A sharp condition for global well-posedness of the Inhomogeneous Nonlinear Schrödinger Equation

Luiz Gustavo Farah.

ICEx-UFMG.

First Workshop on Nonlinear Dispersive Equations, October 2013.
We consider the following Inhomogeneous Nonlinear Schrödinger Equation (INLS)

\[
\begin{cases}
i \partial_t u + \Delta u + |x|^{-b}|u|^{2\sigma} u = 0, \\
u(x, 0) = u_0(x),
\end{cases}
\]

where \((x, t) \in \mathbb{R}^N \times [0, \infty)\).

Remark

When \(b = 0\) this is the well-known Nonlinear Schrödinger Equation (NLS).
A more general form of this equation was considered by Merle (AIHP 1996) and Raphaël and Szeftel (JAMS 2011)

$$i\partial_t u + \Delta u + k(x)|u|^{2\sigma} u = 0,$$

where they study the problem of existence/nonexistence of minimal mass solutions.

However, in this both papers, they assume that

$$k(x)$$ is bounded.
Previous results

The (INLS) \(i\partial_t u + \Delta u + |x|^{-b}|u|^{2\sigma} u = 0 \), was already studied by Genoud (JAA 2012) in the case \(\sigma = \frac{2-b}{N} \) (critical case). He proved global well-posedness in \(H^1(\mathbb{R}^N) \) assuming

\[
\| u_0 \|_{L^2(\mathbb{R}^N)} < \| Q \|_{L^2(\mathbb{R}^N)},
\]

where \(Q \) is the unique non-negative, radially-symmetric, decreasing solution of the equation

\[
\Delta Q - Q + |x|^{-b}|Q|^{2(2-b)/N} Q = 0. \tag{2}
\]

Remark

The existence and uniqueness of the ground state solution to (2) was proved by Genoud (PhD Thesis 2008), Toland (PRSE 1984) and Yanagida (ARMA 1991).
The Nonlinear Schrödinger Equation (NLS)

\[
\begin{aligned}
& i \partial_t u + \Delta u + |u|^{2\sigma} u = 0, \\
& u(x, 0) = u_0(x),
\end{aligned}
\]

(3)

where \((x, t) \in \mathbb{R}^N \times [0, \infty)\).

Global well-posedness results in \(H^1(\mathbb{R}^N)\)

- Weinstein (CMP 83): If \(\sigma = 2/N\) we have global solution if

\[
\|u_0\|_{L^2(\mathbb{R}^N)} < \|Q\|_{L^2(\mathbb{R}^N)},
\]

where \(Q\) is the unique non-negative, radially-symmetric, decreasing solution of (10) with \(b = 0\).

Remark

Genoud's result is a generalization of the above result.
The Nonlinear Schrödinger Equation (NLS)

Holmer and Roudenko (CMP 2008): If $\frac{2}{N} < \sigma < \frac{2}{N-2}$ we have global solution if

$$E[u_0]^{s_\sigma} M[u_0]^{1-s_\sigma} < E[Q]^{s_\sigma} M[Q]^{1-s_\sigma}, \quad E[u_0] \geq 0. \quad (4)$$

and

$$\|\nabla u_0\|_{L^2(\mathbb{R}^N)}^{s_\sigma} \|u_0\|_{L^2(\mathbb{R}^N)}^{1-s_\sigma} < \|\nabla Q\|_{L^2(\mathbb{R}^N)}^{s_\sigma} \|Q\|_{L^2(\mathbb{R}^N)}^{1-s_\sigma}, \quad (5)$$

where $s_\sigma = \frac{N}{2} - \frac{1}{\sigma}$ is the critical Sobolev index.

Remark

Note that if $\sigma = 2/N$ conditions (11) and (12) are the same and then we recover Weinstein’s result.
Problem: Is it possible to prove a global well-posedness theorem for the (INLS) similar to Holmer and Roudenko (CMP 2008) result for the (NLS)?
Critical Sobolev index

- **The $H^s(\mathbb{R}^N)$ space:** $\|f\|_{H^s(\mathbb{R}^N)}^2 \equiv \int_{\mathbb{R}^N} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 \, dx$.

