
Discrete Newton’s method with local variations

for solving large-scale nonlinear systems ∗

Maria A. Diniz-Ehrhardt † Márcia A. Gomes-Ruggiero ‡

Vera L. Rocha Lopes § José Mario Mart́ınez ¶

Abstract

A globally convergent discrete Newton method is proposed for solving large-scale
nonlinear systems of equations. Advantage is taken from discretization steps so that
the residual norm can be reduced while the Jacobian is approximated, besides the
reduction at Newtonian iterations. The Curtis-Powell-Reid (CPR) scheme for dis-
cretization is used for dealing with sparse Jacobians. Global convergence is proved
and numerical experiments are presented.

Key words: Nonlinear systems, discrete Newton’s method, local variations method.

1 Introduction

The problem of solving nonlinear systems of equations

F (x) = 0, (1)

where
F : IRn → IRn, F ∈ C1(IRn),

F = (f1, . . . , fn), appears frequently in applications to Physics, Chemistry and Engineering
[6, 8, 13].

In this paper we introduce a new method to solve problem (1) which is based on two
ideas: the evaluation of the discrete approximation of large scale sparse Jacobian matrices
by groups, with just one function evaluation per group [3, 7], and the local variations

∗All the authors are from: DMA-IMECC-UNICAMP, 13083-970 Campinas SP, Brazil. They were
supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grant 2001-04597-4) and CNPq.

†e-mail: cheti@ime.unicamp.br
‡e-mail: marcia@ime.unicamp.br
§Also supported by FAPESP (Grant 2001-07987-8); e-mail: vlopes@ime.unicamp.br
¶e-mail: martinez@ime.unicamp.br

1

method [1, 14, 15]. What characterizes our algorithm is the way in which we combine
these ideas. Roughly speaking, an iteration of the new algorithm starts from a current
“base point” and this point can be changed according to the local variations concepts.
The groups used in the evaluation of the discrete Jacobian matrices are CPR–valid groups
in the sense of [7]. Global convergence is obtained using classical backtracking with a
tolerant strategy [10], performed on the Newtonian direction.

We present a model algorithm, a particular case of which is the implemented method.
Besides testing the new method with boundary value problems, as done by Polak [15]

and Goldfarb and Toint [7], we apply our algorithm to solve some problems from the
classical literature [11]. The numerical results show a good performance of this approach.

The paper is organized as follows. In Section 2 we introduce the general algorithm
and we present a convergence result. In Section 3 we describe the implementation of the
local variations method proposed. Section 4 presents our numerical experiments. Finally,
in Section 5, we make some comments and present some conclusions about this work.

¿From now on, ‖ · ‖ denotes an arbitrary norm and IN is the set {0, 1, 2, . . .}.

2 Model algorithm and convergence

Assume that F : IRn → IRn, F ∈ C1(IRn). We denote J(x), the Jacobian matrix of F (x).
Assume that J satisfies the Lipschitz condition

‖J(x)− J(y)‖ ≤ L‖x− y‖ ∀x, y ∈ IRn. (2)

Then,

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L

2
‖x− y‖2 ∀x, y ∈ IRn. (3)

Assume that σ ∈ (0, 1), 0 < τmin < τmax < 1, α−1 = 1, c > 0 and that {ηk} is a
sequence such that

ηk > 0 for all k ∈ IN and
∞∑

k=0

ηk = η <∞. (4)

Let x0 ∈ IRn be an arbitrary initial point.
Given xk ∈ IRn, the kth iterate of the algorithm, the steps for obtaining xk+1 are given

in Algorithm 1.

Algorithm 1. (Model Algorithm)

Step 1: Compute Bk ∈ IRn×n such that

‖Bk − J(xk)‖ ≤ c αk−1. (5)

2

Step 2: Compute (if possible) dk ∈ IRn such that

Bkdk + F (xk) = 0. (6)

Step 3:
step 3.1: Set α← 1.
step 3.2: If

‖F (xk + αdk)‖ ≤ (1− ασ)‖F (xk)‖+ ηk, (7)

set αk = α and go to Step 4.
If (7) does not hold, compute αnew ∈ [τminα, τmaxα], set α← αnew and repeat step 3.2.

Step 4: Compute xk+1 ∈ IRn such that

‖F (xk+1)‖ ≤ ‖F (xk + αkdk)‖. (8)

Remarks.

1. Since ηk > 0 the condition (7) necessarily holds if α is small enough. Therefore, the
iteration is well defined whenever the linear system (6) has a solution.

2. Algorithm 1 may be viewed as a Newton-like method for solving the nonlinear sys-
tem F (x) = 0. At Step 2 the typical Newtonian linear system Bkd = −F (xk) is
solved and Step 3 represents a nonmonotone line search procedure, inspired in [10].
An additional improvement of the system norm is obtained at Step 4.

3. In specific implementations, Bk will be a discretization of the Jacobian matrix J(xk).
Therefore, the “error” ‖Bk−J(xk)‖ will be proportional to a discretization step hk.
In (5) we impose that the discretization step at iteration k must be proportional to
the previous steplength αk−1. The motivation for this is that “αk−1 small” implies
that, at iteration k − 1, the test (7) failed several times probably because Bk−1 was
not close enough to J(xk−1). So, at iteration k we choose a small discretization step
that makes Bk closer to J(xk).

