < \tau_A] \mathbb{E}_{x_0} \left(h(X_{\tau_{\partial_A \Lambda_R}}) \mid \tau_{\partial_A \Lambda_R} < \tau_A \right),$$

1 one can live without this assumption e.g. in the one-dimensional nearest-neighbour case, see Exercises 4.3 and 4.4.
4.1 Doob’s h-transforms

(Recall that $\mathbb{E}_{x_0}(h(X_{\tau_A}) \mid \tau_A < \tau_{A,\Lambda_R}) = 0$ because h is zero on A) and, since the second factor in the above display is in $[R, R + c]$, we have

$$P_{x_0}[\tau_{A,\Lambda_R} < \tau_A] = \frac{h(x_0)}{R}(1 + O(R^{-1})). \tag{4.3}$$

Then, let us consider another countable Markov chain \hat{X} on the state space $\Sigma \setminus A$ with transition probabilities $\hat{p}(\cdot, \cdot)$ defined as in (4.2) for $x \notin A$. Observe that the harmonicity of h implies that \hat{p}’s are transition probabilities indeed:

$$\sum_y \hat{p}(x, y) = \frac{1}{h(x)} \sum_y p(x, y)h(y) = \frac{1}{h(x)} \times h(x) = 1.$$

Now, consider a path $\varphi = (x_0, \ldots, x_{n-1}, x_n)$ where $x_0, \ldots, x_{n-1} \in \Lambda_R \setminus A$ and $x_n \in \Sigma \setminus \Lambda_R$ (here, “path” is simply a sequence of neighbouring sites; in particular, it need not be self-avoiding). The original weight of that path (i.e., the probability that the Markov chain X follows it starting from x_0) is

$$P_\varphi = p(x_0, x_1)p(x_1, x_2) \ldots p(x_{n-1}, x_n),$$

and the weight of the path for the new Markov chain \hat{X} will be

$$P_\varphi = p(x_0, x_1)\frac{h(x_1)}{h(x_0)}p(x_1, x_2)\frac{h(x_2)}{h(x_1)} \ldots p(x_{n-1}, x_n)\frac{h(x_n)}{h(x_{n-1})}$$

$$= p(x_0, x_1)p(x_1, x_2) \ldots p(x_{n-1}, x_n)\frac{h(x_n)}{h(x_0)}$$

Figure 4.1 Comparing the weights of the path
\[P_{\nu} \frac{h(x_n)}{h(x_0)} = \frac{P_{\nu}}{P_{x_0}^{\tau_{\partial_e \Lambda_R} < \tau_A}} (1 + O(R^{-1})), \tag{4.4} \]

Here comes the key observation: the last term in (4.4) actually equals \(\frac{R}{h(x_0)} (1 + O(R^{-1})) \), that is, it is almost inverse of the expression in the right-hand side of (4.3). So, we have

\[P_{\nu} = \frac{P_{\nu}}{P_{x_0}^{\tau_{\partial_e \Lambda_R} < \tau_A}} (1 + O(R^{-1})) \]

that is, the probability that the \(\hat{X} \) chain follows a path is almost the conditional probability that the original chain \(X \) follows that path, under the condition that it goes out of \(\Lambda_R \) before reaching \(A \) (and the relative error goes to 0 as \(R \to \infty \)). Now, the (decreasing) sequence of events \(\{ \tau_{\partial_e \Lambda_R} < \tau_A \} \) converges to \(\{ \tau_A = \infty \} \) as \(R \to \infty \). Therefore, we can rightfully call \(\hat{X} \) the Markov chain conditioned on never reaching \(A \), even though the probability of the latter event equals zero.

Note the following simple calculation: for any \(x \notin A \cup \partial_e A \), we have (note that \(h(y) \neq 0 \) for all \(y \sim x \))

\[
\mathbb{E}_x \frac{1}{h(X_1)} = \sum_{y \sim x} \hat{p}(x, y) \frac{1}{h(y)} = \sum_{y \sim x} p(x, y) \frac{h(y)}{h(x) h(y)} = \frac{1}{h(x)} \sum_{y \sim x} p(x, y) = \frac{1}{h(x)},
\]

which implies the following

Proposition 4.1 The process \(1/h(\hat{X}_{n \wedge \tau_{A \cup \partial_e A}}) \) is a martingale and the Markov chain \(\hat{X} \) is transient.

(The last statement follows from Theorem 2.4 since \(h(x) \to \infty \) as \(x \to \infty \).) Observe also that, for Proposition 4.1, we did not need that condition that \(|h(x) - h(y)| \) should be uniformly bounded for neighbouring \(x, y \).

We end this section with an unexpected\(^2\) remark. Recall the

\(^2\) maybe, quite the contrary; this depends on you
4.2 Conditioned SRW: basic properties

Conditioned one dimensional SRW we just constructed: denoting \(\Delta_x = S_1 - x \), we calculated that \(E_x \Delta_x = \frac{1}{x} \); and also, obviously, it holds that \(E_x \Delta_x^2 = 1 \). So,

\[
x E_x \Delta_x = E_x \Delta_x^2;
\]

notice, by the way, that this relation remains unaffected if one rescales the space by a constant factor. Now, recall Exercise 2.14: the above equality will (asymptotically) hold in three dimensions (and only in three dimensions) for the norm of the SRW (i.e., its distance to the origin). This suggests that there may be some “hidden relationship” between the one-dimensional conditioned SRW, and the norm of the three-dimensional SRW. Since in the continuous limit such relationships often reveal themselves better, one may wonder if the (suitably defined) one-dimensional conditioned (on not hitting the origin) Brownian motion is the same process as the norm of the three-dimensional Brownian motion. The reader is invited to check (on the paper, or in the literature) if it is indeed the case.

4.2 Conditioned simple random walk in two dimensions: basic properties

As you probably expected, we now turn our attention to the two-dimensional SRW. By (3.33) the potential kernel \(a \) is ready to play the role of the \(h \), so let us define another random walk \(\hat{S}_n, n \geq 0 \) on \(\mathbb{Z}^2 \setminus \{0\} \) in the following way: its transition probability matrix equals

\[
\hat{p}(x, y) = \begin{cases}
\frac{a(y)}{4a(x)}, & \text{if } x \sim y, x \neq 0, \\
0, & \text{otherwise}.
\end{cases}
\]

(4.5)

The discussion of the previous section then means that the random walk \(\hat{S} \) is the Doob \(h \)-transform of the simple random walk, under the condition of not hitting the origin. Let \(\hat{\tau} \) and \(\hat{\tau}^+ \) be the entrance and the hitting times for \(\hat{S} \); they are defined as in (1.1)–(1.2), only with \(\hat{S} \). We summarize the basic properties of the random walk \(\hat{S} \) in the following

\[\text{also by (3.36) and by the discussion after (3.25)}\]
Proposition 4.2 The following statements hold:

(i) The walk \hat{S} is reversible, with the reversible measure $\mu(x) = a^2(x)$.
(ii) In fact, it can be represented as a random walk on the two-dimensional lattice with the set of conductances $(a(x)a(y), x, y \in \mathbb{Z}^2, x \sim y)$.
(iii) The process $1/a(\hat{S}_{n\wedge \hat{\tau}_0(N)})$ is a martingale4.
(iv) The walk \hat{S} is transient.

Proof Indeed, for (i) and (ii) note that
$$a^2(x)\hat{p}(x, y) = \frac{a(x)a(y)}{4} = a^2(y)\hat{p}(y, x)$$
for all adjacent $x, y \in \mathbb{Z}^2 \setminus \{0\}$, and, since a is harmonic outside the origin,
$$\frac{a(x)a(y)}{\sum_{z \sim x} a(x)a(z)} = \frac{a(y)}{4\sum_{z \sim x} \frac{1}{4}a(z)} = \frac{a(y)}{4a(x)} = \hat{p}(x, y).$$

Items (iii)–(iv) are Proposition 4.1.

Next, we relate the probabilities of certain events for the walks S and \hat{S}. For $D \subset \mathbb{Z}^2$, let $\Gamma_D^{(x)}$ be the set of all nearest-neighbour finite trajectories that start at $x \in D \setminus \{0\}$ and end when entering ∂D for the first time; denote also $\Gamma_D^{(x)} = \Gamma_D^{(y, R)}$. For $\mathcal{H} \subset \Gamma_D^{(x)}$ write $S \in \mathcal{H}$ (respectively, $\hat{S} \in \mathcal{H}$) if there exists k such that $(S_0, \ldots, S_k) \in \mathcal{H}$ (respectively, $(\hat{S}_0, \ldots, \hat{S}_k) \in \mathcal{H}$). In the next result we show that $\mathbb{P}_x[S \in \cdot | \tau_0 > \tau_{\partial B(R)}]$ and $\mathbb{P}_x[\hat{S} \in \cdot | \tau_0 > \tau_{\partial B(R)}]$ are almost indistinguishable on $\Gamma_0^{(x)}$ (that is, the conditional law of S almost coincides with the unconditional law of \hat{S}).

Lemma 4.3 Assume $\mathcal{H} \subset \Gamma_0^{(x)}$. We have
$$\mathbb{P}_x[S \in \mathcal{H} | \tau_0 > \tau_{\partial B(R)}] = \mathbb{P}_x[\hat{S} \in \mathcal{H}] (1 + O((R \ln R)^{-1})). \quad (4.6)$$

On sets which are distant from the origin, however, we show that S and \hat{S} have almost the same behaviour (without any conditioning):

4 recall that \mathcal{N} is the set of the four neighbours of the origin.
4.2 Conditioned SRW: basic properties

Lemma 4.4 Assume that $H \subset \Gamma_D^{(x)}$ and suppose that $0 \notin D$, and denote $s = \text{dist}(0,D)$, $r = \text{diam}(D)$. Then, for $x \in D$,

$$\mathbb{P}_x[S \in H] = \mathbb{P}_x[\hat{S} \in H] \left(1 + O\left(\frac{r}{s \ln s}\right)\right). \quad (4.7)$$

Proof of Lemmas 4.3 and 4.4 Let us prove (4.6). Assume without loss of generality that no trajectory from H passes through the origin. Note that for any path $\varrho = (x_0, x_1, \ldots, x_n)$ in $\mathbb{Z}^2 \setminus \{0\}$ we have

$$\mathbb{P}_{x_0}[\hat{S}_1 = x_1, \ldots, \hat{S}_n = x_n] = \frac{a(x_1)}{4a(x_0)} \times \frac{a(x_2)}{4a(x_1)} \times \cdots \times \frac{a(x_n)}{4a(x_{n-1})} = \frac{a(x_n)}{a(x_0)} \left(\frac{1}{4}\right)^n,$$

and therefore it holds that

$$\mathbb{P}_x[\hat{S} \in H] = \sum_{\varrho \in H} \frac{a(\varrho_{\text{end}})}{a(x)} \left(\frac{1}{4}\right)^{|\varrho|},$$

where $|\varrho|$ is the length of ϱ and ϱ_{end} is the last site of ϱ. On the other hand, by Lemma 3.12

$$\mathbb{P}_x[S \in H \mid \tau_0 > \tau_{\partial B(R)}] = \frac{a(R) + O(R^{-1})}{a(x)} \sum_{\varrho \in H} \left(\frac{1}{4}\right)^{|\varrho|}.$$

Since $\varrho_{\text{end}} \in \partial B(R)$, we have $a(\varrho_{\text{end}}) = a(R) + O(R^{-1})$, and so (4.6) follows.

The proof of (4.7) is essentially the same, only this time the factor $\frac{a(\varrho_{\text{end}})}{a(x)}$ will be equal to $1 + O\left(\frac{r}{s \ln s}\right)$ due to (3.38).

Next, we need an analogue of Lemma 3.11 for the conditioned random walk, i.e., we would like to estimate the probability that the \hat{S}-walk escapes an annulus through its outer boundary:

Lemma 4.5 For all $x \in \mathbb{Z}^2$ and $R > r > 0$ such that $x \in B(R) \setminus B(r)$ we have

$$\mathbb{P}_x[\hat{\tau}_{\partial B(R)} < \hat{\tau}_{B(r)}] = 1 - \frac{(a(x))^{-1} - (a(R) + O(R^{-1}))^{-1}}{(a(r) + O(r^{-1}))^{-1} - (a(R) + O(R^{-1}))^{-1}}, \quad (4.8)$$

as $r, R \to \infty$.

Proof This is an argument of the type we employed already many
times in this book: we use the Optional Stopping Theorem for the
martingale \(1/(\hat{S}_k \wedge \hat{\tau}_N)\) with the stopping time \(\hat{\tau}_{\partial B(R)} \wedge \hat{\tau}_B(r)\). We let
the reader fill the details.

Letting \(R \to \infty\) in (4.8), we obtain

\[\text{Corollary 4.6} \quad \text{Assume } r \geq 1 \text{ and } \|x\| \geq r + 1. \text{ We have}\]

\[\mathbb{P}_x[\hat{\tau}_B(r) = \infty] = 1 - \frac{a(r) + O(r^{-1})}{a(x)}. \quad (4.9)\]

What we do next, is develop some potential theory for the con-
ditioned walk \(\hat{S}\).

The Green’s function of the conditional walk is defined in the
following way (completely analogous to (3.2)): for \(x, y \in \mathbb{Z}^2 \setminus \{0\}\)

\[\hat{G}(x, y) = \mathbb{E}_x \sum_{k=0}^{\infty} 1\{\hat{S}_k = y\}. \quad (4.10)\]

It is remarkable that one is actually able to calculate this func-
tion in terms of the potential kernel \(a\):

\[\text{Theorem 4.7} \quad \text{It holds that}\]

\[\hat{G}(x, y) = \frac{a(y)}{a(x)} (a(x) + a(y) - a(x - y)). \quad (4.11)\]

Proof First, we need a very simple general fact about hitting
times of recurrent Markov chains:

\[\text{Lemma 4.8} \quad \text{Let } (X_n) \text{ be a recurrent Markov chain on a state}
\text{space } \Sigma, \text{ and } x \in \Sigma, A, B \subset \Sigma \text{ are such that } A \cap B = \emptyset \text{ and}
\text{x} \notin A \cup B. \text{ Then}\]

\[\mathbb{P}_x[\tau_A < \tau_B] = \mathbb{P}_x[\tau_A < \tau_B \mid \tau^+_x > \tau_{A \cup B}] \quad (4.12)\]

(that is, the events \(\{\tau_A < \tau_B\}\) and \(\{\tau^+_x > \tau_{A \cup B}\}\) are independent
under \(\mathbb{P}_x\)).

Proof Informally (see Figure 4.2): let \(p := \mathbb{P}_x[\tau_A < \tau_B \mid \tau^+_x > \tau_{A \cup B}]\) be the value of the probability in the right-hand side of (4.12).
At the moments when the particle visits \(x\), it tosses a coin to de-
cide if it will revisit it before coming to \(A \cup B\) or not. When it
decides to definitely leave \(x\) for \(A \cup B\), the probability of choos-
ing \(A\) is \(p\), so it is \(p\) overall. Making this argument rigorous and
boring is left as an exercise. \(\Box\)
We continue proving Theorem 4.7. Fix (a large) $R > 0$, abbreviate $\Lambda_R = \mathcal{B}(R) \setminus \{0\}$, and let us denote for $y \in \Lambda_R$

$$N_{y,R}^* = \sum_{k=0}^{\tau_{\Lambda_R}^y} 1\{S_k = y\},$$

$$\hat{N}_{y,R}^* = \sum_{k=0}^{\tau_{\Lambda_R}^y} 1\{\hat{S}_k = y\},$$

Figure 4.2 On the proof of Lemma 4.8

Before looking at the next argument, it is a good idea to recall how “exactly k visits” became “at least k visits” in (3.12). Now, let $x \in \Lambda_R$ and observe that, on one hand,

$$\mathbb{P}_x[N_{y,R}^* = n, \tau_{\partial\mathcal{B}(R)} < \tau_0] = \mathbb{P}_x[N_{y,R}^* \geq n] \mathbb{P}_y[\tau_{\partial\mathcal{B}(R)} < \tau_0, \tau_y^+ > \tau_{\Lambda_R}^y] = \mathbb{P}_x[N_{y,R}^* \geq n] \mathbb{P}_y[\tau_y^+ > \tau_{\Lambda_R}^y] \mathbb{P}_y[\tau_{\partial\mathcal{B}(R)} < \tau_0 | \tau_y^+ > \tau_{\Lambda_R}^y]$$

(by Lemma 4.8)

$$= \mathbb{P}_x[N_{y,R}^* \geq n] \mathbb{P}_y[\tau_y^+ > \tau_{\Lambda_R}^y] \mathbb{P}_y[\tau_{\partial\mathcal{B}(R)} < \tau_0] = \mathbb{P}_x[N_{y,R}^* = n] \mathbb{P}_y[\tau_{\partial\mathcal{B}(R)} < \tau_0]$$

(by Lemma 3.41)

$$= \mathbb{P}_x[N_{y,R}^* = n] \frac{a(y)}{a(R) + O(R^{-1})}, \quad (4.13)$$

and, on the other hand, the same expression is

$$\mathbb{P}_x[N_{y,R}^* = n, \tau_{\partial\mathcal{B}(R)} < \tau_0] = \mathbb{P}_x[N_{y,R}^* = n | \tau_{\partial\mathcal{B}(R)} < \tau_0] \mathbb{P}_x[\tau_{\partial\mathcal{B}(R)} < \tau_0]$$
Conditioned SRW

(by Lemma 4.3)

\[P_x[\hat{N}_{y,R}^* = n](1 + O((R \ln R)^{-1}))P_x[\tau_{\partial B(R)} < \tau_0] \]

(again, by Lemma 3.41)

\[P_x[\hat{N}_{y,R}^* = n](1 + O((R \ln R)^{-1})) \frac{a(x)}{a(R) + O(R^{-1})}. \quad (4.14) \]

Note also that \(a(R) + O(R^{-1}) = a(R)(1 + O((\ln R)^{-1})) \). So, since (4.13) and (4.14) must be equal, we have

\[a(x)P_x[\hat{N}_{y,R}^* = n] = a(y)P_x[N_{y,R}^* = n](1 + O((\ln R)^{-1})); \]

multiplying by \(n \) and summing in \(n \geq 1 \), we obtain

\[a(x)\hat{G}_R(x, y) = a(y)G_{\Lambda_R}(x, y)(1 + O((\ln R)^{-1})). \quad (4.15) \]

We are actually able to say something about \(G_{\Lambda_R}(x, y) \): by Theorem 3.13, it holds that\(^5\)

\[G_{\Lambda_R}(x, y) = E_x(S_{\tau_{\Lambda_n}} - y) - a(x - y) \]

(once again, by Lemma 3.41)

\[= \frac{a(x)}{a(R) + O(R^{-1})}(a(R) + O(\|y\|+1)) \]

\[+ \left(1 - \frac{a(x)}{a(R) + O(R^{-1})}\right)a(y) - a(x - y) \]

\[= a(x) + a(y) - a(x - y) + O(\|y\|^2 + \|x\| a(y)) + O(R^{-1}) \frac{a(x) a(y)}{a(R)}. \]

Inserting this back to (4.15) and sending \(R \) to infinity, we finally obtain (4.11).

At this point, let us recall that the function \(1/a(\cdot) \) is harmonic on \(\mathbb{Z}^2 \setminus (N \cup \{0\}) \), and observe that the Green’s function \(\hat{G}(\cdot, y) \) is harmonic on \(\mathbb{Z}^2 \setminus \{0, y\} \) (as before, this is an immediate consequence of the total expectation formula, recall (3.3)). It turns out that this “small” difference will be quite important: indeed, the latter fact will be operational in some places below, for applying the Optional Stopping Theorem in some particular settings. For future reference, we formulate the above fact in the equivalent form:

\(^5\) by the way, recall the solution of Exercise 3.28
Proposition 4.9 It holds that the process $(\hat{G}(\hat{S}_n \wedge \hat{\tau}_y), n \geq 0)$ is a martingale. Moreover, let us define
\[
\hat{\ell}(x,y) = 1 + \frac{a(y) - a(x-y)}{a(x)} = \frac{\hat{G}(x,y)}{a(y)}.
\] (4.16)
Then the process $(\hat{\ell}(\hat{S}_n \wedge \hat{\tau}_y), n \geq 0)$ is a martingale.

By the way, notice that
\[
\lim_{x \to \infty} \hat{\ell}(x,y) = 0
\] (4.17)
for any fixed y, so the last process is a “martingale vanishing at infinity”, which makes it more convenient for applications via the Optional Stopping Theorem (so this is why we kept “1+” in (4.16)).

Now, as we already know from Section 3.1, it is possible to obtain exact expressions (in terms of the Green’s function) for one-site escape probabilities, and probabilities of (not) hitting a given site: using (4.12), we obtain
\[
\mathbb{P}_x[\hat{\tau}_x^+ < \infty] = 1 - \frac{1}{\hat{G}(x,x)} = 1 - \frac{1}{2a(x)}
\] (4.18)
for $x \neq 0$, and, quite analogously to (3.4),
\[
\mathbb{P}_x[\hat{\tau}_y < \infty] = \frac{\hat{G}(x,y)}{\hat{G}(y,y)} = \frac{a(x) + a(y) - a(x-y)}{2a(x)},
\] (4.19)
for $x \neq y, x,y \neq 0$. Let us also observe that (4.19) implies the following surprising fact: for any $x \neq 0$,
\[
\lim_{y \to \infty} \mathbb{P}_x[\hat{\tau}_y < \infty] = \frac{1}{2}.
\] (4.20)
It is interesting to note that this fact permits us to obtain a criterion for recurrence of a set with respect to the conditioned walk. Quite analogously to Definition 3.5, we say that a set is recurrent with respect to a (transient) Markov chain, if it is visited infinitely many times almost surely; a set is called transient, if it is visited only finitely many times almost surely. Recall that, for SRW in dimension $d \geq 3$, the characterization is provided by the Wiener’s criterion (Theorem 3.7) formulated in terms of capacities of intersections of the set with exponentially growing annuli. Although this result does provide a complete classification, it may
be difficult to apply because it is not always trivial to calculate (even to estimate) capacities. Now, it turns out that for the conditioned two-dimensional walk \hat{S} the characterization of recurrent and transient sets is particularly simple:

Theorem 4.10 A set $A \subset \mathbb{Z}^2$ is recurrent with respect to \hat{S} if and only if A is infinite.

Proof of Theorem 4.10 Clearly, we only need to prove that every infinite subset of \mathbb{Z}^d is recurrent for \hat{S}. As mentioned before, this is basically a consequence of (4.20). Indeed, let $S_0 = x_0$; since A is infinite, by (4.20) one can find $y_0 \in A$ and R_0 such that $\{x_0, y_0\} \subset B(R_0)$ and

$$\mathbb{P}_{x_0}[\hat{\tau}_{y_0} < \hat{\tau}_{\partial B(R_0)}] \geq \frac{1}{3}.$$

Then, for any $x_1 \in \partial B(R_0)$, we can find $y_1 \in A$ and $R_1 > R_0$ such that $y_1 \in B(R_1) \setminus B(R_0)$ and

$$\mathbb{P}_{x_1}[\hat{\tau}_{y_1} < \hat{\tau}_{\partial B(R_1)}] \geq \frac{1}{3}.$$

Continuing in this way, we can construct a sequence $R_0 < R_1 < R_2 < \ldots$ (depending on the set A) such that, for each $k \geq 0$, the walk \hat{S} hits A on its way from $\partial B(R_k)$ to $\partial B(R_{k+1})$ with probability at least $\frac{1}{3}$, regardless of the past. This clearly implies that A is a recurrent set. \hfill \Box

Next, following the script of Section 3.1, let us discuss the notion of capacity for the conditioned walk. It is tempting to just repeat the previous definitions by reusing (3.10), but, at this point, some care has to be taken. Namely, recall that in Section 3.1 we used path reversals a few times — for SRW, the probability that it follows a path is the same as the probability that it follows the reversed path. This is no longer true for the conditioned walk; it is still reversible, but the reversible measure is not constant (recall Proposition 4.2).