- **Scaling:** If u is a solution of (1) then, for all $\lambda > 0$,

 $$u_\lambda(x, t) = \lambda^{\frac{2-b}{2\sigma}} u(\lambda x, \lambda^2 t)$$

 is also a solution. Moreover,

 $$\|u_\lambda(\cdot, 0)\|_{\dot{H}^s} = \lambda^{s + \frac{2-b}{2\sigma} - \frac{N}{2}} \|u_0\|_{\dot{H}^s}.$$

- **Critical Sobolev index:** $s_\sigma = \frac{N}{2} - \frac{2-b}{2\sigma}$

- **Assumption:** If $\frac{2-b}{N} < \sigma < \frac{2-b}{N-2}$ then $0 < s_\sigma < 1$

 (L^2-supercritical and H^1-subcritical).

 We also assume $0 < b < \min\{2, N\}$.

Luiz Gustavo Farah. Generalized KdV Equation
Critical Sobolev index

- **The $H^s(\mathbb{R}^N)$ space:** \(\| f \|^2_{H^s(\mathbb{R}^N)} \equiv \int_{\mathbb{R}^N} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 \, dx. \)

- **Scaling:** If \(u \) is a solution of (1) then, for all \(\lambda > 0 \),

\[
 u_\lambda(x, t) = \lambda^{\frac{2-b}{2\sigma}} u(\lambda x, \lambda^2 t)
\]

is also a solution. Moreover,

\[
 \| u_\lambda(\cdot, 0) \|_{\dot{H}^s} = \lambda^{s\frac{2-b}{2\sigma} - \frac{N}{2}} \| u_0 \|_{\dot{H}^s}.
\]

- **Critical Sobolev index:** \(s_\sigma = \frac{N}{2} - \frac{2-b}{2\sigma} \)

- **Assumption:** If \(\frac{2-b}{N} < \sigma < \frac{2-b}{N-2} \) then \(0 < s_\sigma < 1 \)

\((L^2\text{-supercritical and } H^1\text{-subcritical}). \)

We also assume \(0 < b < \min\{2, N\} \).
Critical Sobolev index

- The $H^s(\mathbb{R}^N)$ space: $\|f\|_{H^s(\mathbb{R}^N)}^2 \equiv \int_{\mathbb{R}^N} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 \, dx$.

- **Scaling**: If u is a solution of (1) then, for all $\lambda > 0$,

 $$u_\lambda(x, t) = \lambda \frac{2-b}{2\sigma} u(\lambda x, \lambda^2 t)$$

 is also a solution. Moreover,

 $$\|u_\lambda(\cdot, 0)\|_{\dot{H}^s} = \lambda^{s+\frac{2-b}{2\sigma} - \frac{N}{2}} \|u_0\|_{\dot{H}^s}.$$

- **Critical Sobolev index**: $s_\sigma = \frac{N}{2} - \frac{2-b}{2\sigma}$

- **Assumption**: If $\frac{2-b}{N} < \sigma < \frac{2-b}{N-2}$ then $0 < s_\sigma < 1$

 (L^2-supercritical and H^1-subcritical).

 We also assume $0 < b < \min\{2, N\}$.

Luiz Gustavo Farah. Generalized KdV Equation
Critical Sobolev index

- The $H^s(\mathbb{R}^N)$ space: $\|f\|_{H^s(\mathbb{R}^N)}^2 = \int_{\mathbb{R}^N} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 \, dx$.