4. The presence of ηk > 0 in the line search (7) makes it possible that, sometimes,
‖F (xk+1)‖ > ‖F (xk)‖. The direction dk obtained in (6) might not be a descent
direction for ‖F (x)‖, therefore the iteration might not be well defined without the
incorporation of ηk. Therefore, nonmonotone line searches seem to be important in
the implementation of this type of algorithms.

5. After the computation of αk, we collect information for computing a new Jacobian
approximation. We do this by means of the evaluation of F (x) at auxiliary points.
Each time we evaluate the system at a new auxiliary point, we verify whether the
system norm at the new point is smaller than at the previous one. When the cycle

3

of auxiliary points is completed, we possibly have a new point with a system norm
smaller than ‖F (xk + αkdk)‖. This new point will be called xk+1. Step 4 will be
the “local variations” part of the implemented algorithm. Observe that the choice
of auxiliary points must obey the proportionality constraint (5).

6. The local variations procedure may help to improve the quality of the approximate
solution, especially when we are far from the solution of the system. In this way,
additional evaluations are more than an auxiliary device to estimate Jacobians.

In the following theorem we prove that, assuming boundedness of the inverse Jacobian,
Algorithm 1 finds solutions of F (x) = 0 with an arbitrary precision.

Theorem 1. Assume that {xk} is generated by Algorithm 1 and, for some sequence of
indices K1 ⊂ IN , J(xk) is nonsingular and ‖J(xk)−1‖ ≤M . Then

lim
k→∞

‖F (xk)‖ = 0

and every limit point of {xk} is a solution of the system (1).

Proof. We consider two disjoint possibilities:
(i) For infinitely many indices k ∈ K ⊂ IN , we have that αk ≥ ᾱ > 0.
(ii) limk→∞ αk = 0.
Let us analyze first Case (i). From (7) and (8),

‖F (xk+1)‖ ≤ (1− αkσ)‖F (xk)‖+ ηk (9)

for all k ∈ IN .
Adding all these inequalities, we get

0 ≤ ‖F (x0)‖+
∞∑

k=0

ηk − σ
∞∑

k=0

αk‖F (xk)‖.

Then,

σ
∑
k∈K

ᾱ‖F (xk)‖ ≤ σ
∑
k∈K

αk‖F (xk)‖ ≤ σ
∞∑

k=0

αk‖F (xk)‖ ≤ ‖F (x0)‖+ η.

Therefore,
lim
k∈K
‖F (xk)‖ = 0.

Given ε > 0, let k0 be such that
(a) For all k ∈ K, k ≥ k0, ‖F (xk)‖ ≤ ε/2;
(b)

∑∞
`=k0

η` ≤ ε/2.

4

Then, if k ≥ k0,

‖F (xk)‖ ≤ ‖F (xk0)‖+
k−1∑
`=k0

η` ≤ ‖F (xk0)‖+
∞∑

`=k0

η` ≤
ε

2
+

ε

2
= ε.

Therefore,
lim

k→∞
‖F (xk)‖ = 0. (10)

Consider now Case (ii). Then
lim

k→∞
αk = 0.

Thus, for k ∈ IN large enough, there exists

α′k ∈ [
αk

τmax
,

αk

τmin
]

such that
lim

k→∞
α′k = 0 (11)

and

‖F (xk + α′kdk‖ > (1− α′kσ)‖F (xk)‖. (12)

Define
Tk = ‖F (xk + α′kdk)− F (xk)− J(xk)α′kdk‖.

Then, by (12),

Tk + ‖F (xk) + J(xk)α′kdk‖ > ‖F (xk)‖ − α′kσ‖F (xk)‖.

So,

Tk + ‖α′k[F (xk) + J(xk)dk]‖+ (1− α′k)‖F (xk)‖ > ‖F (xk)‖ − α′kσ‖F (xk)‖.

Then by (6),
Tk + α′k‖Bk − J(xk)‖ ‖dk‖ > α′k(1− σ)‖F (xk)‖.

So, by (5)
Tk

α′k
+ αk−1c ‖dk‖ > (1− σ)‖F (xk)‖.

Then, by (3),

L

2
α′k‖dk‖2 + αk−1c ‖dk‖ > (1− σ)‖F (xk)‖. (13)

Now, for k ∈ K1, ‖J(xk)−1‖ ≤M . But, by (5),

lim
k→∞

‖Bk − J(xk)‖ = 0;

5

So, for k ∈ K1 large enough,
‖B−1

k ‖ ≤ 2M.

So, since
‖F (xk)‖ ≤ ‖F (x0)‖+ η,

we have that ‖dk‖ is bounded for k ∈ K1, large enough.
Then, by (11) and (13),

lim
k∈K1

‖F (xk)‖ = 0.

As in the deduction of (10), this implies that

lim
k→∞

‖F (xk)‖ = 0.

So, every limit point must be a solution. 2

Remark.
Theorem 1 shows that the only reason why the algorithm can fail is when it is not well

defined (perhaps because of singularity of the Hessian) or unboundedness of ‖J(xk)−1‖. In
particular, Theorem 1 implies that, if x∗ is a limit point but not a solution, the Jacobian
J(x∗) is necessarily singular.

Now we introduce three variations of the original algorithm related to the choice of xk+1

at Step 4, to the approximation of Bk with respect to J(xk) and to the nonmonotonicity
sequence ηk. We present these variations as assumptions on the algorithmic sequence.

