Lista de Exercícios no. 3

A) Exercícios do livro-texto (Sotomayor, Lições de E.D.O., 1979):

Cap. 2: 01 a 04, 06 – sem a última parte (não precisa fazer a generalização ref. a D^kT_f - mas pode fazer), 07, 10, 11.

- B) Exercícios do livro de M. Viana e J. Espinar, "Equações Diferenciais: Uma abordagem de Sistemas Dinâmicos" [http://edo.impa.br/Livro], cap. 3, atualização 09/05/2020, com adaptações nos enunciados:
 - 3.8. Considere o problema para o "pêndulo harmônico"

$$x'' = -g \operatorname{sen} x$$
, $x(t_0) = x_0$, $x'(t_0) = v_0$.

Justifique que a solução $\varphi(t,t_0,x_0,v_0,g)$ está definida em todo o \mathbb{R}^5 e é de classe C^{∞} .

3.10. Seja $\beta:[a,b]\to\mathbb{R}$ uma função contínua. Mostre que se $u:[a,b]\to\mathbb{R}$ é uma função derivável satisfazendo $u'(t)\leq\beta(t)u(t)$ para todo $t\in[a,b]$ então

$$u(t) < u(a)e^{\int_a^t \beta(s)ds}$$
.

Sugestão: Multiplique a desigual dade diferencial pelo "fator integrante" $\mu(t)=\mathrm{e}^{-\int_a^t\beta(s)ds}.$

3.12. Seja $f:\Omega\to\mathbb{R}$ uma função contínua no aberto Ω do $\mathbb{R}\times\mathbb{R}^n$ e localmente lipschitziana (em relação à segunda variável, uniformemente em relação à primeira). Para $(t_0,x_0)\in\Omega$, seja $\varphi(\cdot,t_0,x_0)$ a solução do problema

$$x' = f(t, x), \quad x(t_0) = x_0.$$

Fixemos um ponto (t_0,x_0) . Mostre que para todo compacto K contido no domínio maximal de $\gamma=\varphi(\cdot,t_0,x_0)$ e todo $\varepsilon>0$ existe $\delta>0$ tal que, para todo $(\bar{t},\bar{x})\in B_{\delta}(t_0,x_0)$ (bola de aberta em $\mathbb{R}\times\mathbb{R}^n\equiv\mathbb{R}^{1+n}$ centrada em (t_0,x_0) e de raio δ), o domínio maximal de $\beta=\varphi(\cdot,\bar{t},\bar{x})$ contém K e $|\beta(t)-\gamma(t)|\leq \varepsilon$ para todo $t\in K$.

C) C.1. Seja f como em 3.12 acima. Mostre a unicidade de solução do problema

$$x' = f(t, x), \quad x(t_0) = x_0$$

usando o Lema de Gronwall (para qualquer $(t_0, x_0) \in \Omega$).

C.2. Um módulo de continuidade é uma função contínua $\rho: \mathbb{R}_+ := [0, \infty) \to \mathbb{R}_+$ não decrescente e tal que $\rho(r) > 0$ se r > 0. Dizemos que ρ satisfaz a condição de Osqood se

$$\int_0^1 \frac{dr}{\rho(r)} = \infty.$$

Cf. Exercício 3.20 do livro de M. Viana e J. Espinar supracitado. Mostre o Lema de Osgood ("versão não linear da Desigualdade de Gronwall"):

Sejam $\gamma: \mathbb{R} \to \mathbb{R}_+$ uma função contínua*, e $\rho: \mathbb{R}_+ \to \mathbb{R}_+$ um módulo de continuidade. Suponhamos que uma função contínua não negativa u satisfaça a designaldade

$$u(t) \leq a + \int_{t_0}^t \gamma(s) \rho(u(s)) ds,$$

para um número real $a \ge 0$, $t_0 \in \mathbb{R}$, e todo $t \ge t_0$ em um intervalo I contendo t_0 . Seja

$$M(x) = \int_x^1 \frac{dr}{\rho(r)}, \quad x > 0.$$

a) Se a > 0 então

$$-M(u(t)) + M(a) \le \int_{t_0}^t \gamma(s) ds$$

para todo $t \ge t_0$ em I.

b) Se a=0 e ρ satisfaz a condição de Osgood então u(t)=0 para todo $t\geq t_0$ em I.

Sugestão, para os itens a) e b): Use/Adapte a demonstração do Lema de Gronwall.

- C.3. Obtenha o Lema de Gronwall como um caso particular do Lema de Osgood. (Mostre que o Lema de Gronwall é um caso particular.)
 - C.4. a) Mostre que a função

$$m(r) = \begin{cases} 0, & \text{se } r = 0\\ r(1 - \log r), & \text{se } 0 < r < 1\\ r, & \text{se } r \ge 1 \end{cases}$$

é um módulo de continuidade e satisfaz a condição de Osgood.

b) Dizemos que um campo de vetores X em \mathbb{R}^n , definido em um conjunto $A \subset \mathbb{R}^n$, é log-lipschitziano se existe uma constante K tal que

$$|X(y) - X(x)| \le K m(|X(y) - X(x)|),$$

^{*}Pode ser apenas localmente integrável em vez de contínua.

para quaisquer $x, y \in A$. Neste caso denotemos por $\langle X \rangle$ a seminorma

$$< X > = \sup_{x,y \in A, \, x \neq y} \frac{|X(y) - X(x)|}{m(|X(y) - X(x)|)}$$

(a menor das constantes K satisfazendo a desigualdade acima). Seja X(t,x) uma campo em \mathbb{R}^n (não autônomo/dependente de t), definido para t em um intervalo I (não degenerado) e x em um aberto A do \mathbb{R}^n . Suponhamos que $X(t,\cdot)$ seja log-lipschitziano em A, para cada $t\in I$, e que a função < X(t)>, $t\in I$, seja contínua. Mostre que o problema

$$x' = X(t, x), \quad x(t_0) = x_0$$

tem no máximo uma solução (para qualquer ponto $(t_0, x_0) \in I \times A$). (Curiosidade: campos log-lipschitzianos são usados na matemática de mecânica de fluidos.)

c) Mostre que a função $f(x)=x\log|x|,\,0\log0:=0,$ é log-lipschiziana (um campo log-lipschitziano escalar) em $\mathbb{R}^{,\dagger}$

 $^{^\}dagger$ Curiosidade: A função $x\log x$ é usada em Otimização (v. e.g. Lopes, Marcos Vinícius. Trajetória Central Associada à Entropia e o Método do Ponto Proximal em Programação Linear. Dissertação de Mestrado - Universidade Federal de Goiás. 2007. Orientador: Orizon Pereira Ferreira.) e a função $-x\log x$ é usada em Teoria da Informação, introduzida pelo fundador da Teoria C. Shannon - é a famosa "entropia de Shannon"; v. Shannon, C. E. A mathematical theory of communication. Bell System Technical Journal, 27 (1948) 379-424, 623-56, ou, a seção 4.1 do livro Yockey, Hubert P. Information theory, evolution, and the origin of life. Cambridge University Press, 2005.