<u>Programação Linear</u> Prof. Moretti

Método Simplex Revisado (MSR)

A vantagem de se trabalhar com o MSR é que trabalhamos apenas com as informações necessárias para se resolver o problema. Ao invés de estarmos trabalhando com

$$\begin{aligned} x_{\mathrm{B}} &= \overline{b} - \sum_{j \in I(N)} y_{j} x_{j} \\ z &= \overline{z} - \sum_{j \in I(N)} \left(z_{j} - c_{j} \right) x_{j} \end{aligned} \end{aligned} \end{aligned} \text{Neste caso, estamos calculando} \left(z_{j} - c_{j} \right) s$$

$$e \ y_{j} \ s \ de \ todas \ as \ VNB.$$

no MSR temos

W	$c_{\scriptscriptstyle B}B^{\scriptscriptstyle -1}b$	onde	$\mathbf{w} = \mathbf{c}_{\mathrm{B}} \mathbf{B}^{-1}.$
B^{-1}	\overline{b}		- В

Em cada iteração do método, calculamos a variável que entra na base usando apenas as informações do quadro do MSR.

Para cada VNB temos:

$$z_{j} - c_{j} = c_{B}B^{-1}a_{j} - c_{j} = wa_{j} - c_{j}$$

Uma vez definida a VNB que irá entrar na base, precisamos calcular quem sai da base. Assuma que x_k entra na base. Portanto, calcule $y_k = B^{-1}a^k$.

Para calcular quem sai da base, basta efetuar o teste da razão:

$$\frac{\overline{b}_{r}}{y_{rk}} = \min_{1 \le i \le m} \left\{ \frac{\overline{b}_{i}}{y_{ik}} : y_{ik} > 0 \right\}$$

ou seja, a variável básica x_{B_r} sai da base.

Para atualizar o quadro simplex, faça o seguinte:

W	$c_B B^{-1} b$
	$\overline{\mathbf{b}}_{1}$
B^{-1}	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
В	$\overline{\mathbf{b}}_{\mathbf{r}}$:
	$\frac{}{\dot{b}_{m}}$

$\mathbf{z}_{\mathrm{k}} - \mathbf{c}_{\mathrm{k}}$
y_{1k}
:
$y_{\rm rk}$
÷
\mathbf{y}_{mk}

Agora, basta transformar $y_{\rm rk}$ em 1 e os demais componentes da coluna em zero.

Ao término desta operação, temos o novo quadro do SR.

Exemplo:

$$\begin{aligned} \text{Max } \mathbf{z} &= -2\mathbf{x}_2 + \mathbf{x}_3 \\ \text{sa} \\ \mathbf{x}_1 &- 2\mathbf{x}_2 + \mathbf{x}_3 \geq -4 \\ \mathbf{x}_1 &+ \mathbf{x}_2 + \mathbf{x}_3 \leq 9 \\ 2\mathbf{x}_1 &- \mathbf{x}_2 - \mathbf{x}_3 \leq 5 \\ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \geq 0 \end{aligned}$$

Colocando o problema na forma padrão, temos:

Base inicial: $[a^4, a^5, a^6] = I_{3x3}$

$$\begin{aligned} x_{\rm B} &= \left(x_4, x_5, x_6\right) & c_{\rm B} &= \left[c^4, c^5, c^6\right] &= \left(0, 0, 0\right) & \overline{z} &= c_{\rm B} B^{-1} b &= 0 \\ w &= c_{\rm B} B^{-1} &= 0 & I(N) &= \left(1, 2, 3\right) & I(B) &= \left(4, 5, 6\right) \\ \overline{b} &= B^{-1} b &= b & \end{aligned}$$

Iteração 1

0	0	0	0
1	0	0	4
0	1	0	9
0	0	1	5

Cálculo de quem entra na base:

Para todo $j \in I(N)$

$$\mathbf{z}_1 - \mathbf{c}_1 = \mathbf{wa}^1 - \mathbf{c}_1 = 0$$

 $\mathbf{z}_2 - \mathbf{c}_2 = \mathbf{wa}^2 - \mathbf{c}_2 = 2$

$$z_2 - c_2 = wa^2 - c_2 = 2$$

$$\mathbf{z}_3 - \mathbf{c}_3 = \mathbf{wa}^3 - \mathbf{c}_3 = -1 \quad \Rightarrow \quad \mathbf{x}_3$$
é candidata a entrar na base.

$$y_3 = B^{-1}a^3 = Ia^3 = (-1, 1, -1)^t$$

0	0	0	0
1	0	0	4
0	1	0	9
0	0	1	5

x₅ sai da base.

Transformar y_{23} em 1 e os demais em zeros.

0	1	0	9
1	1	0	13
0	1	0	9
0	1	1	14

0
0
1
0

Novo quadro simplex

Iteração 2

Cálculo dos $z_i - c_i's$, $I(N) = \{1, 2, 5\}$

$$\mathbf{z}_1 - \mathbf{c}_1 = \mathbf{wa}^1 - \mathbf{c}_1 = (0, 1, 0) \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} - 0 = 1$$

$$\mathbf{z}_{2} - \mathbf{c}_{2} = \mathbf{wa}^{2} - \mathbf{c}_{2} = (0, 1, 0) \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + 2 = 3$$

$$\mathbf{z}_{5} - \mathbf{c}_{5} = \mathbf{wa}^{5} - \mathbf{c}_{5} = (0, 1, 0) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 0 = 1$$

$$\mathbf{z}_{5} - \mathbf{c}_{5} = \mathbf{wa}^{5} - \mathbf{c}_{5} = (0, 1, 0) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 0 = 1$$

Como todos os custos reduzidos são ≥ 0 , estamos no ótimo.