3a. Lista de Exercícios

- **01.** Seja $\varphi(t) = \int_{t_0}^t f(s,t) ds$, definida para t variando em um intervalo I em \mathbb{R} , onde t_0 é um ponto fixo em I, e f é uma função de $I \times I$ em \mathbb{R} tal que, para cada $t_1 \in I$,
 - (i) f é derivável em relação a t em todo ponto de $I \times I$ e f e f_t são integráveis em relação a s no intervalo com extremidades t_0 e t_1 ;
 - (ii) $f(s, t_1)$ é contínua em $s = t_1$ e;
 - (iii) existe uma função ψ integrável em I tal que $|f_t(s,t)| \leq \psi(s)$ para todo t numa vizinhança de t_1 .

Mostre que φ é derivável e $\varphi'(t) = \int_0^t f_t(s,t)ds + f(t,t)$, para todo $t \in I$.

- **02.** Sejam μ uma medida em um aberto Ω do \mathbb{R}^n , f uma função contínua em Ω e A um subconjunto de Ω mensurável tal que $\mu(A \cap B) > 0$ para toda bola aberta B contida em Ω . Mostre que se $f \leq M$ em A e $_Afd\mu = M$ $(_A = \frac{1}{\mu(A)} \int)$ então $f \equiv M$ em A.
- **03.** (V. livro-texto.) Usando extensão ímpar e a fórmula de D'Alembert, deduza formalmente uma fórmula para a solução do problema

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{em } \mathbb{R}_+ \times (0, \infty) \ (\mathbb{R}_+ = (0, \infty)) \\ u = g, \ u_t = h & \text{em } \mathbb{R}_+ \times \{t = 0\} \\ u = 0 & \text{em } \{x = 0\} \times (0, \infty), \end{cases}$$

- g(0) = h(0) = 0, e enuncie e demonstre um teorema similar ao Teorema 2.4.1 do livro-texto ([Evans]).
- **04 a 16:** Exercícios 12 a 24 do Capítulo 2 do [Evans].
- 17. Estude e demonstre o item (i) do Teorema 5.1 do [Salsa].
- **18 a 20:** Exercícios 5.2, 6.5 e 6.10 do [Salsa].