Assumption 1. There exists c′ > 0 such that, for all k ∈ IN ,

‖xk+1 − xk‖ ≤ c′αk‖dk‖. (14)

Assumption 2. For all k ∈ IN ,

‖Bk − J(xk)‖ ≤ cmin{α0, . . . , αk−1}. (15)

Assumption 3. There exists a sequence {γk} such that limk→∞ γk = 0 and, for all
k ∈ IN ,

ηk ≤ γk‖F (xk)‖. (16)

(Observe that (4) must also be satisfied by {ηk}.)

When we implement Algorithm 1 as a discrete Newton method with local variations,
the interpretation Assumption 1 is that the distance between successive points is propor-
tional to the damped Newton step ‖αkdk‖. In other words, changes due to Newton steps
are of the same order as those related to local variations. This assumption has strong

6

consequences in local convergence. If Assumption 1 does not hold, oscillation between
different solutions is possible.

Assumption 3 is easy to satisfy in practice with a convenient choice of ηk. This as-
sumption guarantees monotone behavior of ‖F (xk)‖ near a regular solution, as will be
shown later.

The motivation of Assumption 2 is not so simple. In practical computations it is
not desirable to compute discrete derivatives using very small discretization steps because
of the possibility of severe cancellation errors. According to (5), however, a very small
discretization step might appear if αk−1 is very small. Therefore, it is interesting to
investigate under which assumptions we can guarantee that the steplengths αk are bounded
away from zero. We will see that this happens when we choose the discretization steps
according to the rule (15).
Theorem 2. Assume that {xk} is generated by Algorithm 1, ‖J(xk)−1‖ ≤M for all k ∈ IN
and Assumption 2 holds. Then, there exists ᾱ > 0 such that αk ≥ ᾱ for all k ∈ IN .
Moreover, if Assumption 3 is satisfied, then for all r ∈ (1 − σᾱ, 1), there exists k0 ∈ IN
such that

‖F (xk+1)‖ ≤ r‖F (xk)‖ for all k ≥ k0. (17)

Proof. Assume, by contradiction, that K2 is an infinite sequence of indices such that

lim
k∈K2

αk = 0.

Then, by (15),
lim

k→∞
‖Bk − J(xk)‖ = 0.

Therefore, for k large enough, B−1
k exists and

‖B−1
k ‖ ≤ 2M.

Then, by (6),
‖dk‖ ≤ 2M‖F (xk)‖ (18)

By Theorem 1, limk→∞ ‖F (xk)‖ = 0. So, by (18),

lim
k→∞

‖dk‖ = 0.

Now, by (3), (6) and (18),
‖F (xk + dk)‖

= ‖F (xk + dk)− F (xk)−Bkdk + (F (xk) + Bkdk)− J(xk)dk + J(xk)dk‖

≤ ‖F (xk + dk)− F (xk)− J(xk)dk‖+ ‖(Bk − J(xk))dk‖

≤ L

2
‖dk‖2 + ‖Bk − J(xk)‖ ‖dk‖

7

≤ [2M2L‖F (xk)‖+ 2M‖Bk − J(xk)‖] ‖F (xk)‖.

Since ‖F (xk)‖ → 0 and ‖Bk − J(xk)‖ → 0, the previous inequality implies that (7) holds
with α = 1 for k large enough. Therefore, for k large enough, αk = 1. This contradicts
the initial assumption. Therefore, αk is bounded away from zero, as we wanted to prove.

Let us assume now that Assumption 3 holds. Then, by (7),

‖F (xk+1)‖ ≤ (1− ᾱσ)‖F (xk)‖+ ηk

≤ (1− ᾱσ)‖F (xk)‖+ γk‖F (xk)‖

= (1− ᾱσ + γk)‖F (xk)‖

for all k ∈ IN . Since limk→∞ γk = 0, (17) holds for k large enough. 2

Counterexample. It is interesting to show that αk might not be bounded away from
zero under the rule (5), even in situations in which the sequence converges to an isolated
solution of (1). Define F : IR → IR by F (x) = x2 − 1, x0 = −2, Bk = J(xk) = 2xk if k is
even, Bk = 1 if k is odd. Take, for example, c = 10, σ = 1/2 and ηk = 1/(k + 1)2. When
(7) fails we divide α by 2.

Clearly,
lim

k→∞
xk = −1,

which is a solution of the equation.
The first iterates of the algorithm are:

x0 = −2.000000000000000, F (x0) = 3.000000000000000,

x1 = −1.250000000000000, F (x1) = 5.625000000000000× 10−1,

x2 = −1.320312500000000, F (x2) = 7.432250976562500× 10−1,

x3 = −1.038854474852071, F (x3) = 7.921861992017210× 10−2,

x4 = −1.058659129832114, F (x4) = 1.207591531768887× 10−1,

x5 = −1.001625118707098, F (x5) = 3.252878425008438× 10−3,

x6 = −1.004877997132107, F (x6) = 9.779789120234205× 10−3,

x7 = −1.000011839674114, F (x7) = 2.367948840588374× 10−5,

x8 = −1.000035519162520, F (x8) = 7.103958665064674× 10−5,

x9 = −1.000000000630783, F (x9) = 1.261565963240480× 10−9,

x10 = −1.000000001892349, F (x10) = 3.784697891998264× 10−9.

The even iterations are Newton iterations for which (7) holds with αk = 1. Therefore,
the inequality (5) is

‖Bk − J(xk)‖ ≤ 10

8

when k is odd. Therefore, (5) is satisfied when we choose Bk = 1 at odd iterations.
However, the direction chosen at odd iterations is an ascent direction, which makes that
the steplengths at odd iterations tend to zero. Namely,

α2k = 1 ∀ k ∈ IN,

but
lim

k→∞
α2k+1 = 0.

