
IBM ILOG OPL V6.3

IBM ILOG OPL — From OR to
OPL and ODM

© Copyright International Business Machines Corporation 1987, 2009
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright

COPYRIGHT NOTICE

© Copyright International Business Machines Corporation 1987, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com, WebSphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Acknowledgement

The language manuals are based on, and include substantial material from, The OPL
Optimization Programming Language by Pascal Van Hentenryck, © 1999 Massachusetts
Institute of Technology.

http://www.ibm.com/legal/copytrade.shtml

Table of contents

From OR to OPL and ODM...5
A quick start to OPL..7
What is in the Quick Start?...9
The Main window..10
Understanding OPL projects..11

Projects / folders...12
Model files...13
Data files...15
Settings files..16
Run configurations..17

Modeling the P-Median problem with OPL...18
Two solving engines...21
Debugging and dealing with error messages...22
Displaying solutions..23
Summary: what you can do with the OPL IDE...24

From problem solving to what-if scenarios: IBM ILOG ODM..25
ODM Overview...26
How OPL and ODM integrate...27
Rapid development with tightly integrated OPL and ODM...28

Index..31

© Copyright IBM Corp. 1987, 2009 3

C O N T E N T S

I B M I L O G O P L — F R O M O R T O O P L A N D O D M4

From OR to OPL and ODM

Provides an overview of IBM® ILOG® OPL and its main features for OR experts who are
not familiar with IBM ILOG OPL and IBM ILOG ODM.

In this section

A quick start to OPL
A description of OPL for users who are familiar with optimization problems but not with the
OPL product.

From problem solving to what-if scenarios: IBM ILOG ODM
Presents IBM® ILOG® Optimization Decision Manager, a solution for the development
and deployment of optimization-based planning and scheduling applications.

© Copyright IBM Corp. 1987, 2009 5

I B M I L O G O P L — F R O M O R T O O P L A N D O D M6

A quick start to OPL

A description of OPL for users who are familiar with optimization problems but not with the
OPL product.

In this section

What is in the Quick Start?
This section is for OR experts who are not familiar with OPL and who want a fast introduction
to the product and its concepts.

The Main window
Presents a graphical view of the main window of the OPL IDE, and a brief description of its
primary controls and elements.

Understanding OPL projects
OPL handles project files, data files, model files, setting files, and run configurations.

Modeling the P-Median problem with OPL
Explains how to model the well-known P-Median problem in OPL.

Two solving engines
Presents the two solving engines that underlie OPL: CPLEX® and CP Optimizer.

Debugging and dealing with error messages
Describes how OPL checks for and displays syntax errors and solving errors.

Displaying solutions
Provides a short description of how you can view solutions to your problems in OPL, both
while the solver is running and after the solve has finished.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 7

Summary: what you can do with the OPL IDE
Summarizes the features and capabilities of OPL.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M8

What is in the Quick Start?

This Quick Start is written for OR experts who are not familiar with the IBM® ILOG® OPL
approach for development and deployment of optimization models. It starts from a well
known, hands-on example based on the P-Median warehouse allocation problem. More
detailed information on the concepts, terms, and procedures presented in this section is
provided throughout the OPL documentation set, in particular in theGlossary and inGetting
Started with the IDE.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 9

The Main window

Tooltips appear when you move the pointer over most elements of the main window.

This annotated screenshot is provided just to give you an idea of what the OPL integrated
development environment (IDE) looks like as you are working with it.

Additional information on the OPL IDE and how to work with it are presented in Getting
Started with the OPL IDE and in the IDE Reference manual.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M10

Understanding OPL projects

OPL handles project files, data files, model files, setting files, and run configurations.

In this section

Projects / folders
Defines what a project is in OPL.

Model files
Describes how model (.mod) files are used in OPL.

Data files
Describes how data (.dat) files are used in OPL.

Settings files
Describes how settings (.ops) files can used to change the default values of OPL.

Run configurations
Describes how different run configurations can be defined in OPL to support multiple
execution configurations.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 11

Projects / folders

IBM® ILOG® OPL uses the concept of a project to associate a model (.mod) file with,
usually, one or more data (.dat) files and one or more settings (.ops) files.