- **Scaling**: If u is a solution of (1) then, for all $\lambda > 0$,

 $$u_\lambda(x, t) = \lambda^{\frac{2-b}{2\sigma}} u(\lambda x, \lambda^2 t)$$

 is also a solution. Moreover,

 $$\|u_\lambda(\cdot, 0)\|_{\dot{H}^s} = \lambda^{s + \frac{2-b}{2\sigma} - \frac{N}{2}} \|u_0\|_{\dot{H}^s}.$$

- **Critical Sobolev index**: $s_\sigma = \frac{N}{2} - \frac{2-b}{2\sigma}$

- **Assumption**: If $\frac{2-b}{N} < \sigma < \frac{2-b}{N-2}$ then $0 < s_\sigma < 1$

 (L^2-supercritical and H^1-subcritical). We also assume $0 < b < \min\{2, N\}$.
Conservation laws

We have following conserved quantities for the (INLS) equation

\[M[u(t)] = \int_{\mathbb{R}^N} |u(x, t)|^2 \, dx \] \hspace{1cm} (6)

and

\[E[u(t)] = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u(x, t)|^2 \, dx - \frac{1}{2\sigma + 2} \int_{\mathbb{R}^N} |x|^{-b}|u(x, t)|^{2\sigma+2} \, dx. \] \hspace{1cm} (7)

We need to show that the quantity (7) is well-defined for solutions in \(H^1(\mathbb{R}) \).
Conservation laws

We have following conserved quantities for the (INLS) equation

\[M[u(t)] = \int_{\mathbb{R}^N} |u(x, t)|^2 \, dx \] \hspace{1cm} (6)

and

\[E[u(t)] = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u(x, t)|^2 \, dx - \frac{1}{2\sigma + 2} \int_{\mathbb{R}^N} |x|^{-b} |u(x, t)|^{2\sigma + 2} \, dx. \] \hspace{1cm} (7)

- We need to show that the quantity (7) is well-defined for solutions in \(H^1(\mathbb{R}) \)
Theorem

Let $k > 0$, then the Gagliardo-Nirenberg inequality

$$\int_{\mathbb{R}^N} |x|^{-b} |u(x)|^{2\sigma+2} \, dx \leq K_{\text{opt}} \|\nabla u\|_{L^2(\mathbb{R}^N)}^{N\sigma+b} \|u\|_{L^2(\mathbb{R}^N)}^{2\sigma+2-(N\sigma+b)}, \quad (8)$$

holds, and the sharp constant $K_{\text{opt}} > 0$ is explicitly given by

$$K_{\text{opt}} = \left(\frac{N\sigma + b}{2\sigma + 2 - (N\sigma + b)} \right)^{\frac{2-(N\sigma+b)}{2}} \frac{2\sigma + 2}{(N\sigma + b)\|Q\|_{L^2(\mathbb{R}^N)}^{2\sigma}}, \quad (9)$$

where Q is the unique non-negative, radially-symmetric, decreasing solution of the equation

$$\Delta Q - Q + |x|^{-b} |Q|^{2\sigma} Q = 0. \quad (10)$$
(i) If $b = 0$ (NLS) and $\sigma = \frac{2}{N}$ we recover the sharp Gagliardo-Nirenberg inequality proved by Weinstein (CMP 83).

(ii) If $0 < b < \min\{2, N\}$ (INLS) and $\sigma = \frac{2-b}{N}$ we recover the sharp Gagliardo-Nirenberg inequality proved by Genoud (JAA 2012).
Comments

(i) If $b = 0$ (NLS) and $\sigma = \frac{2}{N}$ we recover the sharp Gagliardo-Nirenberg inequality proved by Weinstein (CMP 83).

(ii) If $0 < b < \min\{2, N\}$ (INLS) and $\sigma = \frac{2-b}{N}$ we recover the sharp Gagliardo-Nirenberg inequality proved by Genoud (JAA 2012).
Global well-posedness in $H^1(\mathbb{R}^N)$

Theorem

Let $\frac{2-b}{N} < \sigma < \frac{2-b}{N-2}$, $0 < b < \min\{2, N\}$ and set $s_\sigma = \frac{N}{2} - \frac{2-b}{2\sigma}$. Suppose that $u(t)$ be the solution of (1) with initial data $u_0 \in H^1(\mathbb{R}^N)$ satisfying

$$E[u_0]^{s_\sigma} M[u_0]^{1-s_\sigma} < E[Q]^{s_\sigma} M[Q]^{1-s_\sigma}, \quad E[u_0] \geq 0. \quad (11)$$

and

$$\|\nabla u_0\|_{L^2(\mathbb{R}^N)}^{s_\sigma} \|u_0\|_{L^2(\mathbb{R}^N)}^{1-s_\sigma} < \|\nabla Q\|_{L^2(\mathbb{R}^N)}^{s_\sigma} \|Q\|_{L^2(\mathbb{R}^N)}^{1-s_\sigma}, \quad (12)$$

where Q is unique positive even solution of the elliptic equation (10), then $u(t)$ is a global solution in $H^1(\mathbb{R}^N)$.
Comments

(i) If $b = 0$ (NLS) and $\sigma = \frac{2}{N}$ we recover Weinstein (CMP 83) result.