This shows that the rule (15) is necessary for proving the existence of a lower bound of
αk. With this rule, the choice Bk = 1 at odd iterations would not be admissible.

Theorems 1 and 2 did not use Assumption 1. This assumption, however, is necessary
to prove local convergence of the algorithm, as we show in Theorem 3 below.

Theorem 3. Assume that {xk} is generated by Algorithm 1 and Assumptions 1, 2, 3 are
satisfied. In addition, suppose that x∗ is a limit point of {xk},

lim
k∈K3

xk = x∗,

J(x∗) is nonsingular and {‖B−1
k ‖}k∈IN is bounded. Then, xk converges to x∗ and F (x∗) =

0. Moreover, there exists ᾱ > 0 such that αk ≥ ᾱ for all k ∈ IN and {xk} converges at a
linear rate to x∗ in the sense that for all r ∈ (1− σᾱ, 1) there exists k1 ∈ IN such that

‖J(x∗)(xk+1 − x∗)‖ ≤ r‖J(x∗)(xk − x∗)‖ (19)

for all k ≥ k1.

Proof. By Theorem 1 we have that

lim
k→∞

‖F (xk)‖ = 0 (20)

and
F (x∗) = 0.

By the boundedness of {‖B−1
k ‖}k∈IN , (6), (14) and (20), we have that

lim
k→∞

‖xk+1 − xk‖ = 0.

Since J(x∗) is nonsingular, by the Inverse Function Theorem, there exists ε > 0 such that
‖F (x)‖ > 0 whenever x 6= x∗ and ‖x− x∗‖ ≤ ε. Let k0 be such that

‖xk+1 − xk‖ ≤
ε

2
(21)

9

for all k ≥ k0. The set {x ∈ IRn | ε
2 ≤ ‖x − x∗‖ ≤ ε} can contain only a finite number

of iterates xk. Otherwise, it should contain a limit point that, by Theorem 1, should
be a solution of (1). Therefore, there exists k1 ≥ k0 such that, for all k ≥ k1, either
‖xk−x∗‖ < ε/2 or ‖xk−x∗‖ > ε. But, since there exist infinitely many iterates such that
‖xk − x∗‖ < ε/2 and (21) holds for all k ≥ k1, it follows that ‖xk − x∗‖ < ε/2 must hold
for all k large enough. Since x∗ is the only possible limit point in this ball, it follows that
xk converges to x∗.

By Theorem 2, if (15) holds, there exists ᾱ > 0 such that αk ≥ ᾱ for all k ∈ IN . Let
r ∈ (1− σᾱ, 1), r′ ∈ (1− σᾱ, r). By Theorem 2, for k large enough,

‖F (xk+1‖ ≤ r′‖F (xk)‖. (22)

By (3), since F (x∗) = 0,

‖F (xk+1)− J(x∗)(xk+1 − x∗)‖ ≤
L

2
‖xk+1 − x∗‖2.

So,

‖J(x∗)(xk+1 − x∗)‖ − ‖F (xk+1)‖ ≤
L

2
‖xk+1 − x∗‖2

and, by (22),

‖J(x∗)(xk+1 − x∗)‖ −
L

2
‖xk+1 − x∗‖2 ≤ ‖F (xk+1)‖ ≤ r′‖F (xk)‖. (23)

But, also by (3),

‖F (xk)‖ ≤ ‖J(x∗)(xk − x∗)‖+
L

2
‖xk − x∗‖2,

so, by (23),

‖J(x∗)(xk+1 − x∗)‖ −
L

2
‖xk+1 − x∗‖2 ≤ r′‖J(x∗)(xk − x∗)‖+

r′L

2
‖xk − x∗‖2.

So,

‖J(x∗)(xk+1 − x∗)‖ −
L

2
‖J(x∗)−1‖ ‖J(x∗)(xk+1 − x∗)‖ ‖xk+1 − x∗‖

≤ r′‖J(x∗)(xk − x∗)‖+
Lr′

2
‖J(x∗)−1‖ ‖J(x∗)(xk − x∗)‖‖xk − x∗‖.

Therefore,

(1− L

2
‖J(x∗)−1‖ ‖xk+1 − x∗‖)‖J(x∗)(xk+1 − x∗)‖

≤ (r′ +
Lr′

2
‖J(x∗)−1‖ ‖xk − x∗‖)‖J(x∗)(xk − x∗)‖.

Thus,
‖J(x∗)(xk+1 − x∗)‖ ≤ Qkr

′‖J(x∗)(xk − x∗)‖

10

where

Qk =
1 + L

2 ‖J(x∗)−1‖ ‖xk − x∗‖
1− L

2 ‖J(x∗)−1‖ ‖xk+1 − x∗‖
.

Since limk→∞ Qk = 1, the desired result is proved. 2

Remark.
A simple adaptation of classical results (see, for example, Theorem 8.2.4 of [4]) shows

that, in Algorithm 1 with the hypothesis of Theorem 3, superlinear convergence is obtained
if ‖Bk − J(xk)‖ → 0. One only needs to prove that (7) holds with α = 1 for k large
enough, which is straightforward. In our context, and having in mind the discrete Newton
application, the hypothesis ‖Bk − J(xk)‖ → 0 would be linked to small discretization
steps, which are not practical because of cancellation.