As a consequence of the above, we have that the Green’s function (4.11) for the conditioned walk is no longer symmetric; instead, it holds that

$$a^2(x)\hat{G}(x, y) = a^2(y)\hat{G}(y, x) \quad (4.21)$$

for all $x, y \in \mathbb{Z}^2 \setminus \{0\}$. This, of course, follows directly from (4.11),
4.2 Conditioned SRW: basic properties

Figure 4.3 Conductances of the “thicker” edges are equal to 2, and the conductances of all other edges (including the vertical ones which are not shown on the picture) are 1

but can be also obtained independently, analogously to the proof of (3.44) (recall also Exercise 3.21).

For finite $A \subset \mathbb{Z}^d$ and $x \in \mathbb{Z}^d$, quite analogously to (3.9), let us denote

$$\hat{\text{Es}}_A(x) = \mathbb{P}_x[\hat{\tau}_A^+ = \infty] 1\{x \in A\}. \quad (4.22)$$

Now, the crucial observation (that the reader is strongly invited to check) is that one can prove that, for any $A \subset \mathbb{Z}^2 \setminus \{0\}$,

$$\mathbb{P}_x[\hat{\tau}_A < \infty] = \sum_{y \in A} \hat{G}(x, y) \hat{\text{Es}}_A(y) = \sum_{y \in \mathbb{Z}^d} \hat{G}(x, y) \hat{\text{Es}}_A(y) \quad (4.23)$$

exactly in the same way as (3.11) was proved!

However, maybe somewhat surprisingly, it is not a good idea to define the capacity for the conditioned walk as in (3.10). To explain this, consider first a toy model. Let X be the random walk on the three-dimensional integer lattice with conductances on all the horizontal planes defined as on Figure 4.3. Clearly, X
is transient and reversible, with the reversible measure

$$\mu(x) = \begin{cases}
6, & \text{if } x \cdot e_1 \text{ is even}, \\
7, & \text{if } x \cdot e_1 \text{ is odd.}
\end{cases}$$

This informally means that the odds that the process is in a site with an odd abscissa is $\frac{6}{6+7} = \frac{6}{13}$. Now, consider the n-step transition probability $p^{(n)}(x, y)$, where n is of the same parity as $x - y$. Intuitively, it should not depend so much on x (since the walk normally “forgets” its initial point anyway), but there should be a substantial dependence on y: by the above discussion, if, for example, $y \cdot e_1$ is even, the ratio $\frac{p^{(n)}(x, y)}{p^{(n)}(x, y')}$ should be close to $\frac{6}{7}$ in case when $y' \cdot e_1$ is odd and y' has the same parity as y and is “not far away” from it. So, if we divide $p^{(n)}(x, y)$ by $\mu(y)$, this will (almost) remove the dependence on the second argument; since the Green’s function is the sum of $p^{(n)}$’s, $G(x, y)/\mu(y)$ looks like the “right” object to consider (it “should” depend on the distance between x and y, but not so much on x and y themselves). Then, an analogue of (3.11) would be

$$\mathbb{P}_x[\tau_A < \infty] = \sum_{y \in A} G(x, y) \text{Es}_A(y) = \sum_{y \in A} \frac{G(x, y)}{\mu(y)} \times \mu(y) \text{Es}_A(y),$$

so, at least if A is finite and the starting point x is far away from A, the probability of eventually hitting A would be a product of a factor which (almost) only depends on the distance with $\sum_{y \in A} \mu(y) \text{Es}_A(y)$. This indicates that the last quantity might be the right definition of the capacity.

It is important to notice, however, that the above right definition is, in principle, non-unique: as we remember from Section 2.2, the reversible measure is not unique (one can always multiply it by a positive constant). The same is also true with respect to the conductancies: if we multiply all them by the same positive constant, the corresponding random walk will remain the same. Still, we will see below that there is a canonical way to define the capacity for conditioned random walks (i.e., we can choose that multiplicative constant in a natural way).

Let us go back to the conditioned walk \hat{S}. First, note that,
by (3.38),
\[
\hat{G}(x, y) = \frac{a(y)}{a(x)} (a(x) + a(y) - a(x - y)) = \frac{a(y)}{a(x)} (a(y) + O(\|y\|/\|x\|))
\]
(4.24)
as \(x \to \infty\) and \(\|y\|/\|x\| \to 0\). By (4.11), we have
\[
\hat{G}(x, y) a^2(y) = \hat{G}(y, x) a^2(x) = a(x) + a(y) - a(x - y) a(x) a(y),
\]
and so it is natural to introduce new notation \(\hat{g}(x, y) = \hat{G}(x, y) a^2(y) = \hat{g}(y, x)\) for the “symmetrized” conditional Green’s function. Then, (4.24) implies that
\[
\hat{g}(x, y) = \frac{\hat{G}(x, y)}{a^2(y)} = \frac{1}{a(x)} (1 + O(\|y\|/\|x\| \ln(\|y\| + 1)))
\]
(4.25)
as \(x \to \infty\), which indeed essentially depends on \(\|x\|\). Therefore, if we write (recall (4.23))
\[
\mathbb{P}_x[\hat{\tau}_A < \infty] = \sum_{y \in A} \hat{g}(x, y) \times a^2(y) \hat{E}_{S_A}(y),
\]
(4.26)
we see that the first terms in the above summation are “almost” the same for large \(x\). According to the above discussion, it is then reasonable to adopt the following definition for the capacity \(\hat{\text{cap}}(\cdot)\) with respect to the conditioned walk:
\[
\hat{\text{cap}}(A) = \sum_{y \in A} a^2(y) \hat{E}_{S_A}(y).
\]
(4.27)
Let us go back to the recent observation that, in principle, the capacity is defined up to a multiplicative factor. Why \(a\) is better than, say, \(3a\) for the role of the function \(h\) of Section 4.1? How to choose one of them canonically? A reasonable way to do it is the following: \(h\) should be such that \(\mathbb{E}_0 h(\hat{S}_1) = 1\); as we know (recall (3.35)) \(h \equiv a\) is then the right choice indeed.

Now, we have two notions of two-dimensional capacity: one for the original recurrent walk, and another one for the transient conditioned walk. What is the relationship between them? Remarkably, it is very simple:

Theorem 4.11 For all \(A \subset \mathbb{Z}^2 \setminus \{0\}\), we have
\[
\hat{\text{cap}}(A) = \text{cap}(A \cup \{0\}).
\]
(4.28)
Indeed, let us write for $x \in A$

$$\hat{E}_{\delta A}(x) = \mathbb{P}_x[\hat{\tau}^+_A = \infty]$$

(by Lemma 4.6)

$$= \lim_{R \to \infty} \mathbb{P}_x[\hat{\tau}^+_A > \hat{\tau}_{\partial B(R)}]$$

(by Lemma 3.12)

$$= \lim_{R \to \infty} \mathbb{P}_x[\hat{\tau}^+_A > \hat{\tau}_{\partial B(R)} | \hat{\tau}_{\partial B(R)} < \tau_0]$$

(by (3.54))

$$= \frac{\hat{h}_m A(x)}{a(x)}. \quad (4.29)$$

To conclude the proof, just insert (4.29) to (4.27) and then compare to the “usual” definition (3.62) of the two-dimensional capacity (with $y_0 = 0$).

Let us also obtain an expression for the probability of avoiding any finite set:

Lemma 4.12 Assume that $A \subset B(r)$, and $\|x\| \geq r + 1$. Then

$$\mathbb{P}_x[\hat{\tau}_A < \infty] = \frac{\hat{\text{cap}}(A)}{a(x)} \left(1 + O\left(\frac{r}{\|x\| \ln(r + 1)}\right)\right) \quad (4.30)$$

Proof With (4.27) in mind, just look at (4.25) and (4.26). \qed

Let us define

$$\hat{\text{hm}}_A(y) = \frac{a^2(y) \hat{E}_{\delta A}(y)}{\text{cap}(A)} = \frac{a(y) \hat{h}_m A(y)}{\text{cap}(A)} \quad (4.31)$$

(the last equality holds by (4.29)). We can interpret the above in the following way: $\hat{\text{hm}}$ is \hat{h}_m biased by a.

The reader certainly remembers that the estimate (3.38) on the two-point differences of the potential kernel was quite instrumental in several arguments of this book; likewise, it will be important to have difference estimates for the function \hat{g} as well:
4.2 Conditioned SRW: basic properties

Figure 4.4 On the proof of Lemma 4.13, the three cases to consider (from left to right): (1) $\|x\|, |y|$ are of the same logarithmic order and $\|x\|$ is not much larger than $\|y\|$, (2) $\|x\|$ is much smaller than $\|y\|$, (3) $\|x\|$ is significantly larger than $\|y\|$.

Lemma 4.13 Assume that $x, y, z \in \mathbb{Z}^2 \setminus \{0\}$ are distinct and such that $\|x - y\| \land \|x - z\| \geq 5\|y - z\|$. Then

$$\left| \hat{g}(x, y) - \hat{g}(x, z) \right| \leq O\left(\frac{\|y - z\|}{\|x - y\| \ln(1 + \|y\|) \sqrt{\|y\| \|z\| \ln(1 + \|y\|)}} \right).$$

(4.32)

Proof First, let us write

$$\hat{g}(x, y) - \hat{g}(x, z) = a(x) + a(y) - a(x - y) - a(x) + a(z) - a(x - z).$$

(put $\pm a(x - z) a(z)$ to the numerator, then group accordingly)

$$= a(x) a(z) - a(x - y) a(z) - a(x) a(y) + a(x - z) a(y).$$

(4.33)

Throughout this proof, let us assume without loss of generality that $\|y\| \geq \|z\|$. Since the walk \hat{S} is not spatially homogeneous, we need to take into account the relative positions of the three sites with respect to the origin. Specifically, we will consider the following three different cases (see Figure 4.4).

Case 1: $\|y\|^{1/2} \leq \|x\| \leq 2\|y\|$.

In this case, the first thing to note is that

$$\|y - z\| \leq \frac{\|x - y\|}{5} \leq \frac{\|x\| + \|y\|}{5} \leq \frac{3}{5}\|y\|.$$
so \(|z| \geq \frac{2}{3}|y|\), meaning that \(|y|\) and \(|z|\) must be of the same order; this then implies that \(a(x), a(y), a(z)\) are all of the same order too. Then, we use (3.38) on the three parentheses in the numerator of (4.33), to obtain that the expression there is at most of order \(|y-z|/|y||\ln|y||\), while the denominator is of order \(|y|^3/|y||\ln|y||\). This proves (4.32) in case 1.

Case 2: \(|x| < |y|^{1/2}\).

Here, it is again easy to see that \(|y|\) and \(|z|\) are of the same order. Now, we note that, by (3.38), \(a(x - z) = a(x) + O\left(\frac{|z|}{|y|}\right)\), so, inserting this to (4.33) (and also using that \(a(y) - a(z) = O\left(\frac{|y-z|}{|y|}\right)\), we find that it is equal to

\[
\frac{a(x)(a(z) - a(y)) + a(z)(a(y) - a(z) + a(x - z) - a(x) - y) + O\left(\frac{|x|}{|y|} \cdot \frac{|y-z|}{|y|}\right)}{a(x)a(y)a(z)}
\]

\[
= \frac{a(z) - a(y)}{a(y)a(z)} + \frac{a(y) - a(z) + a(x - z) - a(x) - y}{a(x)a(y)} + O\left(\frac{|x|}{|y|} \cdot \frac{|y-z|}{|y|}\right).
\]

(4.34)

Now, by (3.38) the first term is \(O\left(\frac{|y-z|}{|y|} \ln\frac{|y|}{|y|}\right)\) (that is, exactly what we need, since \(|y|\) and \(|y - x|\) are of the same order), and the third term is clearly of smaller order. As for the second term, note that, by (3.36) and using the fact that \(|x - y| \cdot |z| - |y| \cdot |x - z|| \leq O(|x| \cdot |y - z|)|\) (please, check!), we obtain

\[
a(y) - a(z) + a(x - z) - a(x)
\]

\[
= \frac{2}{\pi} \ln \left(\frac{|y| \cdot |x - z|}{|x - y| \cdot |z|}\right) + O(|y|^{-2})
\]

\[
= \frac{2}{\pi} \ln \left(1 + \frac{|x - y| \cdot |z| - |y| \cdot |x - z|}{|x - y| \cdot |z|} \right) + O(|y|^{-2})
\]

\[
= O\left(\frac{|x| \cdot |y-z|}{|y| \cdot |z|} + |y|^{-2}\right) = O\left(\frac{|x| \cdot |y-z|}{|z|^2}\right),
\]

so it is again of smaller order. This shows (4.32) in case 2.

Case 3: \(|x| > 2|y|\).

Notice that, in this case, \(|z|\) need not be of the same order as \(|y|\), it may happen to be significantly smaller. Here (by also grouping the first two terms in the numerator) we rewrite (4.33)
as
\[
\frac{(a(x) - a(x - z))(a(z) - a(y))}{a(x)a(y)a(z)} + \frac{a(x - y) - a(x - z)}{a(x)a(y)}.
\]

(4.35)

By (3.38), the second term is \(O\left(\frac{\|y - z\|}{\|y\|^2 \ln(1 + \|x\|) \ln(1 + \|y\|)}\right)\) (that is, exactly what we need). Next, observe that (recall that we assumed that \(\|y\| \geq \|z\|\))
\[
\ln \frac{\|y\|}{\|z\|} = \ln \frac{\|y\|}{\|z\|} - 1 = \frac{\|y\|}{\|z\|} - \frac{\|y - z\|}{\|z\|}.
\]
Therefore (also using (3.38) on the first factor), the numerator of the first term is \(O\left(\frac{\|z\| \|x\|}{\|z\| \|y\|}\right)\) \(\leq \) \(O\left(\frac{\|z - y\|}{\|y\|}\right)\), and so (since the denominator is not less than \(a(x)a(y)\)) the first term in (4.35) is at most of the same order as the second one. This concludes the proof of Lemma 4.13.

Lemma 4.13 permits us to obtain a useful expression for the probability of ever hitting \(A\) from a distant site: for a finite \(A \subset \mathbb{Z}^2 \setminus \{0\}\) with \(y_0 \in A\) and \(r_0 := \|y_0\| + \text{diam}(A)\), recalling (4.26)–(4.27) we obtain
\[
P_x[\tau_A < \infty] = \hat{\text{cap}}(A)\hat{g}(x, y)\left(1 + O\left(\frac{\text{diam}(A)}{\text{dist}(x, A) \ln(1 + \|x\|) \ln(1 + \|y\|)}\right)\right).
\]

(4.36)

Next, we obtain a quantitative result for the entrance measure to a finite set; it is quite analogous to Theorem 3.17, only this time for the conditioned walk:

Theorem 4.14 Assume that \(A \subset \mathbb{Z}^2 \setminus \{0\}\) is finite and \(x \not\in A\) is such that \(\text{dist}(x, A) \geq 100(\text{diam}(A) + 1)\). For all \(y_0 \in A\), we have
\[
P_x[\hat{S}_{\tau_A} = y \mid \tau_A < \infty] = \hat{\text{hm}}_A (y)\left(1 + O\left(\frac{\text{diam}(A)}{\text{dist}(x, A) \ln(1 + \|x\|) \ln(1 + r_0)}\right)\right).
\]

(4.37)

Proof We will begin as in the proof of Theorem 3.8 (page 40), and the reader is advised to recall the solution of Exercise 3.19, since the next proof will have quite some similarities to it. We assume also that \(A\) contains at least two sites, so that \(\text{diam}(A) \geq 1\). First, we proceed very similarly to the proof of Theorem 3.8. We keep the notation \(\Gamma_{x,y}^{(n)}\) from that proof; also, we let \(\hat{P}_\varphi\) be the weight of the trajectory \(\varphi\) with respect to the \(\hat{S}\)-walk. We also keep\(^6\) the notations \(\hat{N}_x, \hat{N}^x, \hat{N}^y\) for, respectively, the total number of visits

\(^6\) now with hats, as we are dealing with the \(\hat{S}\)-walk
Conditioned SRW
to $x \notin A$, the number of visits to x before the first return to A, and the number of visits to x after the first return to A (again, setting $\hat{N}^+_x = 0$ on $\{\hat{\tau}_A^+ = \infty\}$).

As in (3.22), it is clear that

$$\mathbb{P}_x[\hat{\tau}_A < \infty, \hat{S}_{\hat{\tau}_A} = y] = \sum_{n=1}^{\infty} \sum_{\nu \in \Gamma_{(n)}^y} \hat{P}_\nu$$

but the analogue of (3.23) now becomes (due to Proposition 4.2 (i))

$$\mathbb{P}_y[\hat{N}^+_x \geq n] \frac{a^2(x)}{a^2(y)} = \sum_{\nu \in \Gamma_{(n)}^y} P_v.$$

Then, analogously to (3.24) we write

$$\mathbb{P}_x[\hat{S}_{\hat{\tau}_A} = y \mid \hat{\tau}_A < \infty] = \mathbb{P}_x[\hat{\tau}_A < \infty, \hat{S}_{\hat{\tau}_A} = y] / \mathbb{P}_x[\hat{\tau}_A < \infty]$$

$$= \frac{1}{\mathbb{P}_x[\hat{\tau}_A < \infty]} \sum_{n=1}^{\infty} \frac{a^2(y)}{a^2(x)} \mathbb{P}_y[\hat{N}^+_x \geq n] \mathbb{P}_x[\hat{\tau}_A < \infty] \mathbb{E}_y \hat{N}_x$$

$$= \frac{a^2(y)}{a^2(x)} \mathbb{P}_x[\hat{\tau}_A < \infty] \mathbb{E}_y \hat{N}_x - \mathbb{E}_y \hat{N}^+_x$$

$$= \frac{a^2(y)}{\mathbb{P}_x[\hat{\tau}_A < \infty]} \left(\frac{\hat{G}(y, x)}{a^2(x)} - \sum_{z \in \partial A} \mathbb{P}_y[\hat{\tau}_A^+ < \infty, \hat{S}_{\hat{\tau}_A^+} = z] \frac{\hat{G}(z, x)}{a^2(x)} \right)$$

$$= \frac{a^2(y)}{\mathbb{P}_x[\hat{\tau}_A < \infty]} \left(\hat{g}(y, x) - \sum_{z \in \partial A} \mathbb{P}_y[\hat{\tau}_A^+ < \infty, \hat{S}_{\hat{\tau}_A^+} = z] \hat{g}(z, x) \right)$$

$$= \frac{a^2(y)}{\mathbb{P}_x[\hat{\tau}_A < \infty]} \left(\hat{g}(y, x) \left(\hat{E}_{A}(y) + \sum_{z \in \partial A} \mathbb{P}_y[\hat{\tau}_A^+ < \infty, \hat{S}_{\hat{\tau}_A^+} = z] \right) - \sum_{z \in \partial A} \mathbb{P}_y[\hat{\tau}_A^+ < \infty, \hat{S}_{\hat{\tau}_A^+} = z] \hat{g}(z, x) \right)$$

$$= a^2(y) \hat{g}(y, x) \frac{\hat{E}_{A}(y)}{\mathbb{P}_x[\hat{\tau}_A < \infty]}$$
4.2 Conditioned SRW: basic properties

\[+ \frac{a^2(y)}{P_x[\tau_A < \infty]} \sum_{z \in \partial A} P_y[\tau_A^+ < \infty, \hat{S}_{x_A}^+ = z](\hat{g}(y, x) - \hat{g}(z, x)). \] (4.38)

By (4.36) it holds that

\[\frac{a^2(y)g(y, x)\hat{E}_{S_A}(y)}{P_x[\tau_A < \infty]} = \lim_{A}(1 + O(\frac{\text{diam}(A)}{\text{dist}(x, A)})), \] (4.39)

(this time we are fine without the logarithmic terms from (4.36), but we will need them later). So, it remains to show that the second term in (4.38) is \(O(\lim_{A}(y)\frac{\text{diam}(A)}{\text{dist}(x, A)}))\).

To do that, we need the following fact:

Lemma 4.15 There is a positive constant \(c\) such that for all \(x_0, y_0 \in \mathbb{Z}^2 \setminus \{0\}\) and \(r \geq 1\) with \(\|x_0 - y_0\| \geq 51r\) we have

\[P_{x_0}[\tau_{B(y_0, r)} = \infty] \geq \frac{c}{\ln(\|y_0\| + r)}. \] (4.40)

Proof We need to consider two cases: \(B(y_0, r)\) is (relatively to its size) close to/far from the origin. First, let us assume that \(\|y_0\| < 12r\) (so that the disk is relatively close to the origin). Then, it holds that \(B(y_0, r) \subset B(13r)\), and \(B(26r) \subset B(y_0, 51r)\).

Now, Corollary 4.6 easily implies that, if \(r \geq 1\) and \(\|x\| \geq 2r\)

\[P_x[\tau_{B(r)} = \infty] \geq \frac{c'}{\ln r} \]

(because (4.9) will work for large enough \(\|x\|\), and one can use the uniform ellipticity of \(\hat{S}\) otherwise); this proves (4.40) in the first case.

Now, suppose that \(\|y_0\| \geq 12r\) (that is, \(r \leq \frac{1}{12}\|y_0\|\)). We now use the martingale (recall Proposition 4.9)

\[\hat{\ell}(\hat{S}_{n \land \tau_{y_0}}, y_0) = 1 + \frac{a(y_0) - a(\hat{S}_{n \land \tau_{y_0}})}{a(\hat{S}_{n \land \tau_{y_0}})}. \]

In exactly\(^8\) the same way as in the proof of Theorem 2.4 (page 18), we obtain from the Optional Stopping Theorem that

\[\hat{\ell}(x_0, y_0) = \sum_{z \in \partial B(y_0, r)} P_{x_0}[\tau_{B(y_0, r)} < \infty, \hat{S}_{y_0(y_0, r)} = z]\hat{\ell}(z, y_0) \]

\(^7\) make a picture!

