Prova 1, MM425

23 de Abril de 2014

	2.	
Nome:	3.	
RA:	4.	
Assinatura:	5.	
	6.	
	\sum	

Observação: É proibido desgrampear as folhas da prova. Respostas sem justificativas, ou que não incluam os cálculos necessários, não serão consideradas. Desejo-vos uma boa prova!

(1) (1 ponto) Mostre que os espaços vetoriais normados C[0,1] e $L^2[0,2\pi]$ são de dimensão infinita.

Notas

(2) (1 **ponto**) Seja $(X, \|\cdot\|)$ espaço vetorial normado sobre \mathbb{R} e seja $(x_n)_{n\in\mathbb{N}}$ uma sequência em X tal que para todos funcionais linear limitados $f: X \to \mathbb{R}$ tem-se

$$|\langle f, x_n \rangle| \le M_f, \quad \forall n \in \mathbb{N},$$

onde M_f é uma constante que depende de f. Mostre que existe uma constante C>0 tal que

$$||x_n|| \le C, \quad \forall n \in \mathbb{N}.$$

- (3) (2.5 pontos) Seja X = C[0,1] espaço vetorial normado com a norma $||x|| = \max_{t \in [0,1]} |x(t)|$. Define $T: X \to X$ por $(Tx)(t) = t \int_0^t x(s) ds$. Mostre que $T \in \mathcal{B}(X)$ e calcule ||T||. Mais ainda, prove que $T^{-1}: \mathcal{R}(T) \to X$ existe, e verifica se ele é limitado ou não.
- (4) (2.5 pontos) Sejam X, Y espaços de Banach e $T \in \mathcal{B}(X, Y)$. Prove que
 - (a) Se T é sobrejetivo então T^* é injetivo.
 - (b) T^* é sobrejetivo se e somente se T é injetivo e $T^{-1} \in \mathcal{B}(\mathcal{R}(T), X)$.
- (5) (2 pontos) Seja $(X, \|\cdot\|)$ espaço de Banach e seja $T \in \mathcal{B}(X)$ com $\|T\| < 1$, então mostre que I T é inversível e

$$(I-T)^{-1} = I + T + T^2 + T^3 + \cdots$$

e este série converge em $\mathcal{B}(X)$. Mais ainda, prove que

$$||(I-T)^{-1}|| \le (1-||T||)^{-1}.$$

(6) (1 ponto) Enuncie o Toerema de Gráfico Fechado. Com ajuda de um exemplo, demostre que as hipóteses deste teorema não podem ser enfraquecidas.