(ii) If $0 < b < \min\{2, N\}$ (INLS) and $\sigma = \frac{2-b}{N}$ we recover Genoud (JAA 2012) result.

(ii) If $b = 0$ (NLS) and $\frac{2}{N} < \sigma < \frac{2}{N-2}$ we recover Holmer and Roudenko (CMP 2008) result.
(i) If $b = 0$ (NLS) and $\sigma = \frac{2}{N}$ we recover Weinstein (CMP 83) result.

(ii) If $0 < b < \min\{2, N\}$ (INLS) and $\sigma = \frac{2-b}{N}$ we recover Genoud (JAA 2012) result.

(ii) If $b = 0$ (NLS) and $\frac{2}{N} < \sigma < \frac{2}{N-2}$ we recover Holmer and Roudenko (CMP 2008) result.
Comments

(i) If $b = 0$ (NLS) and $\sigma = \frac{2}{N}$ we recover Weinstein (CMP 83) result.

(ii) If $0 < b < \min\{2, N\}$ (INLS) and $\sigma = \frac{2-b}{N}$ we recover Genoud (JAA 2012) result.

(ii) If $b = 0$ (NLS) and $\frac{2}{N} < \sigma < \frac{2}{N-2}$ we recover Holmer and Roudenko (CMP 2008) result.
Blow-up solutions in $H^1(\mathbb{R}^N)$

Theorem

Let $\frac{2-b}{N} < \sigma < \frac{2-b}{N-2}$, $0 < b < \min\{2, N\}$ and set $s_\sigma = \frac{N}{2} - \frac{2-b}{2\sigma}$. Suppose that $u(t)$ be the solution of (1) with initial data

$$u_0 \in H^1(\mathbb{R}^N) \cap \{u : |x|u \in L^2(\mathbb{R}^N)\}$$

satisfying

$$E[u_0]^{s_\sigma} M[u_0]^{1-s_\sigma} < E[Q]^{s_\sigma} M[Q]^{1-s_\sigma}, \quad E[u_0] \geq 0 \text{ or } E[u_0] < 0. \quad (13)$$

and

$$\|\nabla u_0\|^{s_\sigma}_{L^2(\mathbb{R}^N)} \|u_0\|^{1-s_\sigma}_{L^2(\mathbb{R}^N)} > \|\nabla Q\|^{s_\sigma}_{L^2(\mathbb{R}^N)} \|Q\|^{1-s_\sigma}_{L^2(\mathbb{R}^N)}, \quad (14)$$

then the maximum existence time is finite and blow-up in $H^1(\mathbb{R}^N)$ must occur.
Virial type estimates for (INLS)

Proposition

Let \(u(x, t) \) be a solution of (INLS) equation then

\[
\frac{d}{dt} \int_{\mathbb{R}^N} |x|^2 |u(x, t)|^2 dx = 4 \text{Im} \int_{\mathbb{R}^N} \bar{u}(x, t)(\nabla u(x, t) \cdot x)dx \quad (15)
\]

and

\[
\frac{d^2}{dt^2} \int_{\mathbb{R}^N} |x|^2 |u(x, t)|^2 dx = 8(N\sigma + b)E[u_0] - 4(N\sigma + b - 2)\|\nabla u(t)\|_{L^2(\mathbb{R}^N)}^2. \quad (16)
\]

Remark

If \(b = 0 \) (NLS) and \(\sigma = \frac{2}{N} \) this is the Virial estimates obtained by Merle (AIHP 1996).
Virial type estimates for (INLS)