\(^8\) recall also (4.17)
Conditioned SRW

\[\geq \mathbb{P}_{x_0} [\tau^*_{B(y_0, r)} < \infty] \min_{z \in \partial B(y_0, r)} \hat{\ell}(z, y_0), \]

so

\[\mathbb{P}_{x_0} [\tau^*_{B(y_0, r)} < \infty] \leq \frac{\hat{\ell}(x_0, y_0)}{\min_{z \in \partial B(y_0, r)} \hat{\ell}(z, y_0)}. \] (4.41)

Assume \(z \in \partial B(y_0, r) \) and write, using (3.36) and with \(\gamma'' := \pi \gamma'/2 \),

\[\hat{\ell}(z, y_0) = \frac{a(z) + a(y_0) - a(y_0 - z)}{a(z)} \]
\[= \frac{\ln \|z\| + \ln \|y_0\| - \ln r + O(\|y_0\|^{-2} + r^{-1})}{\ln \|z\| + \gamma'' + O(\|z\|^{-2})} \]
\[\geq \frac{\ln(\|y_0\| - r) + \ln \|y_0\| - \ln r + O(\|y_0\|^{-2} + r^{-1})}{\ln(\|y_0\| + r) + \gamma'' + O(\|y_0\|^{-2} + r^{-1})} \]
\[= \frac{2 \ln \|y_0\| + \ln (1 - \frac{r}{\|y_0\|}) - \ln r + O(r^{-1})}{\ln \|y_0\| + \ln (1 + \frac{r}{\|y_0\|}) + \gamma'' + O(r^{-1})} \]
\[:= T_1/T_2, \] (4.42)

and, denoting \(R := \|x - y_0\| \),

\[\hat{\ell}(x_0, y_0) = \frac{a(x_0) + a(y_0) - a(y_0 - x_0)}{a(x_0)} \]
\[= \frac{\ln \|x_0\| + \ln \|y_0\| - \ln R + O(\|y_0\|^{-2} + R^{-2})}{\ln \|x_0\| + \gamma'' + O(\|x_0\|^{-2})} \]
\[\leq \frac{\ln(\|y_0\| + R) + \ln \|y_0\| - \ln R + O(\|y_0\|^{-2} + R^{-2})}{\ln(\|y_0\| - R) + \gamma'' + O(\|y_0\|^{-2} + R^{-2})} \]
\[= \frac{2 \ln \|y_0\| + \ln (1 + \frac{R}{\|y_0\|}) - \ln R + O(R^{-2})}{\ln \|y_0\| + \ln (1 - \frac{R}{\|y_0\|}) + \gamma'' + O(R^{-2})} \]
\[:= T_3/T_4. \] (4.43)

Assume now that \(x_0 \in \partial B(y_0, 3r) \) (so that \(R = 3r + O(1) \)); this is far better than the condition \(\|x_0 - y_0\| \geq 51r \) we have in the hypothesis of the lemma, so if we are able to prove (4.40) in these circumstances, we are in a good shape. Now, a straightforward
calculation yields
\[
\frac{T_2}{T_4} = 1 + \frac{\ln \frac{1+r/\|y_0\|}{1-R/\|y_0\|}}{\ln \|y_0\| + \ln (1 - \frac{R}{\|y_0\|}) + \gamma'' + O(R^{-2})},
\]
and
\[
\frac{T_3}{T_1} = 1 - \frac{\ln \left(\frac{R}{r} \cdot \frac{1-r/\|y_0\|}{1+R/\|y_0\|}\right) + O(r^{-1})}{2 \ln \|y_0\| - \ln \frac{1-r/\|y_0\|}{1+R/\|y_0\|} + O(r^{-1})} \leq 1 - \frac{\ln \left(\frac{R}{r} \cdot \frac{1-r/\|y_0\|}{1+R/\|y_0\|}\right) + O(r^{-1})}{2 \ln \|y_0\|}.
\]
Therefore, by (4.41) we have (after some more calculations, sorry)
\[
\mathbb{P}_{x_0}[\hat{T}_{B(y_0,r)} < \infty] \leq \frac{T_2}{T_4} \times \frac{T_3}{T_1} = 1 - \frac{\ln \left(\frac{R}{r} \cdot \frac{1-r/\|y_0\|}{1+R/\|y_0\|}\right)^{1/2} - \ln \frac{1+r/\|y_0\|}{1-R/\|y_0\|} + O(r^{-1})}{\ln \|y_0\| \left(1 + O\left(\frac{1}{\ln \|y_0\|}\right)\right)}. \quad (4.44)
\]
It remains only to observe that, if \(r \) is large enough, the numerator in (4.44) is bounded from below by a positive constant: indeed, observe that \(\frac{R}{r} \) is (asymptotically) at least 3, \(\frac{r}{\|y_0\|} \) and \(\frac{R}{\|y_0\|} \) are at most \(\frac{1}{12} \) and \(\frac{1}{4} \) respectively, and
\[
\sqrt{3 \times \frac{1 - \frac{1}{12}}{1 + \frac{1}{4}} \times \frac{1 - \frac{1}{4}}{1 + \frac{1}{12}}} = \sqrt{\frac{891}{845}} > 1.
\]
This concludes the proof of Lemma 4.15 in the case when \(r \) is large enough; the case of smaller values of \(r \), though, can be easily reduced to the former one by using the uniform ellipticity of the \(\hat{S} \)-walk (see also Exercise 4.10).

We continue proving Theorem 4.14. Similarly to the proof of Theorem 3.8 and the solution of Exercise 3.19, we are going to use the Optional Stopping Theorem for the martingale \(\hat{M}_n = \hat{g}(y,x) - \hat{g}(\hat{S}_{n \wedge \hat{\tau}_x}, x) \) to estimate the second term in (4.38). Recall that \(y \in \partial A \), and let us define
\[
V = B(y_0, 51 \text{diam}(A))
\]
(the reader is advised to look again at Figure 3.6 on page 59, although it is a bit off the scale now). Let \(\tau = \hat{\tau}_A^+ \land \hat{\tau}_V \). We have

\[
0 = \mathbb{E}_y \hat{M}_0 = \mathbb{E}_y \hat{M}_{\tau} = \mathbb{E}_y \left(\hat{M}_{\hat{\tau}_A} \mathbf{1}\{\hat{\tau}_A^+ < \hat{\tau}_V\} \right) + \mathbb{E}_y \left(\hat{M}_{\hat{\tau}_V} \mathbf{1}\{\hat{\tau}_V < \hat{\tau}_A^+\} \right)
\]

(since \(\mathbf{1}\{\hat{\tau}_A^+ < \infty\} = 1(\hat{\tau}_A^+ < \hat{\tau}_V) + \mathbf{1}(\hat{\tau}_V < \hat{\tau}_A^+ < \infty) \))

\[
= \mathbb{E}_y \left(\hat{M}_{\hat{\tau}_A} \mathbf{1}\{\hat{\tau}_V < \hat{\tau}_A^+\} \right) - \mathbb{E}_y \left(\hat{M}_{\hat{\tau}_V} \mathbf{1}\{\hat{\tau}_V < \hat{\tau}_A^+\} \right)
\]

Since

\[
\mathbb{E}_y \left(\hat{M}_{\hat{\tau}_A} \mathbf{1}\{\hat{\tau}_V < \hat{\tau}_A^+\} \right) = \sum_{z \in \partial A} \mathbb{P}_y[\hat{\tau}_V < \hat{\tau}_A^+, \hat{S}_{\hat{\tau}_A} = z](\hat{g}(y, x) - \hat{g}(z, x)),
\]

we obtain that

\[
\sum_{z \in \partial A} \mathbb{P}_y[\hat{\tau}_V < \hat{\tau}_A^+, \hat{S}_{\hat{\tau}_A} = z](\hat{g}(y, x) - \hat{g}(z, x)) = \mathbb{E}_y \left(\hat{M}_{\hat{\tau}_A} \mathbf{1}\{\hat{\tau}_V < \hat{\tau}_A^+\} \right) - \mathbb{E}_y \left(\hat{M}_{\hat{\tau}_V} \mathbf{1}\{\hat{\tau}_V < \hat{\tau}_A^+\} \right)
\]

(by Lemma 4.13; recall that \(\hat{M}_{\tau} = \hat{g}(y, x) - \hat{g}(z, x) \) on \(\{\hat{S}_r = z\} \))

\[
\leq \mathbb{P}_y[\hat{\tau}_V < \hat{\tau}_A^+] \times O\left(\text{dist}(x, A) \ln(\|y\| + \text{diam}(A)) \text{ln}(\|x\| + \|y\| + \text{diam}(A)) \right).
\] (4.45)

Next, we can write

\[
\hat{E}_{S_A}(y) = \mathbb{P}_y[\hat{\tau}_A^+ = \infty] = \sum_{v \in V} \mathbb{P}_y[\hat{\tau}_V < \hat{\tau}_A^+, \hat{S}_{\hat{\tau}_A} = v] \mathbb{P}_v[\hat{\tau}_A = \infty]
\]

(by Lemma 4.15)

\[
\geq \frac{c}{\text{ln}(\|y\| + \text{diam}(A))} \mathbb{P}_y[\hat{\tau}_V < \hat{\tau}_A^+],
\]

which means that

\[
\mathbb{P}_y[\hat{\tau}_V < \hat{\tau}_A^+] \leq O\left(\hat{E}_{S_A}(y) \text{ln}(\|y\| + \text{diam}(A)) \right).
\] (4.46)
Also, (4.39) implies that
\[
\frac{a^2(y)}{\mathbb{P}_x[\hat{F}_A < \infty]} = O(\frac{\hat{h}_{\infty}(y)}{\hat{g}(x,y)}).
\]
(4.47)

Since it is also straightforward to show that
\[
\frac{1}{\hat{g}(x,y)} = O(\ln(1 + \|x\| \vee \|y\|))
\]
(see Exercise 4.11), it only remains to combine (4.45)–(4.47) to see that the second term in (4.38) is indeed \(O(\hat{h}_{\infty}(y)\frac{diam(A)}{dist(x,A)})\), thus concluding the proof of Theorem 4.14.

In the remaining part of this chapter, we are going to discuss some even more surprising properties of the conditioned walk \(\hat{S}\).

4.3 Range of the conditioned SRW

For a set \(T \subset \mathbb{Z}_+\) (thought of as a set of time moments) let
\[
\hat{S}_T = \bigcup_{m \in T} \{\hat{S}_m\}
\]
be the range of the walk \(\hat{S}\) with respect to that set, i.e., it is made of sites that are visited by \(\hat{S}\) over \(T\). For simplicity, we assume in the following that the walk \(\hat{S}\) starts at a fixed neighbour \(x_0\) of the origin, and we write \(\mathbb{P}\) for \(\mathbb{P}_{x_0}\). For a nonempty and finite set \(A \subset \mathbb{Z}^2\), let us consider the random variable
\[
\mathcal{R}(A) = \frac{|A \cap \hat{S}_{(0,\infty)}|}{|A|};
\]
that is, \(\mathcal{R}(A)\) is the proportion of visited sites of \(A\) by the walk \(\hat{S}\) (and, therefore, \(1 - \mathcal{R}(A)\) is the proportion of unvisited sites of \(A\)). In this section we are interested in the following question: how \(\mathcal{R}(A)\) should behave for “large” sets? By (4.20), in average approximately half of \(A\) should be covered, i.e., \(\mathbb{E}\mathcal{R}(A)\) should be close to 1/2. Now, keeping in mind how difficult is to find something really new in these modern times, let us think what are the usual examples of random variables which are concentrated on \([0,1]\) and have expected value 1/2. Three examples come to mind: Uniform\([0,1]\), Bernoulli(1/2), and 1/2 itself. Which one of them shall the walk \(\hat{S}\) choose? It turns out that it is the first one
which is the most relevant for the conditioned walk\(^9\). Indeed, the main result of this section is the following surprising fact: the proportion of visited sites of a “typical” large set (e.g., a disk) is a random variable which is close in distribution to the Uniform\([0, 1]\) law. The paper [23] contains the corresponding results in greater generality, but here we content ourselves in proving the result for a particular case of a large disk which does not “touch” the origin:

Theorem 4.16 Let \(D \subset \mathbb{R}^2\) be a closed disk such that \(0 \notin D\), and denote \(D_n = nD \cap \mathbb{Z}^2\). Then, for all \(s \in [0, 1]\), we have, with positive constant \(c_1\) depending only on \(D\),

\[
\left| \mathbb{P}[\mathcal{R}(D_n) \leq s] - s \right| \leq c_1 \left(\frac{\ln \ln n}{\ln n} \right)^{1/3}.
\] (4.48)

Also, we prove that the range of \(\hat{S}\) contains many “big holes”.

Theorem 4.17 Let \(D\) and \(D_n\) be as in Theorem 4.16. Then,

\[
\mathbb{P}[D_n \cap \hat{S}_{[0, \infty)} = \emptyset \text{ for infinitely many } n] = 1.
\] (4.49)

Theorem 4.17 invites the following

Remark 4.18 A natural question to ask is whether there are also large disks that are completely filled, that is, if a.s. there are infinitely many \(n\) such that \(D_n \subset \hat{S}_{[0, \infty)}\). It is not difficult to see that the answer to this question is “no”. We, however, postpone explaining that to Chapter 6 (see Exercise 6.1).

If \(A \subset A'\) are (finite) subsets of \(\mathbb{Z}^2\), then the excursions between \(\partial A\) and \(\partial A'\) are pieces of nearest-neighbour trajectories that begin on \(\partial A\) and end on \(\partial A'\), see Figure 4.5, which is, hopefully, self-explanatory. We refer to Section 3.4 of [12] for formal definitions.

We now obtain some refined bounds on the hitting probabilities for excursions of the conditioned walk.

Lemma 4.19 Assume that \(x, y \in \mathbb{Z}^2 \setminus \{0\}\) with \(x \neq y\), and \(R > \max\{\|x\|, \|y\|\} + 1\). Then, we have

\[
\mathbb{P}_x[\hat{\tau}_y < \hat{\tau}_{\partial B(R)}] = \frac{a(R)(a(x) + a(y) - a(x - y)) - a(x)a(y)(1 + O(\frac{\|y\|}{R\ln(\|y\| + 1)}))}{a(x)(2a(R) - a(y))(1 + O(\frac{\|y\|}{R\ln(\|y\| + 1)}))}.
\] (4.50)

\(^9\) although there are examples when the second and the third options also reveal themselves; see Exercises 4.16 and 4.17
4.3 Range of the conditioned SRW

Figure 4.5 Excursions (pictured as bold pieces of trajectories) of random walks between ∂A and $\partial A'$.

Figure 4.6 Excursions that may visit D_n.

Proof Once again in this book, we use the Optional Stopping Theorem, but this time with a new martingale, namely, $M_n =$
Conditioned SRW

\[\hat{G}(\hat{S}_n \wedge \hat{\tau}_y, y) \] (recall Proposition 4.9)\(^{10}\). We have (recall (4.24))

\[\hat{G}(z, y) = \frac{a(y)}{a(z)} (a(y) + a(z) - a(z - y)) \]

\[= \frac{a(y)}{a(R)} \left(1 + O\left(\frac{1}{R \ln R} \right) \right) \times (a(y) + O(\|y\|/R)) \]

\[= \frac{a^2(y)}{a(R)} \left(1 + O\left(\frac{\|y\|}{R \ln (\|y\| + 1)} \right) \right) \quad (4.51) \]

for any \(z \in \partial B(R) \). Let us then abbreviate \(p = \mathbb{P}_x[\hat{\tau}_y < \hat{\tau}_{\partial B(R)}] \)
and write, using the above-mentioned theorem with stopping time \(\hat{\tau}_y \wedge \hat{\tau}_{\partial B(R)} \)

\[\mathbb{E}_x M_0 = \frac{a(y)}{a(x)} (a(x) + a(y) - a(x - y)) \]

(recall that \(\hat{G}(y, y) = 2a(y) \))

\[= 2pa(y) + (1 - p)\mathbb{E}_x (\hat{G}(\hat{S}_{\hat{\tau}_y}, y) | \hat{\tau}_{\partial B(R)} < \hat{\tau}_y) \]

(by (4.51))

\[= 2pa(y) + (1 - p)\frac{a^2(y)}{a(R)} \left(1 + O\left(\frac{\|y\|}{R \ln (\|y\| + 1)} \right) \right) , \]

so

\[\frac{a(x) + a(y) - a(x - y)}{a(x)} = 2p + (1 - p)\frac{a(y)}{a(R)} \left(1 + O\left(\frac{\|y\|}{R \ln (\|y\| + 1)} \right) \right) . \]

Solving the above for \(p \), we obtain (4.50). \(\square \)

Let us assume that \(x \in B(n \ln n), y \in B(n) \), and abbreviate \(R = n \ln^2 n \). Lemma 4.19 then implies that

\[\mathbb{P}_x[\hat{\tau}_y < \hat{\tau}_{\partial B(R)}] = \frac{a(R)(a(x) + a(y) - a(x - y)) - a(x)a(y)(1 + O(\ln^{-3} n))}{a(x)(2a(R) - a(y)(1 + O(\ln^{-3} n)))} . \quad (4.52) \]

We proceed with

Proof of Theorem 4.16 First, we describe informally the idea of the proof. We consider the visits to the set \(D_n \) during excursions of the walk from \(\partial B(n \ln n) \) to \(\partial B(n \ln^2 n) \), see Figure 4.6. The crucial

\(^{10}\) we could have also used \(M'_n = \hat{G}(\hat{S}_n \wedge \hat{\tau}_y, y)/a(y) = \frac{a(y) + a(\hat{S}_n \wedge \hat{\tau}_y) - a(\hat{S}_n \wedge \hat{\tau}_y - y)}{a(\hat{S}_n \wedge \hat{\tau}_y)} \)

which would save us some space, but that does not matter too much.
argument is the following: the randomness of $R(D_n)$ comes from the number Q of those excursions and not from the excursions themselves. If the number of excursions is around $c \times \frac{\ln n}{\ln \ln n}$, then it is possible to show (using a standard weak-LLN argument) that the proportion of covered sites in D_n is concentrated around $1 - e^{-c}$. On the other hand, that number of excursions can be modeled roughly as $Y \times \frac{\ln n}{\ln \ln n}$, where Y is an Exponential random variable with rate 1. Then, $\mathbb{P}[R(D_n) \geq 1 - s] \approx \mathbb{P}[Y \geq \ln s^{-1}] = s$, as required.

In the following, we will assume, for concreteness, that $B(1/2) \subset D \subset B(1)$ so that $D_n \subset B(n) \setminus B(n/2)$ for all n; the extension of the proof to the general case is straightforward.

We now give a rigorous argument. Let \hat{H} be the conditional entrance measure for the (conditioned) walk \hat{S}, i.e.,

$$\hat{H}_{D_n}(x, y) = \mathbb{P}_x[\hat{S}_{\hat{\tau}_{D_n}} = y \mid \hat{\tau}_{D_n} < \infty]. \quad (4.53)$$

Let us denote the initial piece of the trajectory by $\mathcal{E}_0 = \hat{S}_{[0, \hat{\tau}_{\partial B(n \ln n)}]}$. Then, we consider a Markov chain $(\mathcal{E}_k, k \geq 1)$ of excursions between $\partial B(n \ln n)$ and $\partial B(n \ln^2 n)$, defined in the following way: for $k \geq 2$ the initial site of \mathcal{E}_k is chosen according to the measure $\hat{H}_{B(n \ln n)}(z_{k-1}, \cdot)$, where $z_{k-1} \in \partial B(n \ln^2 n)$ is the last site of the excursion \mathcal{E}_{k-1}; also, the initial site of \mathcal{E}_1 is the last site of \mathcal{E}_0; the weights of trajectories are chosen according to (4.5) (i.e., each excursion is an \hat{S}-walk trajectory). It is important to observe that one may couple $(\mathcal{E}_k, k \geq 1)$ with the “true” excursions of the walk \hat{S} in an obvious way: one just picks the excursions subsequently, each time tossing a coin to decide if the walk returns to $B(n \ln n)$.

Let

$$\psi_n = \min_{x \in \partial B(n \ln^2 n)} \mathbb{P}_x[\hat{\tau}_{\partial B(n \ln n)} = \infty],$$

$$\psi_n^* = \max_{x \in \partial B(n \ln^2 n)} \mathbb{P}_x[\hat{\tau}_{\partial B(n \ln n)} = \infty]$$

be the minimal and maximal probabilities to avoid $B(n \ln n)$, starting at sites of $\partial B(n \ln^2 n)$. Using (4.9) together with (3.36), we obtain

$$\mathbb{P}_x[\hat{\tau}_{\partial B(n \ln n)} = \infty] = 1 - \frac{a(n \ln n) + O((n \ln n)^{-1})}{a(x)}$$
Conditioned SRW

\[\frac{a(n \ln^2 n) - a(n \ln n) + O((n \ln n)^{-1})}{a(n \ln^2 n) + O((n \ln n)^{-1})} = \frac{\ln n}{\ln n + 2 \ln \ln n} (1 + o(n^{-1})) \]

(4.54)

for any \(x \in \partial B(n \ln^2 n) \), and so it also holds that

\[\psi_n = \frac{\ln \ln n}{\ln n + 2 \ln n} (1 + o(n^{-1})). \]

(4.55)

Let us consider a sequence of i.i.d. random variables \(\eta_k, k \geq 0 \) such that

\[P[\eta_k = 1] = 1 - P[\eta_k = 0] = \psi_n. \]

Let \(\hat{Q} = \min\{k : \eta_k = 1\} \), so that \(\hat{Q} \) is a Geometric random variable with mean \(\psi_n^{-1} \).

Lemma 4.20 The random variable \(\hat{Q} \) can be coupled with the actual number of excursions \(Q \) in such a way that \(Q \leq \hat{Q} \) a.s. and

\[P[Q \neq \hat{Q}] \leq o(n^{-1}). \]

(4.56)

Moreover, this coupling can be constructed in such a way that \(\hat{Q} \) is independent from the excursion sequence \(\eta_k, k \geq 1 \) itself.

Proof Let \(U_1, U_2, U_3, \ldots \) be a sequence of i.i.d. random variables with Uniform\([0,1]\) distribution; we will now explain how to construct all random variables of interest using this sequence. First, we set

\[\eta_k = 1\{U_k \leq \psi_n\}. \]

Next, let \(\tilde{\eta}_k = 1\{Q < k\} \) be the indicator of the event that the walk \(\tilde{S} \) does not make its \(k \)th excursion. Given that \(\tilde{\eta}_{k-1} = 0 \) and \(z_{k-1} \) is the last site of \(\mathcal{E}_{k-1} \), set

\[\tilde{\eta}_k = 1\{U_k \leq \mathbb{P}_{z_{k-1}}[\tilde{r}_{\partial B(n \ln n)} = \infty]\}. \]

It is clear that, with this construction, \(Q \leq \hat{Q} \) and that \(\hat{Q} \) independent of the excursions themselves. Then, we write

\[\{Q > \hat{Q}\} = \{\text{there exists } k \leq \hat{Q} - 1 \text{ such that } \psi_n < U_k \leq \mathbb{P}_{z_{k-1}}[\tilde{r}_{\partial B(n \ln n)} = \infty]\}, \]

so

\[P[Q > \hat{Q}] \leq \mathbb{P}[\text{there exists } k \leq \hat{Q} - 1 \text{ such that } \psi_n < U_k \leq \psi_n^*]. \]

(4.57)
In the following, assume without loss of generality that n is large enough to that $\psi_n < 1/2$. By (4.57), we have

$$P[Q < k \mid \hat{Q} = k] \leq P\left[\text{there exists } j \leq k - 1 \text{ such that } \psi_n < U_k \leq \psi_n^* \mid U_j > \psi_n \text{ for } j = 1, \ldots, k - 1, U_k \leq \varphi_n\right] \leq 2(\psi_n^* - \psi_n)k.$$

Now, (4.54) implies that $\psi_n^* - \psi_n \leq o\left(\frac{\ln \ln n}{\ln n}\right)$ for any $x \in \partial B(n \ln n)$, and so (recall that, by (4.55), $\frac{1}{\psi_n} = O\left(\frac{\ln \ln n}{\ln n}\right)$)

$$P\left[Q < \hat{Q}\right] \leq \sum_{k=1}^{\infty} (1 - \frac{\varphi_n}{\psi_n})^{k-1} \psi_n \times 2(\psi_n^* - \psi_n)k = 2(\psi_n^* - \psi_n) = o(n),$$

which concludes the proof. \hfill \Box

Define

$$\mathcal{R}^{(k)} = \frac{|D_n \cap (\mathcal{E}_0 \cup \mathcal{E}_1 \cup \ldots \cup \mathcal{E}_k)|}{|D_n|},$$

to be the proportion of visited sites in D_n with respect to the first k excursions together with the initial piece \mathcal{E}_0.