3 Discretization and local variations

Our aim will be to define the matrices Bk as Jacobian discretizations. We do not want
to use very small discretization steps in order to avoid cancellation due rounding errors
as much as possible. On the other hand, the discretization step must be small enough
(‖Bk − J(xk)‖ must be small enough) for guaranteing convergence. The theorems in the
previous section give a theoretical basis to the choice h = O(αk−1) of the discretization
step. A second reason for choosing not very small (and proportional to the steplength) dis-
cretization steps is that we want to take advantage of auxiliary points for further decrease
of ‖F (x)‖. This is the “local variations” instance of our algorithm.

Assume that J(x), the Jacobian matrix of F (x), has a sparse structure. The standard
discretization of a Jacobian considers J(x) as a full matrix and has to perform n + 1
function evaluations for computing the approximation. For each j, j = 1, 2, . . . , n, the
jth column of the approximation of J(x) is given by:

(Ĵ)j =
F (x + hej)− F (x)

h
, (24)

where h ∈ IR, h 6= 0, is the step size and ej is the jth vector of the canonical basis of IRn.
For the case in which J(x) is sparse, Curtis, Powell and Reid [3] proposed an algo-

rithm to evaluate the approximate Jacobian matrix with a reduced number of function
evaluations (see [3]). The idea is to update groups of columns of Ĵ that could be evaluated
together, using only one function evaluation for each group. The greedy CPR strategy to
deal with problems where the Jacobian matrix has a known sparse structure is based on
generating the groups, the first one always starting with the first column, and then going
in the natural order of the columns. The only requirement is that two different columns
belonging to a CPR-group must have all its nonzero elements on different rows. Those
groups are also called CPR-valid in the literature.

11

The greedy choice of CPR-groups suggested in [3] does not always provide the least
possible number of groups (see, for instance [12, 2, 7]). Coleman and Moré [2] showed that
this problem, for a general sparse pattern, is equivalent to a certain coloring problem on
a suitable graph, and proposed the use of graph coloring algorithms to obtain less groups
then CPR method. But, again, not always that this strategy provides the minimum
number of groups.

Newsan and Ramsdell [12] proved that it is always possible to estimate the sparse
Jacobian matrix using a number of function evaluations equal to the maximum number
of nonzero elements on a single row.

Goldfarb and Toint [7] also used the CPR idea to solve nonlinear sparse systems coming
from the discretization of boundary value problems in partial differential equations, by
finite differences. With their strategy, they perform a number of function evaluations that
is equal to the number of CPR-groups plus one; and the number of groups that they need
to use is the maximum number of nonzero elements on a single row.

In this work, we use the strategy of Goldfarb and Toint for boundary value problems
and the greedy CPR strategy for general problems. It is not hard to see that, if we use the
information about how the grid was constructed, the CPR-groups can easily be identified
[7].

Our algorithm is a particular case of Algorithm 1, described in the previous section.
In this section we describe how to compute the iterate xk+1, starting from xk + αkdk and
how to compute, at the same time, the new matrix Bk+1. The first procedure is the local
variations method and the second is the discretization scheme. Details (including the way
to compute the first iteration) are left to the following section.

To simplify the notation, let us define y1 = xk +αkdk. Initially, y1 will be called “base
point” of the discretization. Let hk+1 6= 0 be a discretization step, such that

|hk+1| ≤ βαk (25)

where β > 0 is a parameter independent of k.
Assume that we have q CPR-groups. To each of them it is associated a 0− 1 vector vj

in such a way that the evaluation F (x + hvj), together with F (x), allows one to estimate
all the columns of the Jacobian belonging to the j−th CPR-group. The i−th entry of vj

is equal to 1 if the i−th column belongs to the j−th group and 0 otherwise. For example,
in the classical discrete Newton method, without sparsity, there are n CPR groups and
each one contains only one column. In this case the vectors vj are those of the canonical
basis of IRn. The vectors vj are called “CPR directions”.

Assume that {v1, . . . , vq} ⊂ IRn is the set of (nonnull) CPR directions, which is also
independent of the iteration index k.

The following algorithm describes how to obtain xk+1.

Algorithm 2.

12

For j = 1, . . . , q, execute Steps 1 to 3.

Step 1. If 〈dk , vj〉 ≤ 0, set wj = −vj ; else, set wj = vj .

Step 2. Compute z ← yj + hk+1wj .

13

Step 3. If
‖F (z)‖ < ‖F (yj)‖ (26)

set yj+1 = z; else set yj+1 = yj .

Step 4. Define xk+1 = yq+1.

At the beginning of the algorithm, when we have an initial x0 given externally, we
apply Steps 1 and 2 of Algorithm 2 starting from y1 = x0 and, at Step 4, we redefine
x0 ← yq+1.

Clearly, by (25) and (26) the conditions (14) and (8) are satisfied.
Let us write, to simplify the notation, h = hk+1. In the CPR scheme, for all j =

1, . . . , q, we have that:

Bk+1wj = [F (yj + hwj)− F (yj)]/h. (27)

These equations characterize Bk+1 in the sense that Bk+1 is the only matrix with the
given structure that satisfies (27) for all j = 1, . . . , q.

Now, by (3),

‖F (yj + hwj)− F (yj)− J(yj)hwj‖ ≤
L

2
h2‖wj‖2.

Therefore,

‖F (yj + hwj)− F (yj)
h

− J(yj)wj‖ ≤
L

2
|h| ‖wj‖2.

So, by (27),

‖[Bk+1 − J(yj)]wj‖ ≤
L

2
|h| ‖wj‖2.