A project containing only a single model file is valid; data and settings files are optional.
However, one project can contain several sets of model, data and settings files, the
relationships between them maintained using run configurations.

Themodel file declares data elements but does not necessarily initialize them. The data files
contain the initialization of data elements declared in the model.

The .project file in the root folder for the OPL project organizes all the related model, data
and settings files. Run configurations, which are maintained in an .oplproject file, also
provide a convenient way to maintain the relationship between related files and runtime
options for the environment (see also the Run configurations section).

When you are about to write a new model in IBM ILOG, the dialog box that appears allows
you to name your project, give your project a description, and choose whether you want to
create a data file or a settings file. The description of the project may be useful later to
better differentiate projects with similar names. This is explained in detail in Getting Started
with the OPL IDE and in the IDE Reference manual.

A minimal project has:

♦ one model file

♦ one default run configuration referencing that same model file

A typical project has:

♦ one or more model files

♦ any number of data files or no data file

♦ any number of settings files or no settings file

♦ one or more run configurations referencing various combinations of those model, data,
and settings files. (A run configuration cannot have more than one model file.)

I B M I L O G O P L — F R O M O R T O O P L A N D O D M12

Model files

Model (.mod) files contain all your OPL statements. The data and the objective function are
not mandatory and there may be more optional components, such as scripting statements.
Note that you can also generate a model file in a compiled form (.opl) from the IDE for
execution through the OPL interface libraries (see Generating a compiled model). The
components of a model file are covered in the following sections.

Declarations of data
Data declarations allow you to name your data so that you can reference them easily in your
model. For example, if your data in a table define the cost of shipping one unit of material
from location i to location j, you might want to call your item of data costij where i=1, . . . ,
n and j=1, . . . , n and n is the number of locations in your model. You tell OPL that your
model uses this data by declaring:

int n = . . . ;
float cost[1..n][1..n] = . . . ;

The . . . (ellipsis) means that the values for your table are located in a data file, which must
be listed in the current project.

You could also list the data explicitly in the model file. However, it is recommended that you
construct model files without specifying values for data so that you can later easily solve
many instances of the same model by simply changing the data file. See also the Run
configurations section.

Note that the int type declared means that the numbers in the data file must be integers.
If the numbers in the data file are floating-point numbers, use the float type instead.

Declarations of decision variables
In OPL context, as opposed to IBM ILOG Script and to the general programming context,
variables are decision variables. Declarations of decision variables name and give the type
of each variable in the model. For example, if you want to create a variable that equals the
amount of material shipped from location i to location j, you can create a variable named
shipij.

dvar float+ ship[1..n][1..n];

That statement declares an array of non-negative floating-point variables. (That is what
float+ means). The dvar keyword indicates that you are declaring a decision variable.

An objective function
The objective function is a function that you want to optimize. This function must consist of
variables and data that you have declared earlier in the model file. The objective function
is introduced by either the minimize or the maximize keyword. For example,

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 13

minimize sum(i,j in 1..n) cost[i][j]*ship[i][j];

That statement indicates that you want to minimize the sum of the shipping costs for each
origin-destination pair.

Constraints
Constraints indicate the conditions necessary for a feasible solution to your model. You
declare constraints within a subject to block. For example,

subject to {
forall(j in 1..n) sum(i in 1..n) ship[i][j] == demand[j];

}

That statement declares one set of constraints. There is a constraint for each destination.
(That is what the forall keyword indicates.) The constraint for each destination states that
the sum of material shipped to that destination must equal the demand at that destination.
The symbol == indicates equals within a constraint block. The symbol <= indicates less than
or equal to. The symbol >= indicates greater than or equal to.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M14

Data files

You can organize large problems better by separating the model of the problem from the
instance data, each set of data stored in a separate data file, with a .dat extension.

In this case, you store the instance data in one or more data files (.dat). Data files (.dat)
store the values of the data used in the model. If you declare the data as suggested in this
tutorial, your data file will look something like this:

n = 3;

c = [[0.0 1.5 2.3]
[1.5 0.0 3.7]
[2.3 3.7 0.0]];

Each data file may specify one or more connections to data sources, such as a relational
database or a spreadsheet, to read and write data.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 15

Settings files

Settings files (.ops) are where your user-defined values are stored when you decide to
change the default values of OPL language options, constraint-programming (CP Optimizer)
parameters, or mathematical-programming (CPLEX®) parameters.