Now, it is straightforward to check\(^{11}\) that (4.52) implies that, for any $x \in \partial B(n \ln n)$ and $y \in D_n$

$$P_x\left[\hat{\tau}_y < \hat{\tau}_{\partial B(n \ln^2 n)}\right] = \frac{\ln \ln n}{\ln n} \left(1 + O\left(\frac{\ln \ln n}{\ln n}\right)\right), \quad (4.58)$$

and, for $y, z \in B(n) \setminus B(n/2)$ such that $||y - z|| = n/b$ with $b \leq 2 \ln n$

$$P_z\left[\hat{\tau}_y < \hat{\tau}_{\partial B(n \ln^2 n)}\right] = \frac{2 \ln \ln n + \ln b}{\ln n} \left(1 + O\left(\frac{\ln \ln n}{\ln n}\right)\right), \quad (4.59)$$

(we leave checking this to the reader, as Exercise 4.15).

Next, for $y \in D_n$ and a fixed $k \geq 1$ consider the random variable

$$\xi_y^{(k)} = 1\{y \notin \mathcal{E}_0 \cup \mathcal{E}_1 \cup \ldots \cup \mathcal{E}_k\},$$

so that $1 - \mathcal{R}^{(k)} = |D_n|^{-1} \sum_{y \in D_n} \xi_y^{(k)}$. Now (4.58) implies that, for

\(^{11}\) the calculation is a bit long, though
all \(j \geq 1, \)
\[
\mathbb{P}[y \notin \mathcal{E}_j] = 1 - \frac{\ln \ln n}{\ln n} \left(1 + O\left(\frac{\ln \ln n}{\ln n} \right) \right),
\]
and (4.59) implies that
\[
\mathbb{P}[y \notin \mathcal{E}_0] = 1 - O\left(\frac{\ln \ln n}{\ln n} \right)
\]
for any \(y \in D_n. \) Let \(\mu_y^{(k)} = \mathbb{E} \xi_y^{(k)}. \) Then we have
\[
\mu_y^{(k)} = \mathbb{P}[y \notin \mathcal{E}_0 \cup \mathcal{E}_1 \cup \ldots \cup \mathcal{E}_k]
\]
\[
= \left(1 - O\left(\frac{\ln \ln n}{\ln n} \right) \right)^k \times \left(1 - \frac{\ln \ln n}{\ln n} \left(1 + O\left(\frac{\ln \ln n}{\ln n} \right) \right) \right)^k
\]
\[
= \exp \left(-k \frac{\ln \ln n}{\ln n} \left(1 + O\left(k^{-1} + \frac{\ln \ln n}{\ln n} \right) \right) \right). \quad (4.60)
\]
Next, we need to estimate the covariance of \(\xi_y^{(k)} \) and \(\xi_z^{(k)} \) in case \(\|y-z\| \geq \frac{n}{\ln n}. \) First note that, for any \(x \in \partial B(n \ln n) \)
\[
\mathbb{P}_x \left[\{y, z\} \cap \mathcal{E}_1 = \emptyset \right] = 1 - \mathbb{P}_x[y \in \mathcal{E}_1] - \mathbb{P}_x[z \in \mathcal{E}_1] + \mathbb{P}_x[\{y, z\} \subset \mathcal{E}_1]
\]
\[
= 1 - 2 \frac{\ln \ln n}{\ln n} \left(1 + O\left(\frac{\ln \ln n}{\ln n} \right) \right) + \mathbb{P}_x[\{y, z\} \subset \mathcal{E}_1]
\]
by (4.58); also, since
\[
\{ \tau_y < \tau_z < \tau_{\partial B(n \ln^2 n)} \} \subset \{ \tau_y < \tau_{\partial B(n \ln^2 n)} \},
\]
\[
\hat{S}_k = z \quad \text{for some} \quad \tau_y < k < \tau_{\partial B(n \ln^2 n)},
\]
from (4.58)–(4.59) we obtain
\[
\mathbb{P}_x \left[\{y, z\} \subset \mathcal{E}_1 \right] = \mathbb{P}_x \left[\max \{ \tau_y, \tau_z \} < \tau_{\partial B(n \ln^2 n)} \right]
\]
\[
= \mathbb{P}_x \left[\tau_y < \tau_z < \tau_{\partial B(n \ln^2 n)} \right] + \mathbb{P}_x \left[\tau_z < \tau_y < \tau_{\partial B(n \ln^2 n)} \right]
\]
\[
\leq \mathbb{P}_x \left[\tau_z < \tau_y \right] \mathbb{P}_x \left[\tau_y < \tau_{\partial B(n \ln^2 n)} \right] + \mathbb{P}_x \left[\tau_y < \tau_z \right] \mathbb{P}_x \left[\tau_z < \tau_{\partial B(n \ln^2 n)} \right]
\]
\[
\leq 2 \frac{\ln \ln n}{\ln n} \times 3 \frac{\ln \ln n}{\ln n} \left(1 + O\left(\frac{\ln \ln n}{\ln n} \right) \right)
\]
\[
= O\left(\left(\frac{\ln \ln n}{\ln n} \right)^2 \right).
\]
Therefore, similarly to (4.60) we obtain
\[
E(\xi_y^{(k)} \xi_z^{(k)}) = \exp \left(-2k \frac{\ln \ln n}{\ln n} \left(1 + O\left(k^{-1} + \frac{\ln \ln n}{\ln n} \right) \right) \right),
\]
which, together with (4.60), implies after some elementary calculations that, for all \(y, z \in D_n \) such that \(\|y - z\| \geq \frac{n}{\ln n} \)

\[
\text{cov}(\xi^{(k)}_y, \xi^{(k)}_z) = O\left(\frac{\ln \ln n}{\ln n}\right)
\] (4.61)

uniformly in \(k \), since

\[
\left(\frac{\ln \ln n}{\ln n} + k\left(\frac{\ln \ln n}{\ln n}\right)^2\right) \exp\left(-2k\frac{\ln \ln n}{\ln n}\right) = O\left(\frac{\ln \ln n}{\ln n}\right)
\]

uniformly in \(k \). Now, using Chebyshev’s inequality, we write

\[
P\left[\left|D_n^{-1} \sum_{y \in D_n} (\xi^{(k)}_y - \mu^{(k)}_y)\right| > \varepsilon\right]
\]

\[
\leq (\varepsilon|D_n|)^{-2} \text{Var}\left(\sum_{y \in D_n} \xi^{(k)}_y\right)
\]

\[
= (\varepsilon|D_n|)^{-2} \sum_{y,z \in D_n} \text{cov}(\xi^{(k)}_y, \xi^{(k)}_z)
\]

\[
= (\varepsilon|D_n|)^{-2}\left(\sum_{y,z \in D_n, \|y - z\| < \frac{n}{\ln n}} \text{cov}(\xi^{(k)}_y, \xi^{(k)}_z) + \sum_{y,z \in D_n, \|y - z\| \geq \frac{n}{\ln n}} \text{cov}(\xi^{(k)}_y, \xi^{(k)}_z)\right)
\]

\[
\leq (\varepsilon|D_n|)^{-2}\left(|D_n \cap B(y, \frac{n}{\ln n})| + |D_n|^2 O\left(\frac{\ln \ln n}{\ln n}\right)\right)
\]

\[
\leq \varepsilon^{-2}O(\ln^{-2} n + \frac{n \ln n}{\ln n}) = \varepsilon^{-2}O\left(\frac{\ln \ln n}{\ln n}\right).
\] (4.62)

Let

\[
\Phi(s) = \min \{ k : \mathcal{R}^{(k)} \geq 1 - s \}
\]

be the number of excursions necessary to make the unvisited proportion of \(D_n \) at most \(s \). We have

\[
P[\mathcal{R}(D_n) \geq 1 - s]
\]

\[
= P[\Phi(s) \leq Q]
\]

\[
= P[\Phi(s) \leq Q, Q = \hat{Q}] + P[\Phi(s) \leq Q, Q \neq \hat{Q}]
\]

\[
= P[\Phi(s) \leq \hat{Q}] + P[\Phi(s) \leq Q, Q \neq \hat{Q}] - P[\Phi(s) \leq \hat{Q}, Q \neq \hat{Q}],
\]

so, recalling (4.56),

\[
|P[\mathcal{R}(D_n) \geq 1 - s] - P[\Phi(s) \leq \hat{Q}]| \leq P[Q \neq \hat{Q}] \leq O(n^{-1}).
\] (4.63)
Next, by Lemma 4.20 we write
\[
P[\Phi^{(s)} \leq \tilde{Q}] = \mathbb{E}(P[\tilde{Q} \geq \Phi^{(s)} | \Phi^{(s)}])
= \mathbb{E}(1 - \psi)\Phi^{(s)}, \tag{4.64}
\]
and concentrate on obtaining lower and upper bounds on the expectation in the right-hand side of (4.64). For this, assume that \(s \in (0, 1)\) is fixed and abbreviate
\[
\delta_n = \left(\frac{\ln \ln n}{\ln n}\right)^{1/3},
\]
\[
k_n^- = \left\lfloor (1 - \delta_n) \ln s^{-1} \frac{\ln n}{\ln \ln n} \right\rfloor,
\]
\[
k_n^+ = \left\lceil (1 + \delta_n) \ln s^{-1} \frac{\ln n}{\ln \ln n} \right\rceil;
\]
we also assume that \(n\) is sufficiently large so that \(\delta_n \in (0, \frac{1}{2})\) and \(1 < k_n^- < k_n^+\). Now, according to (4.60),
\[
\mu^{(k_n^-)}(y) = \exp \left(- (1 \pm \delta_n) \ln s^{-1} \left(1 + O\left((k_n^+)^{-1} + \frac{\ln \ln n}{\ln n} \right) \right) \right)
= s \exp \left(- \ln s^{-1} \left(\pm \delta_n + O\left((k_n^+)^{-1} + \frac{\ln \ln n}{\ln n} \right) \right) \right)
= s \left(1 + O\left(\delta_n \ln s^{-1} + \frac{\ln \ln n}{\ln n} (1 + \ln s^{-1}) \right) \right),
\]
so in both cases it holds that (observe that \(s \ln s^{-1} \leq 1/e\) for all \(s \in [0, 1]\))
\[
\mu^{(k_n^+)} = s + O\left(\delta_n + \frac{\ln \ln n}{\ln n} \right) = s + O(\delta_n). \tag{4.65}
\]
With a similar calculation, one can also obtain that
\[
(1 - \psi)\mu^{(k_n^+)} = s + O(\delta_n). \tag{4.66}
\]
We then write, using (4.65)
\[
P[\Phi^{(s)} > k_n^+] = P[\mathcal{R}^{(k_n^+)} < 1 - s]
= P\left[|D_n|^{-1} \sum_{y \in D_n} \xi^{(k_n^+)}_y > s \right]
= P\left[|D_n|^{-1} \sum_{y \in D_n} (\xi^{(k_n^+)}_y - \mu^{(k_n^+)}_y) > s - |D_n|^{-1} \sum_{y \in D_n} \mu^{(k_n^+)}_y \right]
= P\left[|D_n|^{-1} \sum_{y \in D_n} (\xi^{(k_n^+)}_y - \mu^{(k_n^+)}_y) > O(\delta_n) \right]. \tag{4.67}
\]
Then, (4.62) implies that
\[P[\Phi(s) > k_n^+] \leq O\left(\left(\frac{\ln \ln n}{\ln n}\right)^{1/3}\right). \tag{4.68} \]
Quite analogously, one can also obtain that
\[P[\Phi(s) < k_n^-] \leq O\left(\left(\frac{\ln \ln n}{\ln n}\right)^{1/3}\right). \tag{4.69} \]
Using (4.66) and (4.68), we then write
\[E(1 - \psi_n)\Phi(s) \geq E(1 - \psi_n)\Phi(s) \mathbf{1}\{\Phi(s) \leq k_n^+\} \]
\[\geq (s - O\left(\left(\frac{\ln \ln n}{\ln n}\right)^{1/3}\right))\left(1 - O\left(\left(\frac{\ln \ln n}{\ln n}\right)^{1/3}\right)\right), \tag{4.70} \]
and, using (4.66) and (4.69),
\[E(1 - \psi_n)\Phi(s) = E((1 - \psi_n)\Phi(s) \mathbf{1}\{\Phi(s) \geq k_n^-\}) \]
\[+ E((1 - \psi_n)\Phi(s) \mathbf{1}\{\Phi(s) < k_n^-\}) \]
\[\leq (s + O\left(\left(\frac{\ln \ln n}{\ln n}\right)^{1/3}\right)) + O\left(\left(\frac{\ln \ln n}{\ln n}\right)^{1/3}\right). \tag{4.71} \]
Therefore, using also (4.63)–(4.64), we obtain (4.48), thus concluding the proof of Theorem 4.16.

Now, we prove that there are "big holes" in the range of \(\tilde{S} \):

Proof of Theorem 4.17 For the sake of simplicity, let us still assume that \(D \subset B(1) \setminus B(1/2) \); the general case can be treated in a completely analogous way.

Consider two sequences of events
\[E_n = \{ \tilde{\tau}_{D_{2^n}} > \tilde{\tau}_{B(2^{3n})}, \|\tilde{S}_j\| > 2^{3n-1} \text{ for all } j \geq \tilde{\tau}_{B(2^{3n})} \}, \]
\[E'_n = \{ \|\tilde{S}_j\| > 2^{3n-1} \text{ for all } j \geq \tilde{\tau}_{B(2^{3n})} \} \]
and note that \(E_n \subset E'_n \) and \(2^{3n-1}D \cap \tilde{S}_{[0,\infty)} = \emptyset \) on \(E_n \). Our goal is to show that a.s. an infinite number of events \((E_n, n \geq 1) \) occurs. Observe, however, that the events in each of the above two sequences are not independent, so the "basic" second Borel-Cantelli lemma will not work.

In the following, we use a generalization of the second Borel-Cantelli lemma, known as the Kochen-Stone theorem [28]: it holds
that
\[\mathbb{P} \left[\sum_{k=1}^{\infty} 1\{E_k\} = \infty \right] \geq \limsup_{k \to \infty} \frac{\left(\sum_{i=1}^{k} \mathbb{P}[E_i] \right)^2}{\sum_{i,j=1}^{k} \mathbb{P}[E_i \cap E_j]} . \] (4.72)

We will now prove that there exists a positive constant \(c_4 \) such that
\[\mathbb{P}[E_n] \geq \frac{c_4}{n} \quad \text{for all } n \geq 1. \] (4.73)
Indeed, since \(\bigcup \overset{n}{G} \cap B(1) \subset B(1/2) \) does not surround the origin, by comparison with Brownian motion it is elementary to obtain that, for some \(c_5 > 0 \),
\[\mathbb{P}_x \left[\tau_{D_{2^{3n-1}}} > \tau_{\partial B(2^n)}, \tau_{0}^+ > \tau_{\partial B(2^n)} \right] > c_5 \]
for all \(x \in \partial B(2^{(n-1)}) \). Lemma 4.3 then implies that, for some \(c_6 > 0 \),
\[\mathbb{P}_x \left[\tau_{D_{2^{3n-1}}} > \tau_{\partial B(2^n)} \right]
= (1 + o(2^{-3n})) \mathbb{P}_x \left[\tau_{D_{2^{3n-1}}} > \tau_{\partial B(2^n)} \mid \tau_{0}^+ > \tau_{\partial B(2^n)} \right]
= (1 + o(2^{-3n})) \mathbb{P}_x \left[\tau_{D_{2^{3n-1}}} > \tau_{\partial B(2^n)}, \tau_{0}^+ > \tau_{\partial B(2^n)} \right] > c_6 \]
for all \(x \in \partial B(2^{(n-1)}) \). Let us denote, recalling (3.36), \(\gamma^* = \frac{\tau}{2} \times \frac{2^{3n+3 \ln 2}}{2^{1+3 \ln 2}} - \frac{2^{5+3 \ln 2}}{2^{1+3 \ln 2}} \). Using (4.9), we then obtain
\[\mathbb{P}_z \left[||S_j|| > 2^{3n-1} \text{ for all } j \geq 0 \right] = 1 - \frac{a(2^{3n-1}) + O(2^{-3n})}{a(2^{3n}) + O(2^{-3n})}
= \frac{1}{3n + \gamma^*} (1 + o(2^{-3n})) . \] (4.75)
for any \(z \in \partial B(2^n) \). The inequality (4.73) follows from (4.74) and (4.75).

Now, we need an upper bound for \(\mathbb{P}[E_m \cap E_n] \), \(m \leq n \). Clearly, \(E_m \cap E_n \subset E'_m \cap E'_n \), and note that the event \(E'_m \cap E'_n \) means that the particle hits \(\partial B(2^{2m}) \) before \(\partial B(2^{3m-1}) \) starting from a site on \(\partial B(2^{2m}) \), and then never hits \(\partial B(2^{3m-1}) \) starting from a site on \(\partial B(2^{2m}) \). So, again using (4.9) and Lemma 4.3, we write analogously to (4.75) (and also omitting a couple of lines of elementary calculations)
\[\mathbb{P}[E_m \cap E_n] \leq \mathbb{P}[E'_m \cap E'_n] = \frac{(a(2^{3m-1}))^{-1} - (a(2^{3n}))^{-1} + O(2^{-3n})}{(a(2^{3m-1}))^{-1} - (a(2^{3n}))^{-1} + O(2^{-3n})} \]
Now, (4.73) implies that $\sum_{i=1}^{k} P[E_i] \geq c_9 \ln k$, and (4.76) implies (again, after some elementary calculations) that $\sum_{i,j=1}^{k} P[E_i \cap E_j] \leq c_{10} \ln^2 k$. So, using (4.72), we obtain that

$$P\left[\sum_{k=1}^{\infty} 1\{E_k\} = \infty \right] \geq c_{11} > 0.$$

To obtain that the probability in the above display must be equal to 1, we need a suitable 0-1 law. Conveniently enough, it is provided by Proposition 3.8 in Chapter 2 of [43]: if every set is either recurrent or transient with respect to \hat{S}, then every tail event must have probability 0 or 1. Now, note that Theorem 4.10 implies that every set must be recurrent or transient indeed. This concludes the proof of Theorem 4.17.

4.4 Exercises

Exercise 4.1 For one-dimensional random walk X_n with drift (i.e., it jumps to the left with probability $p \in (0, \frac{1}{2})$ and to the right with probability $1 - p$), prove that (somewhat surprisingly) $|X_n|$ is a Markov chain, and calculate its transition probabilities.

Exercise 4.2 Calculate the Green’s function of the conditioned one-dimensional SRW.

Exercise 4.3 Consider a nearest neighbour random walk on \mathbb{Z}_+ with drift towards the origin, $p(n, n+1) = 1 - p(n, n-1) = p < \frac{1}{2}$. What will be its conditioned (on never hitting the origin) version?

Exercise 4.4 Now, consider a one-dimensional nearest neighbour Lamperti random walk (recall Exercise 2.15): $p(n, n+1) = 1 - p(n, n-1) = \frac{1}{2} + \frac{c}{n}$ with $c < \frac{1}{4}$, so that the random walk is recurrent. What can you say about its conditioned version?

Exercise 4.5 Assume that the original Markov chain is reversible; must its h-transform be reversible as well?
Exercise 4.6 For any finite $A \subset \mathbb{Z}^2$, find a (nontrivial) nonnegative function which is zero on A and harmonic outside A.

Exercise 4.7 Prove that
\[\mathbb{P}_x[\hat{\tau}_N = \infty] = \frac{1}{a(x)} \] (4.77)
for any $x \notin N \cup \{0\}$.

Exercise 4.8 Do we actually need recurrence in Lemma 4.8? (prosledit chtob byl odin i tot zhe nomer)

Exercise 4.9 Can you find an expression for the Green’s function of the h-transform in the general case (as in Section 4.1), i.e., an analogue of (4.11)? What else should we assume for that?

Exercise 4.10 Prove that the conditioned walk \hat{S} is uniformly elliptic, i.e., there exists $c > 0$ such that $\mathbb{P}_x[\hat{S}_1 = y] > c$ for all $x, y \in \mathbb{Z}^2 \setminus \{0\}$ such that $x \sim y$.

Exercise 4.11 Prove that there exist two positive constants c_1, c_2 such that
\[\frac{c_1}{\ln(1 + \|x\| \vee \|y\|)} \leq \hat{g}(x, y) \leq \frac{c_2}{\ln(1 + \|x\| \vee \|y\|)} \] (4.78)

Exercise 4.12 Prove that the process $(\hat{\ell}(\hat{S}_{n \wedge \hat{\tau}}, y), n \geq 0)$ (recall (4.16)) is a martingale by a direct computation (i.e., not using the general fact that Green’s functions give rise to martingales).

Exercise 4.13 In Lemma 4.13, can one substitute the constant 5 by any fixed positive number?

Exercise 4.14 Similar question for Lemma 4.15: can one substitute the constant 51 by, say, 2? (That is, what else would we have to prove to do that? Can you indeed provide the proof?)

Exercise 4.15 Check (4.58)–(4.59).

Exercise 4.16 Give examples of $A \subset \mathbb{Z}^2$ with $|A_n| \to \infty$ such that
\begin{enumerate}
 \item $\mathcal{R}(A_n)$ converges in distribution to Bernoulli(1/2);
 \item $\mathcal{R}(A_n)$ converges in probability to 1/2.
\end{enumerate}
Exercise 4.17 Can we somehow obtain mixtures of the three main limit distributions of $\mathcal{R}(\cdot)$, and how shall we recognise their “domains of attraction”? For example, try to analyse the following case: let $A_n = B(r_n e_1, n)$, where $r_n \to \infty$ in some way.
Intermezzo: Soft local times and Poisson processes

5.1 Soft local times

Let us start with the following elementary question. Assume that X and Y are two random variables with the same support but different distributions. Let X_1, X_2, X_3, \ldots be a sequence of independent copies of X. Does there exist an infinite permutation (i.e., a bijection $\mathbb{N} \to \mathbb{N}$) $\sigma = (\sigma(1), \sigma(2), \sigma(3), \ldots)$ such that the sequence $X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}, \ldots$ has the same law as the sequence Y_1, Y_2, Y_3, \ldots, a sequence of independent copies of Y? Of course, such a permutation should be random: if it is deterministic, then the permuted sequence would simply have the original law. For constructing σ, one is allowed to use additional random variables (independent of the X-sequence) besides the realization of the X-sequence itself. As far as the author knows, constructing the permutation without using additional randomness (i.e., when the permutation is a deterministic function of the random sequence X_1, X_2, X_3, \ldots) is still an open problem, a rather interesting one.

As usual, when faced with such a question, one tries a “simple” case first, to see if it gives any insight on the general problem. For example, take X to be Binomial($n, \frac{1}{2}$) and Y to be discrete Uniform$[0, n]$. One may even consider the case when X and Y are Bernoullis, with different probabilities of success. How can one obtain σ in these cases?

After some thought, one will come with the following solution, simple and straightforward: just generate the i.i.d.

1 Informally, the support of a random variable Z is the (minimal) set where it lives. Formally, it is the intersection of all closed sets F such that $P[Z \in F] = 1$ (therefore, in particular, the support is a closed set).

2 even more, the permutation σ should depend on X_1, X_2, X_3, \ldots; if it is independent of the X-sequence, it is still easy to check that the permuted sequence has the original law.

108
5.1 Soft local times

... independently, then there is a permutation that sends X-sequence to the Y-sequence. Indeed (this argument works for any pair of discrete random variables with the same support), almost surely any possible value of X (and Y) occurs infinitely many times both in the X-sequence and the Y-sequence. It is then quite straightforward to see that there is a permutation that sends one sequence to the other.