By the definition of wj this implies that there exists a constant c1, independent of the
iteration index k, such that

‖Bk+1 − J(yj)‖ ≤ c1|h|. (28)

But, by the definition of yj we have that

‖yj − xk+1‖ ≤ c2|h|,

therefore, by (2),
‖J(yj)− J(xk+1)‖ ≤ c2L|h|.

Then, by (28),
‖Bk+1 − J(xk+1)‖ ≤ (c2L + c1)|h|.

So, by the choice (25), the condition (5) holds. Clearly, if we choose, instead of (25),

|hk+1| ≤ β min{α0, . . . , αk} (29)

the assumption (15) is satisfied as well.

14

4 Implementation features

Algorithm 1 was implemented with the discrete Newton definition of Bk described in the
previous section and the local variations procedure given by Algorithm 2 for defining xk+1,
after the computation of xk +αkdk. The theorems proved in Section 2 give the theoretical
properties of the algorithm for the choices (25) and (29) of the discretization step hk+1.

In this section we give more details about the implementation of the algorithm.
From now on, || . || means the Euclidean norm.

4.1 The choice of the discretization step

Given smin and smax such that 0 < smin < smax <∞ we defined

s0 = smax

and
sk = min{smax,max{smin, ‖dk‖}}, if k > 0.

Finally,
|hk+1| = min{α0, . . . , αk}sk, k ∈ IN.

We used smin =
√

εmach, where εmach is the machine precision; smax will be defined in
the next section.

According to this choice, observe that Assumption 2 is satisfied.

4.2 Line search procedure

If the vector xk + αkdk does not give an acceptable decrease in the value of the function,
in the sense of (7), then we compute the new step size as αnew = α/2. For the parameter
σ used in the criterion (7), we took σ = 10−4.

4.3 The sequence ηk

We define:

• ftip(0) = ‖F (x0)‖,

• ftip(k) = min{‖F (xk)‖, ftip(k − 1)}, if k is a multiple of 10 and

• ftip(k) = ftip(k − 1), otherwise.

Then, we set:

ηk =
ftip

(k + 1)1.1
.

15

4.4 Stopping criteria

The process is finished successfully if

‖F (xk)‖ ≤ 10−6 and k < 500.

5 Numerical Experiments

In order to test the new algorithm proposed in this work we implemented also the discrete
Newton algorithm, where the approximation of the Jacobian matrix is obtained by groups.
Let us describe now this algorithm.

Given:

• q, the number of CPR-valid groups for the Jacobian matrix;

• Ij , j = 1, . . . q, the vectors of the indices of the columns at the group q;

• str, the array which contains the sparse structure of Jacobian matrix: (i, j) ∈ str if
the (i, j) entry of Jacobian is nonzero;

• ε > 0, the tolerance for the stopping criterion;

• x0 ∈ IRn, the initial approximation for the solution of (1);

• hε > 0, the finite-difference step size.

Let xk ∈ IRn be the kth iterate of the algorithm. Then the steps for obtaining xk+1

are given as follows:

Algorithm 3.

Step 1: While ‖F (xk)‖ > ε perform Steps 2 to 4.

Step 2: Evaluate the approximation of the Jacobian matrix:
For gcol = 1, . . . , q

For all j ∈ Igcol and i such that (i, j) ∈ str:
compute: Ĵi,j = ((F (xk + hεvj))i − (F (xk))i)/hε,
where the vector vj is the CPR direction.

Step 3: Compute the direction d, solution of: Ĵd = −F (xk).

Step 4: Set: xk+1 = xk + d and k = k + 1.

We ran both algorithms with the same parameters as described in the last section.
All the tests were performed in an Pentium III - 1.0GHz computer, using the software
MatLab 6.0.

16

5.1 Academic Tests

The first set of numerical experiments consists of 12 problems selected from Moré, Garbow
and Hillstrom [11] collection.

The results are presented in Table 1 with the following notation:

• (Problem, n, q) denotes the name of the nonlinear system, its dimension and
number of CPR-valid groups of the Jacobian matrix, respectively;

• Algorithm: DN indicates the discrete Newton method (algorithm 3) and DNLV indi-
cates the discrete Newton method with local variations (algorithms 1 and 2);

• δ denotes the initial value for step size for discretization of matrix Ĵ : for DN algorithm,
this value is fixed for all iterations and δ = hε =

√
εmach ‖x0‖∞ (if ‖x0‖∞ = 0 then

we chose
√

εmach); for DNLV, δ = smax;

• Conv: C indicates that the stopping criterion was satisfied for one approximation xk,
and NC1 indicates that the maximum number of iterations was exceeded and NC2
means non convergence with normf = Nan (non numeric value);

• (Iter, Feval) denotes the number of iterations and the number of function eval-
uations performed by the algorithm; according to the DN algorithm the number of
function evaluations is given by the formula:

((q+1)*iter + 1)

and for DNLV algorithm, this number will be given by same formula plus the number
of function evaluations performed at line search steps and

• ‖F (x)‖2 indicates the norm-2 of the function at the solution obtained by the algo-
rithm.

We observe that, for some problems, the performance of DNLV could be better if a more
tolerant line search process had been used. For example, using ηk = 1039 at the three first
iterations, the performance of DNLV is the same of DN method for Rosenbrock problem.
But this tolerant line search resulted in a worse perfomance for DNLV at other tests. So
we fixed the strategy indicated in algorithm 3 for all the tests performed in this work.