OPL settings apply only to the model included in the run configuration, not to the submodels
loaded and solved.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M16

Run configurations

Run configurations are a way of handling model, data, and settings files within a project.

Basically, a run configuration is a variation of a given project for execution purposes. It
combines at least a model file and, optionally, one or more data files and one or more settings
files within the project, while addressing the same mathematical problem. You can define
as many run configurations as you need within a given project. Typically, you use run
configurations to test, improve, and fine-tune your OPL projects.

For example, you can:

♦ keep two sets of data: a simple one for quick prototyping and a larger one to work closer
to your business case;

♦ keep one configuration for each set of MP options (CPLEX parameters) that makes sense
for your problem.

Practically, run configurations appear as sublevels in the Projects tree.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 17

Modeling the P-Median problem with OPL

The P-Median problem is a well knownwarehouse allocation problem in Operations Research.
The problem can be stated very simply, like this: given a set of customers with known amounts
of demand, a set of candidate locations for warehouses, and the distance between each pair
of customer-warehouse, choose P warehouses to open that minimize the demand-weighted
distance of serving all customers from those P warehouses.

A standard textbook would probably write out the P-Median problem like this:

Data

number of facilities to locate=P

set of customers=I

set of candidate locations for warehouses=J

demand for customer i=hi

distance between customer i and candidate warehouse j=dij

Decision variables

1 if candidate warehouse j is used; 0 otherwise=xj

1 if demand for customer i is satisfied by warehouse j; 0 otherwise=yij

Objective
Minimize the demand-weighted distance of delivering to customers.

Or, expressed as an equation:

Constraints

each customer is served by exactly one warehouse.constraint makes sure that1st

P warehouses are built.constraint makes sure that2nd

a customer is not served by an unopened warehouse.constraint makes sure that3rd

Or, expressed as equations:

I B M I L O G O P L — F R O M O R T O O P L A N D O D M18

The construction of an OPL model file (.mod) follows the same format exactly. The P-Median
problem can be formulated in IBM ILOG OPL like this:

//Data
int P = ...;
{string} Customers = ...;
{string} Warehouses = ...;
int Demand[Customers] = ...;
float Distance[Customers][Warehouses] = ...;

//Variables
dvar boolean OpenWarehouse[Warehouses];
dvar boolean ShipToCustomer[Customers][Warehouses];

//Objective
minimize
sum(c in Customers , w in Warehouses)
Demand[c]*Distance[c][w]*ShipToCustomer[c][w];

//Constraints
subject to {
forall(c in Customers)
ctShip:
sum(w in Warehouses)
ShipToCustomer[c][w] == 1;

ctOpen:
sum(w in Warehouses)
OpenWarehouse[w] == P;

forall(c in Customers , w in Warehouses)
ctShipOpen:
ShipToCustomer[c][w] <= OpenWarehouse[w];

}

Notice that:

♦ the names of the customers and warehouses are specified as sets of strings in the data
file. (That is what the notation {string} means.)

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 19

♦ it is also possible to use sets of integers as the labels for the customers and warehouses.
You can also use ranges instead of sets. The demand and distance data remain the same,
regardless of the format of the labels for customers and warehouses.

♦ the ... (ellipsis) syntax means that the data is initialized externally, that is, from a data
file (pmedian.dat).

P=2;
Customers={"Albert","Bob","Chris","Daniel"};
Warehouses={"Santa Clara","San Jose","Berkeley"};
Demand=[100,80,80,70];
Distance=
[[2 , 10 , 50],
[2, 10, 52],
[50, 60 , 3],
[40 , 60 , 1]];

I B M I L O G O P L — F R O M O R T O O P L A N D O D M20

Two solving engines

After the model, data, and settings files are complete, use the Run button or the context
menus in the OPL Projects Navigator to run your model.

The time it will take to solve a model naturally depends on the size and complexity of the
model. Typical textbook problems like the P-Median problem usually solve very quickly. If
the solver finds a feasible solution, it displays the solution in the Solutions tab of the Output
Area. (See The Main window.) The solver will continue working until an optimal solution is
found or until you click the Abort button.