Now, let us be honest with ourselves: this solution looks like cheating. In a way, it is simply too easy. Common wisdom tells us, however, that there ain’t no such thing as a free solution; in this case, the problem is that the above construction does not work at all when the random variables are continuous. Indeed, if we generate the two sequences independently, then, almost surely, no element of the first sequence will be even present in the second one. So, a different approach is needed.

Later in this section, we will see how to solve the above problem using a sequence of i.i.d. Exponential random variables as additional randomness. The solution will come out as an elementary application of the method of soft local times, the main subject of this section. Generally speaking, the method of soft local times is a way to construct an adapted stochastic process on a general space Σ, using an auxiliary Poisson point process on $\Sigma \times \mathbb{R}_+$.

Naturally, we assume that the reader knows what is a Poisson point process in \mathbb{R}^d with (not necessarily constant) rate λ. If one needs to consider a Poisson process on, say, $\mathbb{Z} \times \mathbb{R}$, then it is still easy to understand what exactly it should be (a union of Poisson processes on the straight lines indexed by the sites of \mathbb{Z}). In any case, all this fits into the Poissonian paradigm: what happens in a domain does not affect what is going on in a disjoint domain, the probability that there is exactly one point in a “small” domain of volume δ located “around” x is $\delta \lambda(x)$ (up to terms of smaller order), and the probability that there are at least two points in that small domain is $o(\delta)$. Here, the tradition dictates that the author cites a comprehensive book on the subject, so, [42].

Coming back to the soft local times method, we mention that, in full generality, it was introduced in [41]; see also [11, 12] which contain short surveys of this method applied to constructions of excursion processes\(^3\). The idea of using projections of Poisson pro-

\(^3\) but this will be treated in a detailed way in Section 6.3.1 below.
cesses for constructions of other (point) processes is not new, see e.g. [34, 24]. The key tool of this method (Lemma 5.1) appears in [52] in a simpler form, and the motivating example we gave in the beginning of this section is also from that paper.

Next, we are going to present the key result that makes the soft local times possible. Over here, we call it “the magic lemma”. Assume that we have a space Σ, which has enough structure that permits us to construct a Poisson point process on Σ of rate µ, where µ is a measure on Σ.

Now, the main object we need is the Poisson point process on Σ × R+, with rate µ ⊗ dv, where dv is the Lebesgue measure on R+. At this point we have to write some formalities. In the next display, Ξ is a countable index set. We prefer not to use Z+ for the indexing, because we are not willing to fix any particular ordering of the points of the Poisson process for the reason that will become clear in a few lines. Let

\[M = \left\{ \eta = \sum_{\varrho \in \Xi} \delta_{(z_{\varrho}, v_{\varrho})}; z_{\varrho} \in \Sigma, v_{\varrho} \in R_+, \right\} \]

be the set of point configurations of this process. It is a general fact that one can canonically construct a Poisson point process η as above; see e.g. Proposition 3.6 on p.130 of [42] for details of this construction.

The result below is our “magic lemma”: it provides us with a way to simulate a random element of Σ with law absolutely continuous with respect to µ, using the Poisson point process η. We first write it formally, and then explain, what does it mean.

Lemma 5.1 Let \(g : \Sigma \to R_+ \) be a measurable function with \(\int g(z)\mu(dz) = 1 \). For \(\eta = \sum_{\varrho \in \Xi} \delta_{(z_{\varrho}, v_{\varrho})} \in M \), we define

\[\xi = \inf \{ t \geq 0; \text{ there exists } \varrho \in \Xi \text{ such that } tg(z_{\varrho}) \geq v_{\varrho} \}. \]

Then, under the law \(Q \) of the Poisson point process \(\eta \),

4 for example, the following is enough: let \(\Sigma \) be a locally compact and Polish metric space, and \(\mu \) is a Radon measure (i.e., every compact set has finite \(\mu \)-measure) on the measurable space \((\Sigma, B) \), where \(B \) is the Borel σ-algebra on \(\Sigma \).

5 endowed with sigma-algebra \(D \) generated by the evaluation maps \(\eta \mapsto \eta(A) \), \(A \in B \otimes B(R) \).
5.1 Soft local times

1. there exists a.s. a unique \(\hat{\varrho} \in \Xi \) such that \(\xi g(z_{\hat{\varrho}}) = v_{\hat{\varrho}} \),
2. \((z_{\hat{\varrho}}, \xi)\) is distributed as \(g(z) \mu(dz) \otimes \text{Exp}(1) \),
3. \(\eta' := \sum_{\varrho \neq \hat{\varrho}} \delta(z_{\varrho}, v_{\varrho} - \xi g(z_{\varrho})) \) has the same law as \(\eta \) and is independent of \((\xi, \varrho)\).

That is, in plain words (see Figure 5.1):

- In (5.2) we define \(\xi \) as the smallest positive number such that there is exactly one point \((z_{\hat{\varrho}}, v_{\hat{\varrho}})\) of the Poisson process on the graph of \(\xi g(\cdot) \), and nothing below this graph.
- The first coordinate \(Z \) of the chosen point is a random variable with density \(g \) (with respect to \(\mu \)). Also, \(\xi \) is Exponential with parameter 1, and it is independent of \(Z \).
- Remove the point that was chosen, and translate every other point \((z, v)\) of \(\eta \) down by amount \(\xi g(z) \). Call this new configuration \(\eta' \). Then, \(\eta' \) is also a Poisson point process on \(\Sigma \times \mathbb{R}_+ \) with rate \(\mu \otimes dv \), and it is independent of \(\xi \) and \(Z \).

Sketch of the proof of Lemma 5.1. The formal proof can be found in [41] (Lemma 5.1 is Proposition 4.1 of [41]), and here we give only an informal argument to convince the reader that the above
lemma is not only magic, but also true. In fact, this result is one of those statements that become evident after one thinks about it for a couple of minutes; so, it may be a good idea for the reader to ponder on it for some time before going further.

So, one may convince oneself that the result holds e.g. in the following way. Fix a very small $\varepsilon > 0$ and let us explore the space as shown on Figure 5.2. That is, first look at the domain $\{(z, u) : u \leq \varepsilon g(z)\}$ and see if we find a point of the Poisson process there (observe that finding two points is highly improbable). If we don’t, then we look at the domain $\{(z, u) : \varepsilon g(z) < u \leq 2\varepsilon g(z)\}$, and so on.

How many steps do we need to discover the first point? First, observe that g is a density, so it integrates to 1 with respect to μ, and therefore the area\footnote{with respect to $\mu \otimes dv$} below εg equals ε. So, the number of points below εg is Poisson with rate ε, which means that on the first step (as well as on each subsequent one) we are successful with probability $1 - e^{-\varepsilon}$. Hence the number of steps N_ε until the first success is Geometric$(1 - e^{-\varepsilon})$. It is then quite straightforward to see that $\varepsilon N_\varepsilon$ converges in law to an Exponential random variable with parameter 1 as $\varepsilon \to 0$ (note that $1 - e^{-\varepsilon} = \varepsilon + o(\varepsilon)$ as $\varepsilon \to 0$). Therefore, ξ should indeed be Exponential(1).
The above fact could have been established in a direct way (note that $Q[\xi > t]$ equals the probability that the set $\{(z, u) : u \leq tg(z)\}$ is empty, and the “volume” of that set is exactly t), but with an argument as above the questions about Z become more clear. Indeed, consider an arbitrary (measurable) set $R \subset \Sigma$. Then, on each step, we find a point with first coordinate in R with probability $1 - \exp(-\varepsilon \int_R g(z)\mu(dz)) = \varepsilon \int_R g(z)\mu(dz) + o(\varepsilon)$.

Note that this probability does not depend on the number of steps already taken; that is, independently of the past, the conditional probability of finding a point with first coordinate in R given that something is found on the current step\(^7\) is roughly $\int_R g(z)\mu(dz)$. This shows that ξ and Z are independent random variables.

As for the third part, simply observe that, at the time we discovered the first point, the shaded part on Figure 5.2 is still completely unexplored, and so its contents is independent of the pair (ξ, Z). In other words, we have a Poisson process on the set $\{(z, v) : v > \xi g(z)\}$ with the same rate, which can be transformed to the Poisson process in $\Sigma \times \mathbb{R}_+$ by subtracting $\xi g(\cdot)$ from the second coordinate (observe that such transformation is volume-preserving).

Now, the key observation is that Lemma 5.1 allows us to construct virtually any discrete-time adapted stochastic process! Moreover, one can effectively couple two or more stochastic processes using the same realization of the Poisson process. One can better visualize the picture in a continuous space, so, to give a clear idea on how the method works, assume that we desire to obtain a realization of a sequence of (not necessarily independent nor Markovian) random variables X_1, X_2, X_3, \ldots taking values in the interval $[0, 1]$. Let us also construct simultaneously the sequence Y_1, Y_2, Y_3, \ldots, where (Y_k) are i.i.d. Uniform$[0, 1]$ random variables, thus effectively obtaining a coupling of the X- and Y-sequences. We assume that the law of X_k conditioned on \mathcal{F}_{k-1} is a.s. absolutely continuous with respect to the Lebesgue measure on $[0, 1]$, where \mathcal{F}_{k-1} is the sigma-algebra generated by X_1, \ldots, X_{k-1}.

This idea of using the method of soft local times to couple (possibly complicated) stochastic processes with independent sequences

\(^7\) that is, we effectively condition on ξ, and show that the conditional law of Z does not depend on the value of ξ.

5.1 Soft local times

113
already proved to be useful in many situations; for this book it will be useful as well, as we will see in Chapter 6.

Our method for constructing a coupling of the X- and Y-sequences is illustrated on Figure 5.3. Consider a Poisson point process in $[0, 1] \times \mathbb{R}_+$ with rate 1. Then, one can obtain a realization of the Y-sequence by simply ordering the points according to their second coordinates, and then taking Y_1, Y_2, Y_3, \ldots to be the first coordinates of these points. Now, to obtain a realization of the X-sequence using the same Poisson point process, one proceeds as follows.

- First, take the density $g(\cdot)$ of X_1 and multiply it by the unique positive number ξ_1 so that there is exactly one point of the Poisson process lying on the graph of $\xi_1 g$ and nothing strictly below it; X_1 is then the first coordinate of that point.
- Using Lemma 5.1, we see that, if we remove the point chosen on the previous step\(^8\) and then translate every other point (z, u) of the Poisson process to $(z, u - \xi_1 g(z))$, then we obtain a Poisson process in $[0, 1] \times \mathbb{R}_+$ which is independent of the pair (ξ_1, X_1).
- Thus, we are ready to use Lemma 5.1 again in order to construct X_2.
- So, consider the conditional density $g(\cdot \mid F_1)$ of X_2 given F_1 and find the smallest positive number ξ_2 in such a way that exactly one point lies on the graph of $\xi_2 g(\cdot \mid F_1) + \xi_1 g(\cdot)$ and exactly one (the point we picked first) below it; again, X_2 is the first coordinate of the point that lies on the graph.
- Continue with $g(\cdot \mid F_2)$, and so on.

The fact that the X-sequence obtained in this way has the prescribed law is readily justified by the subsequent application of Lemma 5.1. Now, let us state the formal result (it corresponds to Proposition 4.3 of [41]); here it is only a bit more general since we formulate it for general adapted processes.

Formally, for a general stochastic process $(Z_n, n \geq 0)$ adapted to a filtration $(\mathcal{F}_n, n \geq 0)$ we define

$$\xi_1 = \inf \{ t \geq 0 : \text{there exists } \varrho \in \Xi \text{ such that } tg(z_\varrho) \geq v_\varrho \},$$

$$G_1(z) = \xi_1 g(z \mid \mathcal{F}_0), \quad \text{for } z \in \Sigma,$$

\(^8\) this point has coordinates $(X_1, \xi_1 g(X_1))$
Figure 5.3 Soft local times: the simultaneous construction of the processes X and Y (here, $X_k = Y_k$ for $k = 1, 2, 5$); it is very important to observe that the points of the two processes need not necessarily appear in the same order with respect to the vertical axis.

where $g(\cdot \mid \mathcal{F}_0)$ is the density of Z_1 given \mathcal{F}_0, and

$$(z_1, v_1)$$

is the unique pair in $\{(z_\varrho, v_\varrho)\}_{\varrho \in \Xi}$ with $G_1(z_1) = v_1$.

(that is, we call 1 the corresponding element of Θ). Denote also $R_1 = \{(z_1, v_1)\}$. Then, for $n \geq 2$ we proceed inductively,

$$\xi_n = \inf \{t \geq 0 : \text{there exists } (z_\varrho, v_\varrho) \notin R_{n-1} \text{ such that } G_{n-1}(z_\varrho) + \xi_n g(z_\varrho \mid \mathcal{F}_{n-1}) \geq v_\varrho\},$$

$$G_n(z) = G_{n-1}(z) + \xi_n g(z \mid \mathcal{F}_{n-1}),$$

and

$$(z_n, v_n)$$

is the unique pair $(z_\varrho, v_\varrho) \notin R_{n-1}$ with $G_n(z_\varrho) = v_\varrho$;

also, set $R_n = R_{n-1} \cup \{(z_n, v_n)\}$. Then, the previous discussion implies that the following result holds:

Proposition 5.2 It holds that

(i) $(z_1, \ldots, z_n) \stackrel{\text{law}}{=} (Z_1, \ldots, Z_n)$ and they are independent from ξ_1, \ldots, ξ_n.

(ii) the point process

$$\sum_{(z, v) \in \mathbb{R}_n} \delta_{(z, v) - G_n(z)}$$

is distributed as η and independent of the above, for all $n \geq 1$.

(have to change notation for SLT, since G is the Green's function!)

We call G_n the soft local time of the process, at time n, with respect to the reference measure μ. To justify the choice of this name, consider a stochastic process in a finite or countable state space, and define the “usual” local time of the process by

$$L_n(z) = \sum_{k=1}^{n} 1\{X_k = z\}. \quad (5.4)$$

Now, just look at Figure 5.4.

Next, we establish a very important relation between these two different local times: their expectations are equal.

Proposition 5.3 For all $z \in \Sigma$ it holds that

$$\mathbb{E}G_n(z) = \mathbb{E}L_n(z) = \sum_{k=1}^{n} \mathbb{P}[X_k = z]. \quad (5.5)$$
5.1 Soft local times

Notice that in continuous space we cannot expect the above result to be true, since typically $\mathbb{E}L_n(z)$ would be just 0 for any z. Nevertheless, an analogous result holds in the general setting as well (cf. Theorem 4.6 of [41]), but, to formulate it properly, one would need to define the so-called expected local time density first (cf. (4.16) of [41]), which we prefer not to do here.

Proof of Proposition 5.3. It is an easy calculation that uses conditioning and induction. First, observe that $g(z | F_{n-1}) = \mathbb{P}[X_n = z | F_{n-1}]$, so we have

$$
\mathbb{E}G_1(z) = \mathbb{E}(\mathbb{P}[X_1 = z | \mathcal{F}_0]) = \mathbb{P}[X_1 = z] = \mathbb{E}L_1(z).
$$

Then, we proceed by induction: note that $G_{n-1}(z)$ is \mathcal{F}_{n-1}-measurable, and ξ_n is a mean-1 random variable which is independent of \mathcal{F}_{n-1}.

Recall also (5.3) and write

$$
\mathbb{E}G_n(z) = \mathbb{E}(\mathbb{E}(G_n(z) | \mathcal{F}_{n-1}))
= \mathbb{E}G_{n-1}(z) + \mathbb{E}(\mathbb{E}(\xi_n g(z | \mathcal{F}_{n-1}) | \mathcal{F}_{n-1}))
= \mathbb{E}G_{n-1}(z) + \mathbb{E}(g(z | \mathcal{F}_{n-1})\mathbb{E}(\xi_n | \mathcal{F}_{n-1}))
= \mathbb{E}G_{n-1}(z) + \mathbb{P}[X_n = z | \mathcal{F}_{n-1}]
= \mathbb{E}G_{n-1}(z) + \mathbb{P}[X_n = z].
$$

This concludes the proof. \qed

As mentioned before, soft local times work really well for couplings of stochastic processes: indeed, just construct them in the way described above using the same realization of the Poisson point process. Observe that, for this coupling of the processes (X_n) and (Y_n) it holds that

$$
\mathbb{P}[\{X_1, \ldots, X_m\} \subset \{Y_1, \ldots, Y_n\}] \geq \mathbb{P}[G_m(z) \leq G'_n(z) \text{ for all } z \in \Sigma],
$$

where G' is the soft local time of Y, see Figure 5.5. Then, in principle, one may use large deviations tools to estimate the right-hand side of (5.6). One have to pay attention to the following, though: it is easy to see that the random variables (ξ_1, \ldots, ξ_m) are not independent of (ξ'_1, \ldots, ξ'_n) (which enter to G'_n). This can be usually circumvented in the following way: we find a deterministic function $\varphi : \Sigma \rightarrow \mathbb{R}$ which should typically be “between” G_m and G'_n, and then write

$$
\mathbb{P}[G_m(z) \leq G'_n(z) \text{ for all } z \in \Sigma]
$$
Figure 5.5 The set of Y's (with soft local time $G'_n(\cdot)$) contains all the Xs (with soft local time $G_m(\cdot)$) and three other points.

\[
\geq \mathbb{P}[G_m(z) \leq \varphi(z) \text{ for all } z \in \Sigma] \\
+ \mathbb{P}[\varphi(z) \leq G'_n(z) \text{ for all } z \in \Sigma] - 1.
\]

Note that, in the right-hand side of the above relation we do not have this "conflict of ξ's" anymore. Let us also mention that in the above large deviation estimates one has to deal with sequences of random functions (not just real-valued random variables). When the state space Σ is finite, this difficulty can be usually circumvented by considering the values of the functions separately in each point of Σ and then using the union bound, hoping that this last step would not cost too much. Otherwise, one has to do the large deviations for random functions directly using some advanced tools from the theory of empirical processes; see e.g. Section 6 of [14] and Lemma 2.9 of [10] for examples of how large deviations for soft local times may be treated.

Now, finally, let us go back to the example from the beginning of this section: recall that we had a realization of an i.i.d. sequence X_1, X_2, X_3, \ldots, and we wanted to find an infinite permutation σ such that $X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}, \ldots$ is also an i.i.d. sequence, however, sampled from another distribution (with the same support). With Proposition 5.2 to hand, the solution is relatively simple. Take a sequence of i.i.d. Exponential(1) random variables $\xi_1, \xi_2, \xi_3, \ldots$; this sequence will serve as an additional randomness. As an example, let us consider the case when X is Uniform on $[-1, 1]$,

\[\text{note that they have to be more advanced than the Talagrand's inequality (see e.g. ???? of [9]) since, because of these i.i.d. Exponential ξ's, the terms are not a.s. bounded.}\]
Figure 5.6 Making uniforms triangular. We first obtain a particular instance of the Poisson process in $[-1, 1] \times \mathbb{R}_+$ using the X-sequence, and then use the same collection of points to build the Y-sequence. It holds that $\sigma(1) = 1$, $\sigma(2) = 3$, $\sigma(3) = 2$, $\sigma(4) = 6$, $\sigma(5) = 4$, $\sigma(6) = 10$, $\sigma(7) = 5$.

and Y has the “triangular” density $f(y) = (1 - |y|)1\{y \in [-1, 1]\}$. The first step is to reconstruct a Poisson process in $[-1, 1] \times \mathbb{R}_+$, using X’s and ξ’s. This can be done in the following way (see Figure 5.6): for all $n \geq 1$, put a point to $(X_n, \frac{1}{2}(\xi_1 + \cdots + \xi_n))$. Then, using this Poisson process, we obtain the sequence Y_1, Y_2, Y_3, \ldots of i.i.d. triangular random variables in the way described above; look at Figure 5.6 which speaks for itself. Clearly, one sequence is a permutation of the other: they use the same points! We leave as an exercise for the reader to check that, this time, essentially the same solution works in the general case.

5.1.1 Exact matchings with soft local times

Here: so far, we saw how to dominate with SLTs; but a naive SLT won’t work for exact matchings. Explain the ideas of Bernardini-Gallesco-Popov [14, 15].

Let us define the local time of a stochastic process Z at site x
at time n as the number of visits to x up to time n:

$$L_n^x(x) = \sum_{j=1}^{n} \mathbf{1}\{\{Z_j = x\}\}$$

(sometimes we omit the upper index when it is clear which process we are considering). The above example shows that, if one is only interested in the local times of the Markov chain (and not the complete trajectory), then there is hope to obtain a coupling with the local times of an i.i.d. random sequence (which is much easier to handle). Observe that there are many quantities of interest that can be expressed in terms of local times only (and do not depend on the order), such as, for instance,

- hitting time of a site x: $\tau(x) = \min\{n : L_n(x) > 0\}$;
- cover time: $\min\{n : L_n(x) > 0 \text{ for all } x \in \Sigma\}$, where Σ is the space where the process lives;
- blanket time [18]: $\min\{n \geq 1 : L_n(x) \geq \delta n \pi(x)\}$, where π is the stationary measure of the process and $\delta \in (0, 1)$ is a parameter;
- disconnection time [16, 47]: loosely speaking, it is the time n when the set $\{x : L_n(x) > 0\}$ becomes “big enough” to “disconnect” the space Σ in some precise sense;
- the set of favorite (most visited) sites (e.g. [25, 51]): $\{x : L_n(x) \geq L_n(y) \text{ for all } y \in \Sigma\}$;
- and so on.

This justifies the importance of finding couplings as above. Note also that, although not every Markov chain comes close to the stationary distribution in just one step, that can be sometimes circumvented by considering the process at times $k, 2k, 3k, \ldots$ with a large k.

5.2 Notations and results

We start describing the assumptions under which we will prove our main results.

Let (Σ, d) be a compact metric space, with $\mathcal{B}(\Sigma)$ representing its Borel σ-algebra. We assume that (Σ, d) is of polynomial class, that is, there exist some $\beta \geq 0$ and $\varphi \geq 1$ such that, for all $r \in (0, 1]$, the number of open balls of radius at most r needed to cover Σ is smaller than or equal to $\varphi r^{-\beta}$.
As an example of metric space of polynomial class, consider first a finite space Σ, endowed with the discrete metric
\[d(x, y) = 1\{\{x \neq y\}\}, \quad \text{for } x, y \in \Sigma. \]
In this case, we can choose $\beta = 0$ and $\varphi = |\Sigma|$ (where $|\Sigma|$ represents the cardinality of Σ). As a second example, let us consider Σ to be a compact k-dimensional Lipschitz submanifold of \mathbb{R}^m with metric induced by the Euclidean norm of \mathbb{R}^m. In this case we can take $\beta = k$, but φ will in general depend on the precise structure of Σ. It is important to observe that, for a finite Σ, it may not be the best idea to use the above discrete metric; one may be better off with another one, e.g., the metric inherited from the Euclidean space where Σ is immersed (see e.g. the proof of Lemma 2.9 of [?]).