Comparing the performance of DNLV using different choices for the parameter δ we
concluded that the best choice is δ = 0.02. This choice was made because despite of better
results were obtained with δ = 0.2 or δ = 0.7 for a few problems, the algorithm with
δ = 0.02 had a more robust performance.

To illustrate a comparison between DN and DNLV (with δ = 0.02) algorithms, we plotted,
in the same figure, the number of iterations performed by these methods at each problem
numbered from 1 to 11 according to the order that they appear in Table 1. A similar
comparison was done using the number of function evaluations. These results are showed
in Figure 1, where the symbols + and ♦ represents DNLV and DN methods respectively.

17

In five problems (problems 2, 4, 7, 8, and 11) both algorithms had the same perfor-
mance and in four problems (3, 6, 9 and 10) the two algorithms had a similar performance
in terms of number of iterations: DNLV performed just one more iteration than DN, but the
difference between the number of function evaluations is more significant, because at each
iteration this number is equal to the the number of CPR-valid groups plus one.

(Problem,n,ngroup) Algorithm δ Conv. (Iter, Evalf) ‖F (x)‖2
(Rosenbrock,2,2) DN ∼ 1.5D−08 C (2,7) 0.155D−13

DNLV 0.02 C (5,21) 0.133D−13
0.2 C (5,21) 0.222D−14
0.7 C (7,28) 0.000D+00

(Powell badly scaled,2,2) DN ∼ 1.5D−08 C (10,31) 0.358D−06
DNLV 0.02 C (10,31) 0.594D−06

0.2 C (11,34) 0.561D−06
0.7 C (13,40) 0.405D−07

(Helical valley,3,3) DN ∼ 1.5D−08 C (9,37) 0.616D−07
DNLV 0.02 C (10,41) 0.653D−12

0.2 C (9,37) 0.419D−07
0.7 C (7,29) 0.343D−06

(Box three-dimensional,3,3) DN ∼ 2.9D−07 C (4,17) 0.317D−08
DNLV 0.02 C (4,17) 0.445D−06

0.2 C (5,21) 0.811D−08
0.7 C (5,21) 0.618D−09

(Powell singular,4,2) DN ∼ 4.5D−08 C (12,37) 0.756D−06
DNLV 0.02 C (17,52) 0.869D−06

0.2 C (20,61) 0.479D−06
0.7 C (19,58) 0.989D−06

(Trigonometric,10,10) DN 1.5D−09 C (7,78) 0.801D−11
DNLV 0.02 C (8,95) 0.506D−07

0.2 NC1 (500,10057) 0.113D−00
0.7 NC1 (500,9386) 0.580D−02

(Brown almost-linear,50,50) DN ∼ 7.5D−09 C (1,52) 0.123D−13
DNLV 0.02 C (1,52) 0.286D−11

0.2 C (1,52) 0.502D−13
0.7 C (1,52) 0.100D−12

(Discrete boundary value, 100,3) DN ∼ 1.1D−09 C (2,9) 0.108D−08
DNLV 0.02 C (2,9) 0.196D−07

0.2 C (2,9) 0.463D−06
0.7 C (3,13) 0.136D−07

(Broyden tridiagonal,100,3) DN ∼ 1.5D−08 C (4,17) 0.106D−08
DNLV 0.02 C (5,21) 0.583D−09

0.2 C (5,21) 0.255D−07
0.7 C (6,25) 0.475D−06

(Broyden banded,100,7) DN ∼ 1.5D−08 C (5,41) 0.154D−07
DNLV 0.02 C (6,49) 0.144D−07

0.2 C (7,57) 0.344D−07
0.7 NC2 (13,16) NaN

(Discrete integral equation,50,50) DN ∼ 3.7D−09 C (2,103) 0.768D−06
DNLV 0.02 C (2,103) 0.937D−06
DNLV 0.2 C (3,154) 0.527D−06
DNLV 0.7 C (3,154) 0.457D−07

18

Table 1: First set of numerical tests

5.2 Bratu and Convection-Diffusion Problems

The problems considered in this section consist on finding u : [0, 1]× [0, 1]→ IR such that

Gλ(u) = f(s, t), (30)

with boundary conditions, where G is an operator that involves second-order partial deriva-
tives of u. The real parameter λ and the two-variable function f define different instances
of this problem. As in [9], we assumed the following known solution for the problem:

u∗(s, t) = 10st(1− s)(1− t)es4.5
. (31)

and we computed f in such a way that u∗ is a solution.
We used a grid with 63 interior points in each axis. The unknowns of the discretized

system are the values of u at these grid points. All the derivatives were approximated
using central differences. Replacing in (30) the function and the derivatives by their
approximations, and using the boundary conditions, we obtain a nonlinear system of
equations like (1), with dimension 3969 (the total number of grid points).

We ran the DN and DNLV algorithms with the initial approximation x0 = 0, and we
took δ = 0.02 for DNLV. This value was the one with the best performance among all the
tests showed in Table 1 (the best in 10 problems). The other parameters were the same
used for the academic tests.

In what follows, we define the operators considered in this work. In all the cases, the
boundary condition is u = 0 and ∆ is the Laplacian operator. The number of groups is
always q = 5. In Tables 2 and 3, we used the same notation as the one used in Table 1
and the last column was introduced shown the CPU time, in seconds.

1. Bratu Problem

Gλ(u) = −∆u + λeu.