OPL supports two solving engines:

♦ the CPLEX® engine for mathematical programming is used by default when you run
your project if your model does not start with the statement using CP;. This is the case
of the P-Median problem described in the Modeling the P-Median problem with OPL.

♦ the CP Optimizer engine for constraint programming is called if your model starts with
the statement using CP;. You can write, edit and solve the model from the OPL IDE,
from the oplrun command line tool, and from the APIs.

You will find more information on CP modeling and solving in the documentation set. In
particular, Constraint programming versus mathematical programming in the Language
User’s Manual presents the differences between MP models and CP models.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 21

Debugging and dealing with error messages

OPL checks for errors in the model and data files.

Syntax errors
Syntax and semantic errors are displayed dynamically in the Issues tab as you type.

For example, a common error is to forget to put a semicolon at the end of a statement. If
you omit the semicolon at the end of the line

int P = ...;

the Problems tab displays the description, location, and source file of the error.

Generally, error messages will look similar to this example.

Solving errors
Immediately after you run your project, OPL checks for errors that prevent the solver from
running. If such errors are found, one or more error messages will be displayed in the
Problems tab. (See The Main window section.)

I B M I L O G O P L — F R O M O R T O O P L A N D O D M22

Displaying solutions

It is possible for you to view solutions while the solver is running as well as after it has
finished. In addition to the Solutions tab of the Output Area, you can view a solution in
tabular form through theProblem Browser. (See TheMain window.) If your model expresses
a MIP problem that generates feasible solutions, you can see the solution pool in the Problem
Browser and further populate it with more nonoptimal solutions. (You can also see feasible
solutions in the Solutions tab if certain Language settings are selected; see After running a
project and Setting language options.)

You can see variable values in the Problem Browser, which also contains information about
data structures, data values, labeled constraints and sensitivity data, as well as postprocessing
data.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 23

Summary: what you can do with the OPL IDE

The IBM® ILOG® OPL IDE is an integrated development environment (IDE) for
mathematical programming, constraint programming, and combinatorial optimization
applications in general. It is the graphical user interface (GUI) for the Optimization
Programming Language and IBM ILOG Script for OPL, its scripting language.

With the IBM ILOG OPL IDE you can:

♦ Create and modify project files, as well as model and data, using the editing capabilities

♦ Create and modify settings files to apply language options, mathematical programming
parameters and constraint programming parameters

♦ Execute a project

♦ Visualize OPL results in text or tabular form

♦ Search for relaxations of variables and constraints, and for conflicts between constraints
in infeasible MP models

♦ Identify the time and memory consumed for the execution of a project

♦ Work with IBM ILOG Script for OPL, the scripting language

♦ Debug scripts using the debug facilities

♦ Generate a compiled model

♦ Generate external data files or internal data files to various formats

♦ Visualize the state of variables at some point during the search for a solution

♦ Connect to a database or to a spreadsheet to read and write data

♦ Set preferences for the appearance the IDE

♦ and carry out many other tasks

I B M I L O G O P L — F R O M O R T O O P L A N D O D M24

From problem solving to what-if scenarios:
IBM ILOG ODM

Presents IBM® ILOG® Optimization Decision Manager, a solution for the development
and deployment of optimization-based planning and scheduling applications.

In this section

ODM Overview
Presents a short overview of IBM® ILOG® Optimization Decision Manager (ODM).

How OPL and ODM integrate
Describes the overall IBM® ILOG® optimization suite and interactivity of its components
— OPL, ODM, CPLEX® , and CP Optimizer.

Rapid development with tightly integrated OPL and ODM
Describes the features and benefits of ODM.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 25

ODM Overview

IBM® ILOG® OPL is integrated with a companion product called IBM ILOG Optimization
Decision Manager (ODM). IBM ILOG ODM is both a tool for application development and a
runtime environment for the distributed applications, and the combined product is a complete
solution for the development and deployment of optimization-based desktop planning and
scheduling applications.