We consider a Markov chain $X = (X_i)_{i \geq 1}$ with transition kernel $\mathcal{P}(x, dy)$ and starting law \mathcal{V}, on $(\Sigma, \mathcal{B}(\Sigma))$, and we suppose that the chain has a unique invariant probability measure Π. Moreover, we assume that the starting law and the transition kernel are absolutely continuous with respect to Π. Let us denote respectively by $\nu(\cdot)$ and $p(x, \cdot)$ the Radon-Nikodym derivatives (i.e., densities) of $\mathcal{V}(\cdot)$ and $\mathcal{P}(x, \cdot)$: for all $A \in \mathcal{B}(\Sigma)$
\[
\mathcal{V}(A) = \int_A \nu(y)\Pi(\,dy),
\]
\[
\mathcal{P}(x, A) = \int_A p(x, y)\Pi(\,dy), \quad \text{for } x \in \Sigma.
\]
We also use assume that The density $p(x, \cdot)$ is uniformly Hölder continuous, that is, there exist constants $\kappa > 0$ and $\gamma \in (0, 1]$ such that for all $x, z, z' \in \Sigma,$
\[
|p(x, z) - p(x, z')| \leq \kappa d^\gamma(z, z').
\]
We also work under the following assumption: there exists $\varepsilon \in (0, \frac{1}{2})$ such that
\[
\sup_{x, y \in \Sigma} |p(x, y) - 1| \leq \varepsilon, \quad (5.7)
\]
and
\[
\sup_{x \in \Sigma} |\nu(x) - 1| \leq \varepsilon. \quad (5.8)
\]
Observe that (5.8) is not very restrictive because, due to (5.7),
the chain will anyway come quite close to stationarity already on step 2.

Additionally, let us denote by $Y = (Y_i)_{i \geq 1}$ a sequence of i.i.d. random variables with law Π.

Before stating our main result, we recall the definition of the total variation distance between two probability measures $\bar{\mu}$ and $\hat{\mu}$ on some measurable space (Ω, \mathcal{T}),

$$\|\bar{\mu} - \hat{\mu}\|_{TV} = \sup_{A \in \mathcal{T}} |\bar{\mu}(A) - \hat{\mu}(A)|.$$

When dealing with random elements U and V, we will write (with a slight abuse of notation) $d_{TV}(U,V)$ to denote the total variation distance between the laws of U and V. Denoting by $L^Z_n := (L^Z_n(x))_{x \in \Sigma}$ the local time field of the process $Z = X$ or Y at time n, we are now ready to state

Theorem 5.4 Under Assumptions ??–??, there exists a universal positive constant K such that, for all $n \geq 1$, it holds that

$$d_{TV}(L^X_n, L^Y_n) \leq K \varepsilon \sqrt{1 + \ln(2\beta) + \frac{\beta}{\gamma} \ln \left(\frac{\kappa \vee (2\varepsilon)}{\varepsilon}\right)}.$$

5.3 Poisson processes of objects

Of course, all people know what is a Poisson process of points in \mathbb{R}^d. But what if we need a Poisson process of more complicated objects, which still live in \mathbb{R}^d? What is the right way to define it? Naturally, we need the picture to be invariant with respect to isometries\(^{10}\). Also, it should be, well, as independent as possible, whatever it may mean.

Observe that, if those objects are bounded (not necessarily uniformly), one can use the following natural procedure: take a d-dimensional Poisson point process of rate $\lambda > 0$, and “attach” the objects to the points independently (as e.g. on Figure 5.8). A broad example of this is the Poisson Boolean model, cf. e.g. [35].

However, the situation becomes much more complicated if we need to build a Poisson process of infinite objects. For example, what about a two-dimensional Poisson process of lines, which should look like as shown on Figure 5.9?\(^{10}\) translations, rotations, reflections, and combinations of them.

\(^{10}\)
5.3 Poisson processes of objects

An idea that first comes to mind is simply to take a two-dimensional Poisson point process, and draw independent lines in random uniform directions through each point. One quickly re-
Figure 5.8 A Poisson process of finite objects

Figure 5.9 A Poisson line process (observed in the dotted domain) in \mathbb{R}^2

alises, however, that this way we would rather see what is shown on Figure 5.10: there will be too many lines, one would obtain a dense set on the plane instead of the nice picture above. Another idea can be the following: first, fix a straight line on the plane (it can be the horizontal axis or just anything; it is the thicker line on Figure 5.11), and then consider a one-dimensional Poisson point process on this line. Then, through each of these points, draw a line with uniformly distributed direction (that is, α on Figure 5.11 is uniform in $[-\pi/2, \pi/2]$; for definiteness, think that the positive values of α are on the left side with respect to the normal vector pointing up) independently, thus obtaining the “process of lines” (not including the “reference” line) in \mathbb{R}^2.
5.3 Poisson processes of objects

Figure 5.10 Too many lines!

Figure 5.11 Constructing a Poisson line process using the reference line (here, \(\alpha \in [-\pi/2, \pi/2] \) is the angle between the line and the normal vector)

Well, this looks as a reasonable procedure, but, in fact, it is not. Let us show that, as a result, we obtain a dense set again. Assume without loss of generality that the reference line is the horizontal axis, and consider a disk of radius \(\varepsilon > 0 \) situated somewhere above the origin (as on Figure 5.11). For all \(n \in \mathbb{Z} \), consider the events

\[
H_n = \{ \text{there is at least one line attached to a point in } [n, n+1), \text{ which intersects the disk} \}.
\]

The events \((H_n, n \in \mathbb{Z})\) are independent by construction, and it not difficult to see that \(\mathbb{P}[H_n] \simeq \varepsilon n^{-1} \) (indeed, for each point of \([n, n+1)\), the “angular size” of the disk as seen from that point is just of that order). Therefore, the divergence of the harmonic
series11 implies that a.s. this disk is crossed infinitely many times, and from this it is straightforward to obtain that the set of lines is dense.

Can this procedure be “repaired”? Well, examining the above argument, we see that the problem was that we gave “too much weight” to the angles α close to $\pm \pi/2$. Therefore, choosing the direction uniformly does not work, and hence we need to choose it with some other density $\varphi(\cdot)$ on $[-\pi/2, \pi/2]$ (of course, it should be symmetric with respect to 0, i.e., the direction of the normal).

What should be this φ? Consider a small disk of diameter ε situated at distance h above the origin, as on Figure 5.12. Consider a point $(x, 0)$ on the reference line (horizontal axis), with $x > 0$. Then, clearly, to intersect the disk, the direction of a straight line passing through x must be in $[\alpha - \frac{\delta}{\sqrt{x^2 + h^2}}, \alpha + \frac{\delta}{\sqrt{x^2 + h^2}}]$, where $\alpha = \arccos \frac{h}{\sqrt{x^2 + h^2}}$ and (up to terms of smaller order) $\delta = \varepsilon \sqrt{x^2 + h^2}$.

So, if λ is the rate of the Poisson point process on the reference line and $N(h, \varepsilon)$ is the mean number of lines intersecting the small ball, we have

$$
\mathbb{E}N(h, \varepsilon) = \lambda \varepsilon \int_{-\infty}^{+\infty} \varphi \left(\arccos \frac{h}{\sqrt{x^2 + h^2}} \right) \frac{dx}{\sqrt{x^2 + h^2}} + o(\varepsilon). \tag{5.9}
$$

This does not look very nice, but notice that, if we just erase “φ” and “\arccos” from (5.9)12, the integral would become something

11 this again! Why do we meet the harmonic series so frequently in two dimensions? . . .

12 and the two parentheses as well, although it not strictly necessary.
more familiar (recall the Cauchy density!)

\[\int_{-\infty}^{+\infty} \frac{h}{x^2 + h^2} \, dx = \int_{-\infty}^{+\infty} \frac{1}{(\frac{x}{h})^2 + 1} \, d\left(\frac{x}{h}\right) = \int_{-\infty}^{+\infty} \frac{du}{u^2 + 1} = \pi, \]

so the parameter \(h \) disappears. And, actually, it is easy to get rid of \(\varphi \) and \(\arccos \) at once: just choose \(\varphi(\alpha) = \frac{1}{2} \cos \alpha \). So, we obtain from (5.9) that \(\mathbb{E}N(h, \varepsilon) = \frac{1}{2} \pi \lambda \varepsilon + o(\varepsilon) \), which is a good sign that \(\varphi(\alpha) = \frac{1}{2} \cos \alpha \) may indeed work for defining the Poisson line process.

The above construction is obviously invariant with respect to translations in the direction of the reference line, and, apparently, in the other directions too (there is no dependence on \(h \) for the expectations, but still some formalities are missing), but what about the rotational invariance? This can be proved directly\(^{13}\), but, instead of doing this now, let us consider another (in fact, more general\(^{14}\)) approach to defining Poisson processes of objects.

The idea is to represent these objects as points in the parameter space; i.e., each possible “thing” is described by a (unique) set of parameters, chosen in some convenient (and clever!) way. Then, we just take a Poisson point process in that parameter space, which is a process of objects naturally.

So, how can one carry this out in our case? Remember that we already constructed something translationally invariant, so let us try to find a parameter space where the rotational invariance would naturally appear. Note that any straight line that does not pass through the origin can be uniquely determined by two parameters: the distance \(r \) from the line to the origin, and the angle \(\theta \) between the horizontal axis and the shortest segment linking the line to the origin. So, the idea is to take a realization of a Poisson point process (with some constant rate) in the parameter space \(\mathbb{R}_+ \times [0, 2\pi) \), and translate it to a set of lines in \(\mathbb{R}^2 \), as shown on Figure 5.13.

Now, what kind of process do we obtain? First, it is clearly invariant under rotations. Secondly, it is not so obvious that it should be invariant with respect to translations. Instead of trying to prove it directly, we prefer to show that this construction is equivalent to the one with reference line (and hence get the

\(^{13}\) please, try to do it!

\(^{14}\) in fact, it is the approach.
translational invariance for free). Indeed, assume again that the reference line is the horizontal axis. Then (look at Figure 5.14) we have $\theta = \alpha$ and $dr = \cos \alpha \, dx$, so the probability that there is a line of the process crossing the reference line in the interval $[x, x + dx]$ (with respect to the first coordinate) and having the direction in the interval $[\alpha, \alpha + d\alpha]$ is proportional to $\cos \alpha \, dr \, d\alpha$, as required.

At this point we prefer to end this discussion and recommend the beautiful book [27] to an interested reader; in particular, that book contains a lot of information about Poisson processes of lines and (hyper)planes.

Finally, here is the general message of this section: it may be possible to construct something which can be naturally called a
Poisson process of objects, but the construction may be quite nontrivial. As for the Poisson line process itself, it serves as a supporting example for the previous sentence and as a “get-some-intuition” example for the next chapter15, but it is not directly connected to anything else in the rest of this book. There is one more reason, however, for its presence here: it is beautiful. As an additional argument in favor of the last affirmation, let us consider the following question: what is the distribution of the direction of a “typical” line from the Poisson line process? Well, it should obviously be uniform (the process is invariant under rotations, after all). Now, what is the distribution of the direction of a “typical” line intersecting the reference line? This time, it should obviously obey the cosine law. And here comes the paradox: almost surely all lines of the Poisson line process intersect the reference line, so we are talking about the same sets of lines! So, what is “the direction of a typical line”, after all?

5.4 Exercises

Soft local times (Section 5.1):

Exercise 5.1 Look again at Figure 5.6. Can you find the value of $\sigma(8)$?

Exercise 5.2 Let $(X_i)_{i \geq 1}$ be a Markov chain on a finite set Σ, with transition probabilities $p(x, x')$, initial distribution π_0, and stationary measure π. Let A be a subset of Σ. Prove that for any $n \geq 1$ and $\lambda > 0$ it holds that

$$P_{\pi_0}[\tau_A \leq n] \geq \mathbb{P}_{\pi_0}[\xi_0 \pi_0(x) + \sum_{j=1}^{n-1} \xi_j p(X_j, x) \geq \lambda \pi(x), \forall x \in \Sigma] - e^{-\lambda \pi(A)},$$

where ξ_i are i.i.d. Exp(1) random variables, also independent of the Markov chain X.

Exercise 5.3 Find a nontrivial application of (5.10).

Exercise 5.4 Give a rigorous proof of Lemma 5.1 in case Σ is discrete (i.e., finite or countably infinite set).

15 in particular, the reader is invited to pay special attention to Exercises 5.11 and 5.12 below
Exercise 5.5 Let us recall the Bertrand paradox: “what is the probability that a random chord of a circle is longer than the side of the inscribed equilateral triangle?”.

The answer, of course, depends on how exactly we decide to choose the random chord. One may consider (at least) three apparently natural ways, see Figure 5.15 (from left to right):

1. choose two points uniformly and independently, and draw a chord between them;
2. first choose a radius\(^{16}\) at random, then choose a random point on it (all that uniformly), and then draw the chord perpendicular to the radius through that point;
3. choose a random point inside the disk (note that, almost surely, that point will not be the center), and then draw the unique chord perpendicular to the corresponding radius;

I do not ask you to prove that the probability of the above event will be \(\frac{1}{3}, \frac{1}{2}, \) and \(\frac{1}{4}\) respectively for the three above methods, since it is very easy. Instead, let me ask the following question: how to find the right way to choose a random chord (and therefore resolve the paradox)? One reasonable idea is to consider a Poisson line process (since it is, in a way, the canonical random collection of lines on the plane) and condition on the fact that only one line intersects the circle, so that this intersection generates the chord. To which of the three above ways it corresponds?

Exercise 5.6 Note that the uniform distribution on a finite set (or a subset of \(\mathbb{R}^d\) with finite Lebesgue measure) has the following characteristic property: if we condition that the chosen point

\(^{16}\) i.e., a straight line segment linking the center to a boundary point.
belongs to a fixed subset, then this conditional distribution is uniform again (on that subset).

Now, consider a (smaller) circle which lies fully inside the original circle, and condition that the random chord (that you defined above) of the bigger circle intersects the smaller one, thus generating a chord in it as well. Does this induced random chord have the right distribution?

Exercise 5.7 The above method of defining a random chord works for any convex domain. What do you think, is there a right way of defining a random chord for nonconvex (even non-connected) domains?

Note that for such a domain one straight line can generate several chords at once.

Exercise 5.8 Explain the paradox in the end of Section 5.3.

Exercise 5.9 Argue that the above paradox has a lot to do with the motivating example of Section 5.1; in fact, show how one can generate the Poisson line process using the “strip” representation in two ways (with reference line, and without).

Exercise 5.10 (Random billiards) A particle moves with constant speed inside some (connected, but not necessarily simply connected) domain D. When it hits the boundary, it is reflected in random direction according to the cosine law17 (i.e., with density proportional to the cosine of the angle with the normal vector), independently of the incoming direction, and keeping the absolute value of its speed. Let $X_t \in D$ be the location of the process at time t, and $V_t \in [0, 2\pi)$ be the corresponding direction; $\xi_n \in \partial D$, $n = 0, 1, 2, \ldots$ are the points where the process hits the boundary, as shown on Figure 5.16.

Prove that

- the stationary measure of the random walk ξ_n is uniform on ∂D;
- the stationary measure of the process (X_t, V_t) is the product of uniform measures on D and $[0, 2\pi)$.

Observe that this result holds for any (reasonable) domain D!

The d-dimensional version of this process appeared in [44] under

17 recall the construction of the Poisson line process that used the reference line.
the name of “running shake-and-bake algorithm”, and was subsequently studied in [7, 8, 9]. For some physical motivation for the cosine reflection law see e.g. [13] and references therein.

Exercise 5.11 Sometimes, instead of defining a Poisson process of infinite objects “as a whole”, it is easier to define its image inside a finite “window”. This is not the case for the Poisson line processes, but one can still do it. Let $A \subset \mathbb{R}^2$ be a convex domain. Prove that the following procedure defines a Poisson line process as seen in A: take a Poisson point process on ∂A, and then, independently for each of its points, trace a ray (pointing inside the domain) according to the cosine law.

Then, prove directly (i.e., forget about the Poisson line process in \mathbb{R}^2 for now) that the above procedure is consistent: if $B \subset A$ is convex too, then the restriction of the process in A to B has the right law (i.e., the same as if we took a Poisson point process on ∂B with the same intensity, and traced rays from each of its points, traced independent rays with the cosine law), see Figure 5.17.

Exercise 5.12 Now, let us consider two nonintersecting domains $A_1, A_2 \subset \mathbb{R}^2$, and abbreviate $r = \max\{\text{diam}(A_1), \text{diam}(A_2)\}$, $s = \text{dist}(A_1, A_2)$. Consider a two-dimensional Poisson line process with rate λ. It is quite clear that the restrictions of this process on A_1 and A_2 are not independent, just look at Figure 5.18. However,

18 I mean, it is not easier
5.4 Exercises

Figure 5.17 Poisson line process seen in a finite convex set

Figure 5.18 Poisson line process seen in two disjoint sets; if a straight line intersects A_1 the way shown on the picture, it must intersect A_2.

in the case $s \gg r$ one still can decouple them. Let G_1 and G_2 be two events supported on A_1 and A_2. This means that, informally speaking, the occurrence of the event G_k is determined by the configuration seen on A_k, for $k = 1, 2$. Prove that, for some positive constant C we have

$$|\mathbb{P}[G_1 \cap G_2] - \mathbb{P}[G_1] \mathbb{P}[G_2]| \leq \frac{C \lambda r}{s}. \quad (5.11)$$

Exercise 5.13 Find the expected value of the orthogonal projection of the unit cube on a randomly oriented plane.
6

Two-dimensional random interlacements

6.1 Introduction: random interlacements in dimension $d \geq 3$

Explain about RI for $d \geq 3$.

Mention that all one-dimensional Poisson processes with constant rate can be constructed at once, as projections of a Poisson process with rate 1 in $\mathbb{R} \times \mathbb{R}_+$, as on Figure 6.1.

Random interlacements were introduced by Sznitman in [47], motivated by the problem of disconnection of the discrete torus $\mathbb{Z}_n^d := \mathbb{Z}^d / n\mathbb{Z}^d$ by the trace of simple random walk, in dimension 3 or higher. Detailed accounts can be found in the survey [6] and the recent books [20, 48]. Loosely speaking, the model of random interlacements in \mathbb{Z}^d, $d \geq 3$, is a stationary Poissonian soup of (transient) doubly infinite simple random walk trajectories on the

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6_1.png}
\caption{A simultaneous construction of one-dimensional Poisson processes}
\end{figure}

134
6.2 The two-dimensional case

At first glance, the title of this section seems to be meaningless, just because even a single trajectory of two-dimensional simple random walk a.s. visits all sites of \(\mathbb{Z}^2 \), so the vacant set would be always empty. Nevertheless, there is also a natural notion of capacity in two dimensions (cf. Section 6.6 of [33]), so one may wonder if there is a way to construct a decreasing family \((\mathcal{V}_\alpha, \alpha > 0) \) of random subsets of \(\mathbb{Z}^2 \) in such a way that a formula analogous to (6.1) holds for every finite \(A \subset \mathbb{Z}^d \). This is, however, clearly not possible since the two-dimensional capacity of one-point sets equals 0. On the other hand, it turns out to be possible to construct such a family so that

\[
P[A \subset \mathcal{V}_\alpha] = \exp \left(- \pi \alpha \text{cap}(A) \right)
\]

(6.2)

holds for all sets containing the origin (the factor \(\pi \) in the exponent is just for convenience, as explained below). We present this construction in Section ??.

To build the interlacements, we use trajectories of simple random walks conditioned on never hitting the origin. Of course, the law of the vacant set is no longer translationally invariant, but we show that it has the property of conditional translation invariance, cf. Theorem 6.2 below. In addition, we will see that (similarly to the \(d \geq 3 \) case) the random object we construct has strong connections to random walks on two-dimensional torus. All this makes us believe that “two-dimensional random interlacements” is the right term for the object we introduce in this paper.
Our next definitions are appropriate for the transient case. For a finite $A \subset \mathbb{Z}^2$, we define the equilibrium measure
\[
\hat{e}_A(x) = \mathbf{1}\{x \in A\}\mathbb{P}_x[\hat{\tau}_1(A) = \infty]\mu_x,
\] (6.3)
and the capacity (with respect to \hat{S})
\[
\hat{\text{cap}}(A) = \sum_{x \in A} \hat{e}_A(x). \tag{6.4}
\]
Observe that, since $\mu_0 = 0$, it holds that $\hat{\text{cap}}(A) = \hat{\text{cap}}(A \cup \{0\})$ for any set $A \subset \mathbb{Z}^2$.

Now, we use the general construction of random interlacements on a transient weighted graph introduced in [50]. In the following few lines we briefly summarize this construction. Let W be the space of all doubly infinite nearest-neighbour transient trajectories in \mathbb{Z}^2,
\[
W = \{\varrho = (\varrho_k)_{k \in \mathbb{Z}} : \varrho_k \sim \varrho_{k+1} \text{ for all } k; \text{ the set } \{m : \varrho_m = y\} \text{ is finite for all } y \in \mathbb{Z}^2\}.
\]
We say that ϱ and ϱ' are equivalent if they coincide after a time shift, i.e., $\varrho \sim \varrho'$ when there exists k such that $\varrho_{m+k} = \varrho_m$ for all m. Then, let $W^* = W/\sim$ be the space of trajectories modulo time shift, and define χ^* to be the canonical projection from W to W^*. For a finite $A \subset \mathbb{Z}^2$, let W_A be the set of trajectories in W that intersect A, and we write W^*_A for the image of W_A under χ^*.

One then constructs the random interlacements as Poisson point process on $W^* \times \mathbb{R}^+$ with the intensity measure $\nu \otimes du$, where ν is described in the following way. It is the unique sigma-finite measure on W^* such that for every finite A
\[
1_{W_A} \cdot \nu = \chi^* \circ Q_A,
\]
where the finite measure Q_A on W_A is determined by the following equality:
\[
Q_A[(g_k)_{k \geq 1} \in F, g_0 = x, (g_{-k})_{k \geq 1} \in G] = \hat{e}_A(x)\cdot \mathbb{P}_x[F] \cdot \mathbb{P}_x[G | \hat{\tau}_1(A) = \infty].
\]
The existence and uniqueness of ν was shown in Theorem 2.1 of [50].

For a configuration $\sum_\Lambda \delta_{(w^{\Lambda}_x, u_\Lambda)}$ of the above Poisson process, the process of random interlacements at level α (which will be
referred to as \(\text{RI}(\alpha) \) is defined as the set of trajectories with label less than or equal to \(\pi \alpha \), i.e.,

\[
\sum_{\lambda : u_\lambda \leq \pi \alpha} \delta_{w_\lambda^*}.
\]

Observe that this definition is somewhat unconventional (we used \(\pi \alpha \) instead of just \(\alpha \), as one would normally do), but we will see below that it is quite reasonable in two dimensions, since the formulas become generally cleaner.

It is important to have in mind the following “constructive” description of random interlacements at level \(\alpha \) “observed” on a finite set \(A \subset \mathbb{Z}^2 \). Namely,

1. take a \(\text{Poisson}(\pi \alpha \hat{\text{cap}}(A)) \) number of particles;
2. place these particles on the boundary of \(A \) independently, with distribution \(\pi_A = ((\hat{\text{cap}} A)^{-1} \hat{e}_A(x), x \in A) \);
3. let the particles perform independent \(\hat{S} \)-random walks (since \(\hat{S} \) is transient, each walk only leaves a finite trace on \(A \)).

It is also worth mentioning that the FKG inequality holds for random interlacements, cf. Theorem 3.1 of [50].

The \textit{vacant set} at level \(\alpha \),

\[
\mathcal{V}^\alpha = \mathbb{Z}^2 \setminus \bigcup_{\lambda : u_\lambda \leq \pi \alpha} \omega^*_\lambda(\mathbb{Z}),
\]

is the set of lattice points not covered by the random interlacement. It contains the origin by definition. In Figure 6.2 we present a simulation\(^1\) of the vacant set for different values of the parameter.