Proposition

Let \(u(x, t) \) be a solution of (INLS) equation then

\[
\frac{d}{dt} \int_{\mathbb{R}^N} |x|^2 |u(x, t)|^2 \, dx = 4 \text{Im} \int_{\mathbb{R}^N} \bar{u}(x, t)(\nabla u(x, t) \cdot x) \, dx \tag{15}
\]

and

\[
\frac{d^2}{dt^2} \int_{\mathbb{R}^N} |x|^2 |u(x, t)|^2 \, dx = 8(N\sigma+b)E[u_0] - 4(N\sigma+b-2)\|\nabla u(t)\|_{L^2(\mathbb{R}^N)}^2. \tag{16}
\]

Remark

If \(b = 0 \) (NLS) and \(\sigma = \frac{2}{N} \) this is the Virial estimates obtained by Merle (AIHP 1996).
Energy trapping

(see also Kenig and Merle (IM 2006) and Cazenave, Fang and Xie (Sci. China Math 2011))

Proposition

Let $u_0 \in H^1(\mathbb{R}^N)$ such that

$$\| \nabla u_0 \|_{L^2(\mathbb{R}^N)}^{s_\sigma} \| u_0 \|_{L^2(\mathbb{R}^N)}^{1-s_\sigma} > \| \nabla Q \|_{L^2(\mathbb{R}^N)}^{s_\sigma} \| Q \|_{L^2(\mathbb{R}^N)}^{1-s_\sigma}.$$ \(a\) If $E[u_0] \leq 0$ then

$$\| \nabla u(t) \|_{L^2(\mathbb{R}^N)}^{s_\sigma} \| u(t) \|_{L^2(\mathbb{R}^N)}^{1-s_\sigma} > c_{\sigma,b,N} \| \nabla Q \|_{L^2(\mathbb{R}^N)}^{s_\sigma} \| Q \|_{L^2(\mathbb{R}^N)}^{1-s_\sigma},$$

where $c_{\sigma,b,N} = \left(\frac{N\sigma + b}{2} \right)^{1/N\sigma+b-2}$.
Proposition

(b) If \(E[u_0] > 0 \) and \(E[u_0]^{s_\sigma} M[u_0]^{1-s_\sigma} < E[Q]^{s_\sigma} M[Q]^{1-s_\sigma} \) then

\[
\| \nabla u(t) \|_{L^2(\mathbb{R}^N)}^{s_\sigma} \| u(t) \|_{L^2(\mathbb{R}^N)}^{1-s_\sigma} > c_{\sigma,b,N} \| \nabla Q \|_{L^2(\mathbb{R}^N)}^{s_\sigma} \| Q \|_{L^2(\mathbb{R}^N)}^{1-s_\sigma},
\]

where

\[
c_{\sigma,b,N,Q,u} = \left(1 + \left(\frac{N\sigma + b}{2} \right)^{1/N\sigma + b - 2} - 1 \right) \left(1 - \frac{E[u] M[u]^{s_\sigma}}{E[Q] M[Q]^{s_\sigma}} \right)^{1/2} \right)^{s_\sigma}.
\]

Remark

Note that \(c_{\sigma,b,N} < 1, c_{\sigma,b,N,Q,u} > 1 \) since \(\sigma > \frac{2 - b}{N} \).
Energy trapping

Proposition

(b) If $E[u_0] > 0$ and $E[u_0]^{s_\sigma} M[u_0]^{1-s_\sigma} < E[Q]^{s_\sigma} M[Q]^{1-s_\sigma}$ then

$$\left\| \nabla u(t) \right\|_{L^2(\mathbb{R}^N)}^{s_\sigma} \left\| u(t) \right\|_{L^2(\mathbb{R}^N)}^{1-s_\sigma} > c_{\sigma,b,N} \left\| \nabla Q \right\|_{L^2(\mathbb{R}^N)}^{s_\sigma} \left\| Q \right\|_{L^2(\mathbb{R}^N)}^{1-s_\sigma},$$

where $c_{\sigma,b,N,Q,u} = \left(1 + \left(\frac{N\sigma + b}{2} \right)^{1/(N\sigma+b-2)} - 1 \right) \left(1 - \frac{E[u] M[u]^{s_\sigma}}{E[Q] M[Q]^{s_\sigma}} \right)^{1/2}$. s_σ

Remark

Note that $c_{\sigma,b,N}, c_{\sigma,b,N,Q,u} > 1$ since $\sigma > \frac{2-b}{N}$.