In essence, you supply the mathematical model in OPL, and ODM supplies the GUI and the
interactivity with your model that makes it easy to use for operations managers and planners.
ODM is perfect for OR professionals who want to easily create and configure desktop solutions
for their users in the OPL IDE, without the need for programming skills.

Desktop applications built with IBM ILOG ODM allow users to adjust assumptions, operating
constraints and goals for planning and scheduling resources, and see the results in familiar
business terms, providing extensive what-if analysis and scenario comparison features “out
of the box.”

For more extensive corporation-wide applications, we provide another product, IBM ILOG
ODM Enterprise, which allows you to build distributed applications (both remote execution
and multi-user), and offers an extensive platform for customization using Java™ and IBM
ILOG JViews.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M26

How OPL and ODM integrate

IBM® provides a complete set of tools for building custom optimization-based decision
support applications, which includes.

♦ IBM!® ILOG® CPLEX® – A mathematical programming engine that solves the full
range of LP and MIP problems encountered in the real world.

♦ IBM ILOG CP Optimizer – A constraint programming engine that solves complex
scheduling and routing problems.

♦ IBM ILOG OPL – A complete IDE for rapid development and deployment of optimization
models.

OPL, ODM, CPLEX and CP Optimizer

IBM makes optimization more widely accessible than ever before, because it offers such a
wide range of capabilities across several fundamental dimensions, typically:

♦ Supporting many types of optimization applications: From off-line strategic planning
applications through detailed scheduling to real-time operational applications.

♦ Supporting the complete model development and application life-cycle: Complete
support for the application development process, from quick prototyping through model
and application refinement, to application deployment and maintenance.

♦ Supporting multiple personas: OR and IT professionals, together with operations and
business managers, can now collaborate in entirely new ways to rapidly generate custom
decision-support applications.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 27

Rapid development with tightly integrated OPL and ODM

Developing an application with IBM® ILOG® OPL and IBM ILOG ODM is very easy and
productive.

The integration comes with a wizard that automatically generates an ODM application based
on the structure of your OPL model.

♦ OPL data structures such as arrays and tuple sets are mapped to input data tables and
graphical views in ODM. Because they are editable, users can then play out scenarios in
ODM based on data changes.

♦ Mathematical constraints from your OPL model can be exposed as ODM requirements
(soft constraints) with priorities, allowing a business user to make trade-offs between
conflicting business requirements and alternative relaxations.

♦ The objectives of your mathematical model are mapped to ODM goals, which allow
interactive goal programming and balancing between multiple objective criteria.

♦ Decision variables in the model are represented as solution views in ODM, and can be
configured to show aggregate values and key performance indicators (KPIs), as well as
providing exporting to Excel and integration with reporting tools.

The generated ODM application is configurable through editors inside OPL, and as the model
evolves it can be extended to take new business requirements into account. The following
figure shows how a chart view in ODM is configured in OPL.

I B M I L O G O P L — F R O M O R T O O P L A N D O D M28

Configuring an ODM chart view in OPL

Developing an application with IBM ILOG OPL and IBM ILOG ODM also allows business
users to take part in the rapid prototyping and iterative development needed to strengthen
definitions of requirements, refine models, perfect scenario parameters, and examine KPIs,
solution views, and business goals.

If you are reading this because you are a current OPL user but without access to ODM,
please contact your IBM sales representative.

Note:

I B M I L O G O P L — F R O M O R T O O P L A N D O D M 29

I B M I L O G O P L — F R O M O R T O O P L A N D O D M30

D
data file 12

F
folder 12

M
model file 12

O
ODM

overview 26

P
project 12

R
run configurations 12

S
settings file 12

© Copyright IBM Corp. 1987, 2009 31

I N D E X

Index

	Table of contents
	From OR to OPL and ODM
	A quick start to OPL
	What is in the Quick Start?
	The Main window
	Understanding OPL projects
	Projects / folders
	Model files
	Data files
	Settings files
	Run configurations

	Modeling the P-Median problem with OPL
	Two solving engines
	Debugging and dealing with error messages
	Displaying solutions
	Summary: what you can do with the OPL IDE

	From problem solving to what-if scenarios: IBM ILOG ODM
	ODM Overview
	How OPL and ODM integrate
	Rapid development with tightly integrated OPL and ODM

	Index