As a last step, we need to show that we have indeed constructed the object for which (6.2) is verified. For this, we need to prove the following fact:

\textbf{Proposition 6.1} For any finite set \(A \subset \mathbb{Z}^2 \) such that \(0 \in A \) it holds that \(\text{cap}(A) = \hat{\text{cap}}(A) \).

\textbf{Proof} Indeed, consider an arbitrary \(x \in \partial A, x \neq 0 \), and (large) \(r \) such that \(A \subset B(r - 2) \). Write using (3.36)

\[
\mathbb{P}_x[\tilde{T}_1(A) > \tilde{T}_1(\partial B(r))] = \sum_{g} \frac{a(\theta_{\text{end}})}{a(x)} \left(\frac{1}{4} \right)^{|g|}
\]

\(^1\) many thanks to Darcy Camargo!
Figure 6.2 A realization of the vacant set (dark) of $RI(\alpha)$ for different values of α. For $\alpha = 1.5$ the only vacant site is the origin. Also, note that we see the same neighbourhoods of the origin for $\alpha = 1$ and $\alpha = 1.25$; this is not surprising since just a few new walks enter the picture when increasing the rate by a small amount.

\[= (1 + o(1)) \frac{2 \ln r}{a(x)} \sum_{e} \left(\frac{1}{4} \right)^{|e|} \]
6.2 The two-dimensional case

\begin{equation}
= (1 + o(1)) \frac{2 \ln r}{a(x)} P_x [\tau^+_A > \tau_1 (\partial B(r))],
\end{equation}

where the sums are taken over all trajectories \(\varrho \) that start at \(x \), end at \(\partial B(r) \), and avoid \(A \cup \partial B(r) \) in between; \(\varrho_{\text{end}} \in \partial B(r) \) stands for the ending point of the trajectory, and \(|\varrho| \) is the trajectory’s length. Now, we send \(r \) to infinity and use (??) to obtain that, if \(0 \in A \),

\begin{equation}
a(x) P_x [\tilde{\tau}_1 (A) = \infty] = \text{hm}_A (x). \tag{6.5}
\end{equation}

Multiplying by \(a(x) \) and summing over \(x \in A \) (recall that \(\mu_x = a^2(x) \)) we obtain the expressions in (3.18) and (6.4) and thus conclude the proof. \(\square \)

Together with formula (1.1) of [50], Proposition 6.1 shows the fundamental relation (6.2) announced in introduction: for all finite subsets \(A \) of \(\mathbb{Z}^2 \) containing the origin,

\begin{equation}
P[A \subset V^\alpha] = \exp (- \pi \alpha \text{cap}(A)).
\end{equation}

As mentioned before, the law of two-dimensional random interlacements is not translationally invariant, although it is of course invariant with respect to reflections/rotations of \(\mathbb{Z}^2 \) that preserve the origin. Let us describe some other basic properties of two-dimensional random interlacements:

Theorem 6.2

(i) For any \(\alpha > 0 \), \(x \in \mathbb{Z}^2 \), \(A \subset \mathbb{Z}^2 \), it holds that

\begin{equation}
P[A \subset V^\alpha | x \in V^\alpha] = P[-A + x \subset V^\alpha | x \in V^\alpha]. \tag{6.6}
\end{equation}

More generally, for all \(\alpha > 0 \), \(x \in \mathbb{Z}^2 \setminus \{0\} \), \(A \subset \mathbb{Z}^2 \), and any lattice isometry \(M \) exchanging \(0 \) and \(x \), we have

\begin{equation}
P[A \subset V^\alpha | x \in V^\alpha] = P[MA \subset V^\alpha | x \in V^\alpha]. \tag{6.7}
\end{equation}

(ii) With \(\gamma' \) from (3.36) we have

\begin{equation}
P[x \in V^\alpha] = \exp \left(- \pi \alpha \frac{a(x)}{2} \right) = e^{-\gamma' \alpha / 2 \|x\|^2} (1 + O(\|x\|^{-2})). \tag{6.8}
\end{equation}

(iii) For \(A \) such that \(0 \in A \subset B(r) \) and \(x \in \mathbb{Z}^2 \) such that \(\|x\| \geq 2r \) we have

\begin{equation}
P[A \subset V^\alpha | x \in V^\alpha] = \exp \left(- \frac{\pi \alpha}{4 \text{cap}(A)} \frac{1 + O(\frac{r \ln r \ln \|x\|}{\|x\|})}{\frac{\text{cap}(A)}{2a(x)} + O(\frac{r \ln r}{\|x\|})} \right). \tag{6.9}
\end{equation}
For \(x, y \neq 0, x \neq y \), we have
\[
P \left[\{ x, y \} \subset V^\alpha \right] = \exp \left(-\pi \alpha \Psi \right),
\]
where
\[
\Psi = \frac{a(x)a(y)a(x-y)}{a(x)a(y) + a(x)a(x-y) + a(y)a(x-y) - \frac{1}{2} \left(a^2(x) + a^2(y) + a^2(x-y) \right)}.
\]

Moreover, as \(s := \|x\| \to \infty \), \(\ln \|y\| \sim \ln s \) and \(\ln \|x-y\| \sim \beta \ln s \) with some \(\beta \in [0, 1] \), we have
\[
P \left[\{ x, y \} \subset V^\alpha \right] = s^{-\frac{4\alpha}{\pi}} + o(1).
\]

Assume that \(\ln \|x\| \sim \ln s \), \(\ln r \sim \beta \ln s \) with \(\beta < 1 \). Then, as \(s \to \infty \),
\[
P \left[B(x, r) \subset V^\alpha \right] = s^{-\frac{2\alpha}{\pi}} + o(1).
\]

The relation (4.20) leads to the following heuristic explanation for Theorem 6.2 (iii) (in the case when \(A \) is fixed and \(\|x\| \to \infty \)). Since the probability of hitting a distant site is about \(1/2 \), by conditioning that this distant site is vacant, we essentially throw away three quarters of the trajectories that pass through a neighbourhood of the origin: indeed, the double-infinite trajectory has to avoid this distant site two times, before and after reaching that neighbourhood.

These results invite a few comments.

Remark 6.3
1. The statement in (i) describes an invariance property given that a point is vacant. We refer to it as the conditional stationarity of two-dimensional random interlacements.

2. We can interpret (iii) as follows: the conditional law of \(\text{RI}(\alpha) \) given that a distant site \(x \) is vacant, is similar – near the origin – to the unconditional law of \(\text{RI}(\alpha/4) \). Combined with (i), the similarity holds near \(x \) as well. Moreover, one can also estimate the “local rate” away from the origin, see Figure 6.3. More specifically, observe from Lemma ?? (ii) that \(\text{cap}(A_2) \ll \ln s \) with \(s = \text{dist}(0, A_2) \) large implies \(\text{cap} \left(\{ 0 \} \cup A_2 \right) = \frac{a(s)}{2} \left(1 + o(1) \right) \).

If \(x \) is at a much larger distance from the origin than \(A_2 \), say \(\ln \|x\| \sim \ln(s^2) \), then (6.9) reveals a “local rate” equal to \(\frac{2}{\pi} \alpha \), that is, \(P[A_2 \subset V^\alpha \mid x \in V^\alpha] = \exp \left(-\frac{2}{\pi} \alpha \text{cap} \left(\{ 0 \} \cup A_2 \right) \right) \); indeed, the expression in the denominator in (6.9) equals approximately \(1 - \frac{\text{cap}(\{ 0 \} \cup A_2)}{2a(x)} \approx 1 - \frac{a(x)/2}{2a(x)} \approx \frac{7}{8} \).

3. By symmetry, the conclusion of (iv) remains the same in the situation when \(\ln \|x\|, \ln \|x-y\| \sim \ln s \) and \(\ln \|y\| \sim \beta \ln s \).
6.2 The two-dimensional case

\[A_1 \approx \frac{1}{4} \alpha \]
\[A_2 \approx \frac{4}{7} \alpha \]

\[\alpha_1 \approx \frac{1}{4} \alpha \quad \alpha_2 \approx \frac{4}{7} \alpha \]

Figure 6.3 How the “local rate” looks like if we condition on the event that a “distant” site is vacant.

Proof of (i) and (ii) To prove (i), observe that

\[\text{cap} \left(\{0, x\} \cup A \right) = \text{cap} \left(\{0, x\} \cup (-A + x) \right) \]

by symmetry. For the second statement in (i), note that, for \(A' = \{0, x\} \cup A \), it holds that \(\text{cap} \left(A' \right) = \text{cap} \left(MA' \right) = \text{cap} \left(\{0, x\} \cup MA \right) \). Item (ii) follows from the above mentioned fact that \(\text{cap} \left(\{0, x\} \right) = \frac{1}{2} a(x) \) together with (3.36).

We postpone the proof of other parts of Theorem 6.2, since it requires some estimates for capacities of various kinds of sets. We now turn to estimates on the cardinality of the vacant set.

Theorem 6.4 (i) We have

\[\mathbb{E}(|V^\alpha \cap B(r)|) \sim \begin{cases} \frac{2\pi}{2-\alpha} e^{-\gamma' \pi \alpha/2} \times r^{2-\alpha}, & \text{for } \alpha < 2, \\ 2\pi e^{-\gamma' \pi \alpha/2} \times \ln r, & \text{for } \alpha = 2, \\ \text{const}, & \text{for } \alpha > 2. \end{cases} \]

(ii) For \(\alpha > 1 \) it holds that \(V^\alpha \) is finite a.s. Moreover, \(\mathbb{P}[V^\alpha = \{0\}] > 0 \) and \(\mathbb{P}[V^\alpha = \{0\}] \to 1 \) as \(\alpha \to \infty \).

(iii) For \(\alpha \in (0,1) \), we have \(|V^\alpha| = \infty \) a.s. Moreover,

\[\mathbb{P}[V^\alpha \cap \left(B(r) \setminus B(r/2) \right) = \emptyset] \leq r^{-2(1-\sqrt{\alpha})^2 + o(1)}. \quad (6.12) \]

It is worth noting that the “phase transition” at \(\alpha = 1 \) in (ii) corresponds to the cover time of the torus, as shown in Theorem ?? below.

Proof of (i) and (ii) (incomplete, in the latter case) Part (i) immediately follows from Theorem 6.2 (ii).
The proof of the part (ii) is easy in the case \(\alpha > 2 \). Indeed, observe first that \(\mathbb{E}|V^\alpha| < \infty \) implies that \(V^\alpha \) itself is a.s. finite. Also, Theorem 6.2 (ii) actually implies that \(\mathbb{E}|V^\alpha \setminus \{0\}| \to 0 \) as \(\alpha \to \infty \), so \(\mathbb{P}[V^\alpha = \{0\}] \to 1 \) by the Chebyshev inequality.

Now, let us prove that, in general, \(\mathbb{P}[|V^\alpha| < \infty] = 1 \) implies that \(\mathbb{P}[V^\alpha = \{0\}] > 0 \). Indeed, if \(V^\alpha \) is a.s. finite, then one can find a sufficiently large \(R \) such that \(\mathbb{P}[|V^\alpha \cap (\mathbb{Z}^2 \setminus B(R))| = 0] > 0 \). Since \(\mathbb{P}[x \notin V^\alpha] > 0 \) for any \(x \neq 0 \), the claim that \(\mathbb{P}[V^\alpha = \{0\}] > 0 \) follows from the FKG inequality applied to events \(\{x \notin V^\alpha\} \), \(x \in B(R) \) together with \(\{|V^\alpha \cap (\mathbb{Z}^2 \setminus B(R))| = 0\} \).

As before, we postpone the proof of part (iii) and the rest of part (ii) of Theorem 6.4. Let us remark that we believe that the right-hand side of (6.12) gives the correct order of decay of the above probability; we, however, do not have a rigorous argument at the moment. Also, note that the question whether \(V^1 \) is a.s. finite or not, is open.

Let us now give a heuristic explanation about the unusual behaviour of the model for \(\alpha \in (1, 2) \): in this non-trivial interval, the vacant set is a.s. finite but its expected size is infinite. The reason is the following: the number of \(\hat{S} \)-walks that hit \(B(r) \) has Poisson law with rate of order \(\ln r \) (recall (??)). Thus, decreasing this number by a constant factor (with respect to the expectation) has only a polynomial cost. On the other hand, by doing so, we increase the probability that a site \(x \in B(r) \) is vacant for all \(x \in B(r) \) at once, which increases the expected size of \(V^\alpha \cap B(r) \) by a polynomial factor. It turns out that this effect causes the actual number of uncovered sites in \(B(r) \) to be typically of much smaller order then the expected number of uncovered sites there.

6.3 Proofs for random interlacements

6.3.1 Excursions and soft local times

In this section we will develop some tools for dealing with excursions of two-dimensional random interlacements and random walks on tori; in particular, one of our goals is to construct a coupling between the set of RI's excursions and the set of excursions of the simple random walk \(X \) on the torus \(\mathbb{Z}^2_n = \mathbb{Z}^2 / n\mathbb{Z}^2 \).
Here and in the sequel we denote by \((Z^{(i)}, i \geq 1)\) the (complete) excursions of the walk \(X\) between \(\partial A\) and \(\partial A'\), and by \((\hat{Z}^{(i)}, i \geq 1)\) the RI’s excursions between \(\partial A\) and \(\partial A'\) (dependence on \(n, A, A'\) is not indicated in these notations when there is no risk of confusion).

Now, assume that we want to construct the excursions of \(\text{RI}(\alpha)\), say, between \(\partial B(y_0, n)\) and \(\partial B(y_0, cn)\) for some \(c > 0\) and \(y_0 \in \mathbb{Z}^2\). Also, (let us identify the torus \(\mathbb{Z}^2\) with the square of size \(n_1\) centered in the origin of \(\mathbb{Z}^2\)) we want to construct the excursions of the simple random walk on the torus \(\mathbb{Z}^2\) between \(\partial \mathbb{B}(y_0, n)\) and \(\partial \mathbb{B}(y_0, cn)\), where \(n_1 > n + 1\). It turns out that one may build both sets of excursions simultaneously on the same probability space, in such a way that, typically, most of the excursions are present in both sets (obviously, after a translation by \(y_0\)). This is done using the *soft local times* method; we refer to Section 4 of [41] for the general theory (see also Figure 1 of [41] which gives some quick insight on what is going on), and also to Section 2 of [11]. Here, we describe the soft local times approach in a less formal way. Assume, for definiteness, that we want to construct the simple random walk’s excursions on \(\mathbb{Z}^2\), between \(\partial A\) and \(\partial A'\), and suppose that the starting point \(x_0\) of the walk \(X\) does not belong to \(A\).

We first describe our approach for the case of the torus. For \(x \notin A\) and \(y \in \partial A\) let us denote \(\varphi(x, y) = \mathbb{P}_x[X_{\tau^+_A} = y]\). For an excursion \(Z\) let \(\iota(Z)\) be the first point of this excursion, and \(\ell(Z)\) be the last one; by definition, \(\iota(Z) \in \partial A\) and \(\ell(Z) \in \partial A'\). Clearly, for the random walk on the torus, the sequence \([(\iota(Z^{(j)}), \ell(Z^{(j)})), j \geq 1]\) is a Markov chain with transition probabilities

\[
P_{(y, z), (y', z')} = \varphi(z, y') \mathbb{P}_{y'}[X_{\tau^+_{\partial A'}} = z']
\]

Now, consider a marked Poisson point process on \(\partial A \times \mathbb{R}_+\) with rate 1. The (independent) marks are the simple random walk trajectories started from the first coordinate of the Poisson points (i.e., started at the corresponding site of \(\partial A\)) and run until hitting \(\partial A'\). Then (see Figure 6.4; observe that \(A\) and \(A'\) need not be necessarily connected, as shown on the picture)

- let \(\xi_1\) be the a.s. unique positive number such that there is only one point of the Poisson process on the graph of \(\xi_1 \varphi(x_0, \cdot)\) and nothing below;
the mark of the chosen point is the first excursion (call it $Z^{(1)}$) that we obtain;

• then, let ξ_2 be the a.s. unique positive number such that the graph of $\xi_1 \varphi(x_0, \cdot) + \xi_2 \varphi(\ell(Z^{(1)}), \cdot)$ contains only one point of the Poisson process, and there is nothing between this graph and the previous one;

• the mark $Z^{(2)}$ of this point is our second excursion;

• and so on.

It is possible to show that the sequence of excursions obtained in this way indeed has the same law as the simple random walk’s excursions (in particular, conditional on $\ell(Z^{(k-1)})$, the starting point of kth excursion is indeed distributed according to $\varphi(\ell(Z^{(k-1)}), \cdot)$; moreover, the ξ’s are i.i.d. random variables with Exponential(1) distribution.

So, let us denote by $\xi_1, \xi_2, \xi_3, \ldots$ a sequence of i.i.d. random variables with Exponential distribution with parameter 1. According to the above informal description, the soft local time of kth excursion is a random vector indexed by $y \in \partial A$, defined as follows:

$$L_k(y) = \xi_1 \varphi(x_0, y) + \sum_{j=2}^{k} \xi_j \varphi(\ell(Z^{(j-1)}), y). \quad (6.13)$$

For the random interlacements, the soft local times are defined analogously. Recall that $\hat{\operatorname{hm}}_A$ defines the (normalized) harmonic measure on A with respect to the \hat{S}-walk. For $x \notin A$ and $y \in \partial A$ let

$$\hat{\varphi}(x, y) = \mathbb{P}_x[\hat{S}_{\hat{\tau}_1}(A) = y, \hat{\tau}_1(A) < \infty] + \mathbb{P}_x[\hat{\tau}_1(A) = \infty] \hat{\operatorname{hm}}_A(y). \quad (6.14)$$

Analogously, for the random interlacements, the sequence $((\nu(Z^{(j)}), \ell(Z^{(j)})), j \geq 1)$ is also a Markov chain, with transition probabilities

$$\hat{P}_{(y,z), (y',z')} = \hat{\varphi}(z, y') \mathbb{P}_y[\hat{S}_{\hat{\tau}_1(\partial A')} = z'].$$

The process of picking the excursions for the random interlacements is quite analogous: if the last excursion was Z, we use the probability distribution $\hat{\varphi}(\ell(Z), \cdot)$ to choose the starting point of the next excursion. Clearly, the last term in (6.14) is needed for $\hat{\varphi}$ to have total mass 1; informally, if the \hat{S}-walk from x does not ever hit A, we just take the “next” trajectory of the random interlacements that does hit A, and extract the excursion from it.
(see also (4.10) of [53]). Again, let $\hat{\xi}_1, \hat{\xi}_2, \hat{\xi}_3, \ldots$ be a sequence of i.i.d. random variables with Exponential distribution with parameter 1. Then, define the soft local time of random interlacement
of kth excursion as
\[\hat{L}_k(y) = \hat{\xi}_1 \hat{\varphi}(x_0, y) + \sum_{j=2}^{k} \hat{\xi}_j \hat{\varphi}(\ell(\hat{Z}^{(j-1)}), y). \] (6.15)

Let us state several other general estimates, for the probability of (not) hitting a given set (which is, typically, far away from the origin), or, more specifically, a disk:

Lemma 6.5 Assume that $x \notin B(y, r)$ and $\|y\| > 2r \geq 1$. Abbreiviate also $\Psi_1 = \|y\|^{-1}r$, $\Psi_2 = \frac{r \ln r \ln \|y\|}{\|y\|}$, $\Psi_3 = r \ln r \left(\frac{\ln \|x-y\|}{\|x-y\|} + \frac{\ln \|y\|}{\|y\|}\right)$.

(i) We have
\[\mathbb{P}_x[\hat{\tau}_1(B(y, r)) < \infty] = \frac{(a(y) + O(\Psi_1))(a(y) + a(x) - a(x - y) + O(r^{-1}))}{a(x)(2a(y) - a(r) + O(r^{-1} + \Psi_1))}. \] (6.16)

(ii) Consider now any nonempty set $A \subset B(y, r)$. Then, it holds that
\[\mathbb{P}_x[\hat{\tau}_1(A) < \infty] = \frac{(a(y) + O(\Psi_1))(a(y) + a(x) - a(x - y) + O(r^{-1} + \Psi_3))}{a(x)(2a(y) - \text{cap}(A) + O(\Psi_2))}. \] (6.17)

Observe that (6.16) is not a particular case of (6.17); this is because (6.16) typically provides a more precise estimate than (6.17).

(Do we need the above)

6.4 Exercises

Exercise 6.1 Prove the claim of Remark 4.18 by proving that (analogously to ??), with any fixed $\delta > 0$,
\[\mathbb{P}[(nG \cap \mathbb{Z}^2) \subset \hat{S}_{[0,\infty]}] \leq n^{-2+\delta} \]
for all large enough n; the claim then would follow from the (first) Borel-Cantelli lemma.
Hints and solutions to selected exercises

Exercise 2.2.
Unfortunately, not. If S_n is a d-dimensional SRW, then $\mathbb{P}_0[S_2 = 0] = \left(\frac{1}{2d} \times \frac{1}{2d}\right) \times (2d) = \frac{1}{2^d}$. If we want the claim in the exercise to be true, this would then mean that $\frac{1}{2^d} = (\frac{1}{2})^d$ or $d = 2^{d-1}$, which holds only for $d = 1, 2$.

Exercise 2.3.
You may find it useful to look at [17].

Exercise 2.4.
Use the cycle criterion (Theorem 2.2) with e.g. the cycle $(0,0) \to (0,1) \to (1,1) \to (1,0) \to (0,0)$.

Exercise 2.5.
Fix an arbitrary $x_0 \in \Sigma$, set $A = \{x_0\}$, and
\[f(x) = \mathbb{P}_x[\tau_{x_0} < \infty] \text{ for } x \in \Sigma \]
(so, in particular, $f(x_0) = 1$). Then (2.10) holds with equality for all $x \neq x_0$, and, by transience, one can find $y \in \Sigma$ such that $f(y) < 1 = f(x_0)$.

Exercise 2.6.
Let $p = p(n, n+1)$ (for all n), and assume for definiteness that $p > \frac{1}{2}$. Consider the function $f(x) = (\frac{1-x}{p})^+$ and the set $A = (-\infty, 0]$; then use Theorem 2.4.

Note also that, for proving that this random walk is transient, one may also use Theorem 2.5.15 of [36] (which we did not consider in this book) together with a simpler function $f(x) = x$. There are many different Lyapunov function tools that one may use!
Exercise 2.7.
Hint: use the Lyapunov function \(f(x) = (1-\delta)x \) for small enough \(\delta > 0 \).

Exercise 2.8.
Quite analogously to (2.13)–(2.15), it is elementary to obtain for
\[f(x) = \|x\|^\alpha \]
\[\mathbb{E}[f(X_{n+1}) - f(X_n) \mid X_n = x] = -\alpha \|x\|^{-\alpha - 2} \left(\frac{1}{2} - \left(1 + \frac{\alpha}{2}\right) \frac{1}{d} + O(\|x\|^{-1}) \right). \]
The inequality \(\frac{1}{2} - \left(1 + \frac{\alpha}{2}\right) \frac{1}{d} > 0 \) solves to \(\alpha < d - 2 \), so any fixed \(\alpha \in (0, d - 2) \) will do the job.

By the way, in your opinion, is it surprising that the “critical” value for \(\alpha \) is equal to \(d - 2 \)? (To answer this question, it is maybe a good idea to recall Section 3.1.)

Exercise 2.10.
Hint: being \(X_n \) the two-dimensional walk, define first its covariance matrix by \(M := \mathbb{E}_0((X_1)^\top X_1) \). Find a suitable linear transformation\(^2\) of the process for which \(M \) will become the identity matrix. Then use the same Lyapunov function that worked for the simple random walk.