Luiz Gustavo Farah. Generalized KdV Equation
Calculus fact

Lemma

Let \(f(x) = \frac{1}{2}x^2 - ax^\alpha \), where \(a > 0 \) and \(\alpha > 2 \). Define \(p(x) \) the tangent parabola at the positive local maximum of \(f \), namely \((x_{max}, f(x_{max}))\), that pass through the positive root of \(f \), namely \((0, c)\) with \(c > 0 \), then

\[
f(x) \geq p(x), \quad \text{for all } x \in (x_{max}, c).
\]

Luiz Gustavo Farah.
Generalized KdV Equation
Calculus fact

$y = p(x)$
$y = f(x)$
Proof of Theorem 3

Suppose by contradiction that the solution $u(t)$ of equation (1) with initial data satisfying hypotheses (13)-(14) exists globally.

Multiplying the Virial identity (16) by $M[u]^{\frac{s\sigma}{1-s\sigma}}$ and using Proposition 3.2 we have for all $t > 0$

$$\left(\frac{d^2}{dt^2} \int_{\mathbb{R}^N} |x|^2 |u(x, t)|^2 dx \right) M[u_0]^{\frac{s\sigma}{1-s\sigma}}$$

$$< 8(N\sigma + b)E[Q]M[Q]^{\frac{s\sigma}{1-s\sigma}}$$

$$- 4(N\sigma + b - 2)A \left(\|\nabla Q\|_{L^2(\mathbb{R}^N)} \|Q\|_{L^2(\mathbb{R}^N)}^{\frac{s\sigma}{1-s\sigma}}\right)^2,$$

for some number $A = A(\sigma, b, N, Q, u_0) > 1$, given by Proposition 3.2.
Proof of Theorem 3

Since Q is a solution of (10)

$$8(N\sigma + b)E[Q]M[Q]^{\frac{s\sigma}{1-s\sigma}} = 4(N\sigma + b - 2) \left(\| \nabla Q \|_{L^2(\mathbb{R}^N)} \| Q \|_{L^2(\mathbb{R}^N)}^{\frac{s\sigma}{1-s\sigma}} \right)^2$$

Therefore

$$\left(\frac{d^2}{dt^2} \int_{\mathbb{R}^N} |x|^2 |u(x, t)|^2 \, dx \right) M[u_0]^{\frac{s\sigma}{1-s\sigma}}$$

$$< -4(N\sigma + b - 2)(A - 1) \left(\| \nabla Q \|_{L^2(\mathbb{R}^N)} \| Q \|_{L^2(\mathbb{R}^N)}^{\frac{s\sigma}{1-s\sigma}} \right)^2 = -B,$$

(17)

for some number $B = B(\sigma, b, N, Q, u_0) > 0$.

Finally, integrating (17) twice and taking t large we reach a contradiction.
Obrigado!
Bibliography
Bibliography

T. Cazenave, D. Fang and J. Xie,
Scattering for the focusing, energy-subcritical nonlinear Schrödinger equation,

F. Genoud,
An Inhomogeneous, L^2-Critical, Nonlinear Schrödinger Equation,

J. Holmer and S. Roudenko,
A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation,
Kenig and Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,

F. Merle,
Nonexistence of minimal blow-up solutions of equation
\[i\partial_t u = -\Delta u - k(x)|u|^{4/N} u \text{ in } \mathbb{R}^N, \]

Raphaël and Szeftel,
Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass-critical NLS,
Toland,
Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line,

M. Weinstein,
Nonlinear Schrödinger equations and sharp interpolation estimates,

Yanagida,
Uniqueness of positive radial solutions of \(\Delta u + g(r)u + h(r)u^p = 0\) in \(\mathbb{R}^N\),