Prova substitutiva

- Resolver as 2 questões da prova em que você obteve a menor nota.
- Resolver mais 2 questões de provas distintas.
- **P1.1.** Sejam $f(x,y) = \frac{x^2y}{x^4+y^2}$, $f(\mathbf{0}) = 0$, $g(x,y) = (x,y+x^2)$ e $h = f \circ g$, $((x,y) \in \mathbb{R}^2)$.
 - (a) (0,5) Mostre que h não é contínua em 0. (0 = (0,0)).
- (b) (2,0) Mostre que existem as derivadas direcionais $\frac{\partial f}{\partial \mathbf{u}}$ e $\frac{\partial g}{\partial \mathbf{u}}$, para qualquer $\mathbf{u} \in \mathbb{R}^2 \mathbf{0}$, e que isso não é verdade para h, i.e. mostre também que, para algum $\mathbf{u} \in \mathbb{R}^2 \mathbf{0}$, não existe a derivada direcional $\frac{\partial h}{\partial \mathbf{u}}$.
- **P1.2.** (2,5) Sejam X um subconjunto limitado do \mathbb{R}^n e A um aberto contendo a fronteira de A. Mostre que X A é compacto.
- P2.1. (a) (0,5) Enuncie a Forma Local das Imersões.
- (b) (2,0) Sejam A um aberto em \mathbb{R}^m e $f: A \to \mathbb{R}^n$ de classe C^1 . Mostre que o conjunto dos pontos em que f' é injetiva é aberto (em \mathbb{R}^m).
- **P2.2.** (2,5) Seja S um subconjunto limitado do \mathbb{R}^n . Mostre que se f é uma função integrável em S então f é integrável em IntS e $\int_{\text{Int}S} f = \int_{S} f$.
- **P3.1.** (a) (0,5) Mostre a fórmula d(fg) = fdg + gdf, para funções diferenciáveis $f, g : \mathbb{R}^n \to \mathbb{R}$.
- (b) (0,5) Mostre a fórmula ("regra do produto" para formas) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$, para $\omega = f dx_I$, $\eta = g dx_J$, $I = \{i_1 < \dots < i_k\}$, $J = \{j_1 < \dots < j_l\}$, e $f, g : \mathbb{R}^n \to \mathbb{R}$ funções diferenciáveis. (Use as propriedades de produto exterior.)
- (c) (1,5) Sejam M uma k-variedade compacta orientada em \mathbb{R}^n , com o ∂M com a orientação induzida, se $\partial M \neq \emptyset$, e, ω e η formas de classe C^1 de ordem k e l, respectivamente, definidas numa vizinhança de M. Mostre a "fórmula de integração por partes" para formas

$$\int_M d\omega \wedge \eta = \int_{\partial M} \omega \wedge \eta - (-1)^k \int_M \omega \wedge d\eta \ \ (\text{pondo} \ \int_{\partial M} \omega \wedge \eta = 0 \text{ se } \partial M = \emptyset).$$

P3.2. (2,5) Sejam M uma (n-1)-variedade em \mathbb{R}^n (uma hiperficie/variedade de codimensão 1 em \mathbb{R}^n) (com bordo ou sem bordo). Mostre que se M admite um campo de vetores normais contínuo (i.e. se existe $\nu: M \to \mathbb{R}^n$ contínuo tal que $\nu(p) \perp T_p M$ para todo $p \in M$) então M é orientável.

Boa prova!