Exercise 2.13 (a).
Fix an arbitrary \(x_0 \in \Sigma \), and set \(A = \{x_0\} \). Observe that, for \(x \neq x_0 \),
\[\mathbb{E}_x \tau_{x_0} = \sum_{y \in \Sigma} p(x, y) \mathbb{E}_y (1 + \tau_{x_0}), \]
and that
\[\sum_{y \in \Sigma} p(x_0, y) \mathbb{E}_y \tau_{x_0} = \mathbb{E}_{x_0} \tau_{x_0}^+ < \infty, \]
so the function \(f(x) = \mathbb{E}_x \tau_{x_0} \) satisfies (2.18)–(2.19) with \(\varepsilon = 1 \).

Exercise 2.14.
Note that the calculation (2.13) is dimension-independent, and (2.14) remains valid as well, with obvious changes. Then obtaining (2.20)
\(^2\) why does it exist?
is straightforward (use (2.13) with $\alpha = 1$ and observe that the factor $\frac{1}{4}$ in the next display after (2.13) will become $\frac{1}{2a}$ in the general case). As for (2.21), show first that

$$E_x(\|S_1\|^2 - \|x\|^2) = 1 \text{ for all } x \in \mathbb{Z}^d,$$

and then use (2.20) together with the identity $(b-a)^2 = b^2 - a^2 - 2a(b-a)$ with $a = \|x\|, b = \|S_1\|$.

Exercise 2.15.

Hint: try using the following Lyapunov functions: $f(x) = x^2$ for (a), $f(x) = x^\alpha$ for some $\alpha > 0$ for (b), and $f(x) = x^{-\alpha}$ for (c). Note that α will depend on ϵ in (b) and (c)!

Exercise 2.16.

Exercise 3.2.

Hint: first, prove that the (multivariate) characteristic function of S_n (starting at the origin) equals $\Phi^n(\theta)$. Then, think how to extract $\mathbb{P}_0[S_n = x]$ from there.

Exercise 3.4.

See Exercise 6.18 of [33].

Exercise 3.5.

Hint: use Exercise 2.16.

Exercise 3.6.

For $x \notin A$, using the definition of G and the strong Markov property, let us write,

$$G(x, A) = \sum_{y \in A} \mathbb{P}_x[\tau_A < \infty, S_{\tau_A} = y]G(y, A)$$

$$\geq \left(\sum_{y \in A} \mathbb{P}_x[\tau_A < \infty, S_{\tau_A} = y] \right) \times \min_{y \in A} G(y, A)$$

$$= \mathbb{P}_x[\tau_A < \infty] \min_{y \in A} G(y, A),$$

and, analogously,

$$G(x, A) \leq \mathbb{P}_x[\tau_A < \infty] \max_{y \in A} G(y, A),$$
so
\[\frac{G(x, A)}{\max_{y \in A} G(y, A)} \leq \mathbb{P}_x[\tau_A < \infty] \leq \frac{G(x, A)}{\min_{y \in A} G(y, A)}. \] (6.18)

From the asymptotic expression (3.5) for the Green’s function it is straightforward to obtain that
\[\lim_{x \to \infty} \frac{\|x\|}{\gamma_d} G(x, A) = |A|, \]
so multiplying (6.18) by \(\frac{\|x\|}{\gamma_d} \) and using Proposition 3.4 we obtain the desired result.

Exercise 3.7.
First of all, note that \(E_s A \in \mathcal{K}_A \) by (3.11), so it is enough to prove that \(\sum_{x \in A} h(x) \leq \text{cap}(A) \) for any \(h \in \mathcal{K}_A \). Let us abbreviate \(v_A(x) = \mathbb{P}_x[\tau_A < \infty] \), so that (in matrix notation) (3.11) becomes \(v_A = G E_s A \). Now, for two (nonnegative) functions \(f, g : \mathbb{Z}_d \to \mathbb{R} \), define the usual scalar product by \((f, g) = \sum_{x \in \mathbb{Z}_d} f(x) g(x) \). Then, we argue that, by symmetry, \(G \) is a self-adjoint linear operator in the sense that \((Gf, g) = (f, Gg) \). Then, for any \(h \in \mathcal{K}_A \), write (being \(1 \) the function with value 1 at all \(x \))
\[\sum_{x \in A} h(x) = (h, v_A) = (h, G E_s A) = (Gh, E_s A) \leq (1, E_s A) = \text{cap}(A), \]
and we are done.

Exercise 3.10.
Use the second inequality in (3.14) to obtain that, when the series in (3.19) converges, it holds that
\[\sum_{k=1}^{\infty} \mathbb{P}_0[\tau_{A_k} < \infty] < \infty; \]
then use Borel-Cantelli.

Exercise 3.11.
Analogously to the above, it is straightforward to obtain that, in this case,
\[\sum_{k=1}^{\infty} \mathbb{P}_0[\tau_{A_k} < \infty] = \infty, \]
but obtaining the recurrence of A from this is not immediate (note that the events $\{\tau_{A_k} < \infty\}, k \geq 1$, need not be independent). One possible workaround is the following:

(i) Divide the sum in (3.19) into four sums

$$\sum_{j=1}^{\infty} \frac{\text{cap}(A_{4j+i})}{2^{j(d-2)(4j+i)}}, \quad i = 0, 1, 2, 3;$$

note that at least one of these sums must diverge. For definiteness, assume that it is the first one (i.e., with $i = 0$).

(ii) For $j \geq 2$, consider any $y \in \partial B(2^{4j-2})$, and, using the first inequality in (3.14) together with (3.5), show that $P_y[\tau_{A_{4j}}] \geq c_1 2^{-(d-2)(4j)} \text{cap}(A_{4j})$.

(iii) Next, for any $z \in \partial B(2^{4j+2})$ show that

$$P_y[\tau_{A_{4j}} \leq 2 \frac{\text{cap}(A_{4j})}{4^{j(d-2)}},$$

where $c_2 < c_1$. Note that A_{4j} is much closer to $\partial B(2^{4j-2})$ than to $\partial B(2^{4j+2})$ – consider drawing a picture to see it better!

(iv) Using (ii)–(iii), obtain that, for any $y \in \partial B(2^{4j-2})$,

$$P_y[\tau_{A_{4j}} < \tau_{\partial B(2^{4j+2})}] \geq c_3 \frac{\text{cap}(A_{4j})}{2^{4j(d-2)}},$$

i.e., on its way from $\partial B(2^{4j-2})$ to $\partial B(2^{4j+2})$, the walker will hit A_{4j} with probability at least of order $2^{-4j(d-2)} \text{cap}(A_{4j})$.

(v) Argue that the “if” part of Theorem 3.7 follows from (iv) in a straightforward way.

Exercise 3.13.

Of course, it is probably possible to construct many such examples; one possibility (in three dimensions) is to consider a set of the form $\{b_k e_1, k \geq 1\}$, where (b_k) is a strictly increasing sequence of positive integer numbers. Then, it is clear that the expected number of visits to this set is infinite if and only if $\sum_{k=1}^{\infty} b_k^{-1} = \infty$. As shown in the paper [5], it is possible to construct a transient set for which the above series sums to infinity.
Exercise 3.17.

Proof 1: note that (3.69) is equivalent to
\[\text{cap}(A) = \frac{|A|}{\sum_{y \in A} \text{hm}_A(y) G(y, A)}; \]
proceed as in the solution of Exercise 3.6 and then use basic properties of the harmonic measure.

Proof 2: note that (3.69) is equivalent to
\[\sum_{y \in A} \text{Es}_A(y) G(y, A) = |A|, \]
and then obtain it directly from (3.11) by summing in \(y \in A \).

Exercise 3.19.

First, recall (3.24) — we now need to do a finer analysis of it. Let us rewrite (3.24) in the following way:
\[
\begin{align*}
\mathbb{P}_x \left[\tau_A = y \mid \tau_A < \infty \right] &= \frac{G(y, x) \text{Es}_A(y)}{\mathbb{P}_x \left[\tau_A < \infty \right]} + \frac{\sum_{z \in \partial A} \mathbb{P}_y \left[\tau_A^+ < \infty, S_{\tau_A^+} = z \right] \left(G(y, x) - G(z, x) \right)}{\mathbb{P}_x \left[\tau_A < \infty \right]}.
\end{align*}
\]
(6.19)

It is not difficult to check that, for distinct \(x, y, z \) (think about the situation when \(x, y, z \in \mathbb{Z}^d \) are such that \(z \) is much closer to \(y \) than \(x \) is)
\[G(x, y) = G(x, z) \left(1 + O\left(\frac{diam(A)}{dist(x, z)} \right) \right). \]
(6.20)

So, (3.14) implies that
\[\mathbb{P}_x \left[\tau_A < \infty \right] = \text{cap}(A) G(y, x) \left(1 + O\left(\frac{diam(A)}{dist(x, A)} \right) \right), \]
(6.21)

which means that the first term in the right-hand side of (6.19) equals \(\text{hm}_A(y) \left(1 + O\left(\frac{diam(A)}{dist(x, A)} \right) \right) \).

To deal with the second term, denote \(V = \partial B(y, 2 \text{diam}(A) + 1) \); by e.g. (3.8), there exists \(c > 0 \) such that \(\mathbb{P}_z \left[\tau_A = \infty \right] \geq c \) for all \(z \in V \), and this permits us to obtain\(^4\) that
\[\mathbb{P}_y \left[\tau_V < \tau_A^+ \right] \leq c^{-1} \text{Es}_A(y). \]
(6.22)

\(^3\) I mean, only as in the first line of the first display there
\(^4\) please, elaborate
We then use the Optional Stopping Theorem with the martingale $M_n = G(y, x) - G(S_{n \wedge \tau_x}, x)$ and the stopping time $\tau = \tau^+_A \wedge \tau_V$ to obtain that

$$0 = \mathbb{E}_y M_0 = \mathbb{E}_y M_\tau$$

(note that $\mathbb{P}_y[\tau^+_A < \tau_V] = \mathbb{P}_y[\tau^+_A < \infty] - \mathbb{P}_y[\tau^+_A > \tau_V, \tau^+_A < \infty]$)

$$= \sum_{z \in \partial A} \mathbb{P}_y[\tau^+_A < \infty, S_{\tau^+_A} = z] (G(y, x) - G(z, x))$$

$$- \mathbb{P}_y[\tau^+_A > \tau_V, \tau^+_A < \infty] (G(y, x) - \mathbb{E}_y (G(S_{\tau_V}) | \tau^+_A > \tau_V, \tau^+_A < \infty))$$

$$+ \mathbb{P}_y[\tau_V < \tau^+_A] (G(y, x) - \mathbb{E}_y (G(S_{\tau_V}) | \tau_V < \tau^+_A)). \tag{6.23}$$

The first term in the right-hand side of (6.23) is what we need to estimate for (6.19), and, by (6.20) and (6.22), the second and third terms are both $O(\mathbb{E}_A(y) G(y, x) \frac{\text{diam}(A)}{\text{dist}(x, A)})$. Gathering the pieces, we obtain (3.71).

Exercise 3.20.

Start with almost (3.24):

$$\mathbb{P}_x[\tau_A < \infty, S_{\tau_A} = y] = G(y, x) - \sum_{z \in \partial A} \mathbb{P}_y[\tau^+_A < \infty, S_{\tau^+_A} = z] G(z, x).$$

Then, consider the martingale $G(S_{n \wedge \tau_x}, x)$ and use the Optional Stopping Theorem with the (possibly infinite\(^6\)) stopping time $\tau_x \wedge \tau^+_A$ to obtain that

$$G(y, x) = \mathbb{E}_y G(S_{\tau_x \wedge \tau^+_A}, x)$$

$$= \sum_{z \in \partial A} \mathbb{P}_y[\tau^+_A < \tau_x, S_{\tau^+_A} = z] G(z, x) + \mathbb{P}_y[\tau_x < \tau^+_A] G(0).$$

So, using that

$$\mathbb{P}_y[\tau^+_A < \tau_x, S_{\tau^+_A} = z]$$

$$= \mathbb{P}_y[\tau^+_A < \infty, S_{\tau^+_A} = z] - \mathbb{P}_y[\tau_x < \tau^+_A < \infty, S_{\tau^+_A} = z]$$

$$= \mathbb{P}_y[\tau^+_A < \infty, S_{\tau^+_A} = z] - \mathbb{P}_y[\tau_x < \tau^+_A] \mathbb{P}_x[\tau^+_A < \infty, S_{\tau^+_A} = z],$$

\(^5\) of course, we also assume that x is outside $B(y, 2 \text{diam}(A) + 1)$

\(^6\) we leave as an exercise checking that, in this case, one can still apply the Optional Stopping Theorem; note that $G(S_{\infty}, x) = 0$ by transience
Hints and solutions to selected exercises

we obtain

\[P_x[\tau_A < \infty, S_{\tau_A} = y] = P_y[\tau_x < \tau_A^+](G(0) - \sum_{z \in \partial A} P_x[\tau_A^+ < \infty, S_{\tau_A^+} = z]G(z,x)). \]

(6.24)

The second term in the above parentheses is clearly negative, and one can use (3.5) and (3.8) to obtain its magnitude and therefore show (3.72). To prove the second part, write

\[P_y[\tau_x < \infty, \tau_A^+ = \infty] = P_y[\tau_x < \tau_A^+]P_x[\tau_A = \infty], \]

and then use (3.71) together with (3.4) and (3.8).

Exercise 3.22.

(i)–(ii) See Figure 6.5 (the left part for (i) and the right part for (ii)). Specifically, consider first a path starting from the origin and ending on the first hitting of the diagonal (respectively, vertical) line that separates the origin from \(e_1 + e_2 \) (respectively, \(x_1 \) from \(x_2 \)). From the site \(y \) (respectively, \(z \)) where it ends, it is equally probable to go to 0 and \(x_1 \) (respectively, to \(x_1 \) and \(x_2 \)). There are also paths that go from 0 to 0 (respectively, from 0 to \(x_1 \)) which do not cross that line at all; this implies that the inequalities are strict.

(iii) Assume without restricting generality that \(x \) belongs to the first quadrant. Then, for an even \(x \), the fact that \(\mathbb{P}_0[S_{2n} = 0] > \mathbb{P}_0[S_{2n} = x] \) follows from (i)–(ii) by induction (there is a chain of sites that goes either from 0 or to \(e_1 + e_2 \) to \(x \) with “steps” \(2e_1 \) and \(2e_2 \)). As for the case of an odd \(x \) (where we need to prove that \(\mathbb{P}_0[S_{2n} = 0] > \mathbb{P}_0[S_{2n+1} = x] \)), use the fact that

\[\mathbb{P}_0[S_{2n+1} = x] = \frac{1}{4} \sum_{y \sim x} \mathbb{P}_0[S_{2n} = y] \]

and note that all \(y \)'s in the above sum are even.

Exercise 3.24.

Hint: prove that \(\tau_{\Lambda^c} \) has exponentially small tails using an argument of the sort “from any \(y \in \Lambda \) the walker can go out of \(\Lambda \) in at most \(n_0 \) steps with probability at least \(p_0 > 0 \), with some explicit \(n_0 \) and \(p_0 \).
Exercise 3.27.

Indeed,

\[Y_{n^{\wedge}T_A} = a(S_{n^{\wedge}T_A} - y) - N_y(n^{\wedge}T_A - 1) \]

is still a martingale, so \(a(x - y) = E_x Y_{n^{\wedge}T_A} \) for all \(n \). Now, \(E_x a(S_{n^{\wedge}T_A} - y) \rightarrow E_x a(S_{T_A} - y) \) by the Dominated Convergence Theorem, and \(E_x N_y(n^{\wedge}T_A - 1) \rightarrow E_x N_y(T_A - 1) \) by the Monotone Convergence Theorem.

Exercise 3.28.

The idea is to use Theorem 3.13 with \(\Lambda = B(R) \setminus \{0\} \), and then send \(R \) to infinity. Now, instead of just writing the arguments in a detailed way, let me show how one proves such statements in practice. Lemma 3.12 implies that \(P_x[\tau_0 \leq \tau_{B(R)}] \) is approximately \(1 - \frac{a(x)}{a(R)} \), so, when \(R \gg \|x\| \), Theorem 3.13 implies that

\[E_x \eta_x \approx G_\Lambda(x, x) \approx a(x) \times \left(1 - \frac{a(x)}{a(R)}\right) + a(R) \times \frac{a(x)}{a(R)} \approx 2a(x). \]

For the second statement, write

\[E_0 \eta_x = \frac{1}{4} \sum_{y \in \{\pm e_1, e_2\}} E_y \eta_x \]

\[\approx \frac{1}{4} \sum_{y \in \{\pm e_1, e_2\}} G_\Lambda(y, x) \]

\[\approx \frac{1}{4} \sum_{y \in \{\pm e_1, e_2\}} \left(a(x) \times \left(1 - \frac{1}{a(R)}\right) + a(R) \times \frac{1}{a(R)} - a(x - y) \right) \]
\approx a(x) + 1 - \frac{1}{4} \sum_{z \sim x} a(z)

(since a is harmonic outside the origin)

= 1.

Inserting suitable O's and formally passing to the limits as $R \to \infty$ is really left as an exercise.

Exercise 3.29.
Indeed, conditioning on the location of the first entrance to B, we have

\[P_x[S_{\tau_A} = y] = \sum_{z \in B} P_x[S_{\tau_B} = z] P_z[S_{\tau_A} = y]. \]

Theorem 3.16 then implies that, as $x \to \infty$, the left-hand side converges to $\text{hm}_{A}(y)$, and the right-hand side converges to

\[\sum_{z \in B} \text{hm}_{B}(z) P_z[S_{\tau_A} = y] = P_{\text{hm}_{B}}[S_{\tau_A} = y], \]

as required.

Exercise 3.33.
One method that would probably work is to first approximate the SRW with the two-dimensional Brownian Motion (possibly using a KMT-like strong approximation theorem), and then find a suitable Möbius transform that sends the domain on Figure 3.7 to an annulus formed by concentric circumferences (and then use the conformal invariance of Brownian trajectories). The author has to confess that he did not do any concrete calculations because he never needed such a result, but, nevertheless, it seems that this program looks reasonably fine.

Exercise 4.6.
Hint: recall (3.49), the definition of q_{A}.

Exercise 4.10.
This is an easy consequence of the fact that the transition probabilities from x for the conditioned walk converge to those for the SRW as $x \to \infty$.
Exercise 4.11.
Assume without restricting generality that \(|x| \geq |y|\) (recall that \(\hat{g}(x, y) = \hat{g}(y, x)\)), and consider the following two cases.

Case 1: \(|y| > |x|^{1/2}\). In this case \(a(x)\) and \(a(y)\) are of the same order, and, since \(|x - y| \leq 2|x|\), due to (3.36) \(a(x) - a(x - y)\) is bounded above by a positive constant; therefore, the expression \(a(x) - a(y) - a(x)\) will be of order \(\ln |x|\). This implies that \(\hat{g}(x, y)\) will be of order \(\frac{1}{\ln |y|}\) indeed.

Case 2: \(|y| \leq |x|^{1/2}\). Here, (3.38) implies that \(a(x) - a(x - y) = O\left(\frac{|y|}{|x|}\right) = O\left(|x|^{-1/2}\right)\), so

\[
\hat{g}(x, y) = \frac{a(y) + O\left(|x|^{-1/2}\right)}{a(x)a(y)} = \frac{1}{a(x)} \left(1 + O\left(\frac{1}{|x|^{1/2} \ln(1 + |y|)}\right)\right),
\]

and this again implies (4.78).

Exercise 4.16.
(i) Think about \(A_n = B(r_ne_1, n)\), where \(r_n \to \infty\) very quickly.

Then, typically, if the conditioned walk ever visits \(r_ne_1\), it will cover the whole \(A_n\) by “local recurrence” (recall that, when far away from the origin, the walk \(\hat{S}\) resembles very much the SRW by Lemma 4.4).

(ii) Think about

\[
A_n = \{r_1e_1, r_2e_1, \ldots, r_ne_1\},
\]

where \((r_n)\) is as above, and apply the reasoning similar to that used in the proof of Theorem 4.10. (The author thanks Hubert Lacoin for suggesting this example.)

Exercise 4.17.
This is open, I think (though should not be very difficult).

Exercise 5.1.
Unfortunately, only with what one sees on Figure 5.6, it is not possible to find it. Think, for instance, that there may be a point just slightly above the top of the biggest triangle, which (I mean, the point) did not make it into the picture.
Exercise 5.2.
Due to Proposition 5.2, we can find a coupling Q between the Markov chain (X_i) and an i.i.d. collection (Y_i) (with law π), in such a way that for any $\lambda > 0$ and $t \geq 0$,

$$Q[\{Y_1, \ldots, Y_R\} \subset \{X_1, \ldots, X_t\}] \geq \Pr[\xi_0 \pi_0(x) + \sum_{j=1}^{t-1} \xi_j p(X_j, x) \geq \lambda \pi(x), \text{ for all } x \in \Sigma] \quad (6.25)$$

where ξ_i are i.i.d. Exp(1) random variables, independent of R, a Poisson(λ)-distributed random variable. Then, obtain from a simple calculation the fact that $\Pr[\{Y_1, \ldots, Y_R\} \cap A = \emptyset] = e^{-\lambda \pi(A)}$.

Exercise 5.3.
If you find one, please, let me know.

Exercise 5.5.
To the second one. See also [26] for a more complete discussion of this.

Exercise 5.9.
Think how one can generate the lines in the order corresponding
(a) to the distances from the origin to the lines;
(b) to the distances from the origin points of intersection with the horizontal axis.

Exercise 5.13.
Answer: $3/2$. It is the last problem of the famous Mathematical Trivium [1] of Vladimir Arnold. Clearly, the problem reduces to finding the expected area of a projection of a square (note that a.s. only three faces of the cube contribute to the projection), and then one can calculate the answer doing a bit of integration. There is another way to solve it, however, that does not require any computations at all, and works for any three-dimensional convex set, not only for the cube. One may reason in the following way:

• imagine the surface of a convex set to be composed of many small plaquettes, and use the linearity of expectation to argue that the expected area of the projection equals the surface area
of the set times a constant (that is, it does not depend on the surface’s shape itself!);
• to obtain this constant, consider a certain special convex set whose projections are the same in all directions (finding such a set is left as an exercise).
References

References

References

Index

adapted process, 4
capacity, 35
Chapman–Kolmogorov equation, 7
escape probability, 35, 81
filtration, 4
Foster’s criterion, 28
Foster-Lyapunov theorem, 28
harmonic measure, 40
hitting time, 5, 8
irreducibility, 7
Lamperti problem, 28
last-visit decomposition, 35
Lyapunov function criterion
 for positive recurrence, 28
 for recurrence, 16
 for transience, 18
Markov chain
 aperiodic, 8
 criterion for positive recurrence, 28
 criterion for recurrence, 16
 criterion for transience, 18
discrete-time, 7
irreducible, 7
null recurrence, 8
period, 8
positive recurrence, 8, 28
recurrence, 8, 9, 16
time-homogeneous, 7
tran-sience, 8, 9, 18
transience, 8, 18, 28

Markov property, 7
strong, 8
martingale, 5
convergence theorem
 for submartingales, 6
 for supermartingales, 6
optional stopping theorem, see
 optional stopping theorem
submartingale, 5
supermartingale, 5
mean drift, 28
natural filtration, 5
optional stopping theorem
 for submartingales, 6, 7
passage time, see hitting time
Radon measure, 110
recurrence, 8, 16, 28
stochastic process, 4
stopping time, 5
transience, 8, 18, 28

164