In Table 2, we show the results obtained when the algorithms DN and DNLV were applied for
Bratu problem with several values of λ. For this formulation of the problems, only negative
values of λ have physical meaning; for these values the performance of both algorithms
were the same as showed in Table 2 for λ = −100 and λ = −50.

Positive values of λ make the problems mathematically more difficult and we used some
of them to compare the performance of the algorithms for solving harder problems. For
λ = 20 , 50 , 60 , 100 and 500 the algorithm DN did not converge, while the DNLV obtained
the solution of the system for all the values of λ.

When both methods converged, the best performance of DN was for λ = 400 and the
best performance of DNLV, for λ = 25. For the other problems DN was slightly better than
DNLV.

19

λ Algorithm Conv. (Iter, Evalf) ‖F (x)‖2 Time(s)
-100 DNVL C (6,37) 0.444D-09 5.66

DN C (5,31) 0.352D-10 2.80
-50 DNLV C (6,37) 0.415D-10 5.60

DN C (5,31) 0.342D-10 2.86
0 DNLV C (1,7) 0.883D-10 0.93

DN C (1,7) 0.661D-10 0.61
20 DNLV C (7,46) 0.556D-08 6.54

DN NC2 (5,31) NaN 4.78
25 DNLV C (6,38) 0.304D-06 5.49

DN C (7,43) 0.256D-06 6.87
50 DNLV C (10,65) 0.172D-06 9.45

DN NC2 (11,67) NaN 10.16
60 DNLV C (13,81) 0.306D-07 12.08

DN NC2 (18,109) NaN 17.25
75 DNLV C (8,49) 0.195D-06 7.31

DN C (6,37) 0.425D-10 5.82
100 DNVL C (10,63) 0.125D-09 9.45

DN NC2 (8,49) NaN 7.36
150 DNLV C (8,49) 0.183D-07 7.58

DN C (6,37) 0.149D-06 5.82
200 DNLV C (11,67) 0.256D-07 10.38

DN C (6,37) 0.176D-06 5.82
300 DNLV C (9,55) 0.120D-06 8.57

DN C (6,37) 0.255D-08 5.88
400 DNLV C (97,779) 0.918D-07 95.68

DN C (7,43) 0.228D-09 6.82
500 DNLV C (60,554) 0.804D-06 60.86

DN NC2 (18,109) NaN 17.31

Table 2: Bratu Problem.

20

2. Convection-Diffusion Problem

Gλ(u) = −∆u + λu(us + ut)

It is shown, in Table 3, the results obtained for the convection-diffusion problem for
both DN and DNLV methods. Again, we worked with different values for the parameter λ.

About these results, we can observe that the DN method did not converge when we
took λ equal to ±200, ±150, ±100 , and the new algorithm, DNLV, was always successful.

In the tests where both methods converged, we can say that they presented almost the
same performance.

λ Algorithm Conv. (Iter, Evalf) ‖F (x)‖2 Time(s)
-200 DNLV C (52,571) 0.751D-06 64.20

DN NC2 (17,103) NaN 17.85
-150 DNLV C (57,623) 0.350D-10 70.30

DN NC2 (24,145) NaN 26.37
-100 DNLV C (23,216) 0.927D-07 26.91

DN NC2 (24,145) NaN 26.42
-75 DNLV C (19,161) 0.350D-10 21.48

DN C (11,67) 0.363D-10 10.98
-50 DNLV C (10,71) 0.343D-10 10.76

DN C (9,55) 0.347D-10 8.95
-25 DNLV C (6,37) 0.123D-08 6.15

DN C (6,37) 0.123D-08 5.82
25 DNLV C (5,31) 0.447D-06 5.16

DN C (5,31) 0.445D-06 4.89
50 DNLV C (8,53) 0.331D-10 8.41

DN C (9,66) 0.957D-06 9.72
75 DNLV C (9,66) 0.957D-06 9.72

DN C (10,61) 0.465D-09 10.05
100 DNLV C (14,116) 0.638D-07 15.71

DN NC2 (28,169) NaN 30.32
150 DNLV C (19,176) 0.305D-06 22.13

DN NC2 (27,163) NaN 28.89
200 DNLV C (35,366) 0.344D-10 42.63

DN NC2 (19,115) NaN 20.16

Table 3: Convection-Diffusion Problem

With the objective of comparing and analyzing the performance of the solvers DN and
DNLV we applied the “performance profile” tool indroduced by Dolan and Moré, [5]. This
tool compares the performance of ns solvers of a set S for the resolution of np problems

21

of a set P using a measure like the number of iterations, the number of function evalu-
ations or the computing time. ms,p denotes the total of the measure chosen required to
solve problem p by solver s. For each problem p and solver s the performance ratio rs,p is
computed:

rs,p =
ms,p

min{ms,p ∀s ∈ S}
if the problem p is solved by solver s; otherwise,

rs,p = rM ,

where rM is a large enough fixed parameter.
Then, for each s ∈ S, the cumulative distribution function ρs : IR → [0, 1], for perfor-

mance ratio rs,t, is built:

ρs(t) =
1
np

size{p ∈ P | rs,p ≤ t}.

This function represents the performance of the solver s, it is nondecreasing and piecewise
constant. At the analysis of solver s, two points give us very important information, which
are: ρs(1) and t, such that, ρs(t) = 1. The value of ρs(1) indicates the probability of solver
s be the best solver in terms of set S and using the measure ms,t. The efficiency of solver
s in terms of the number of problems that can be solved is evaluated by the minimum
value of t, denoted by ts, such that ρs(t) = 1, if there exists such value for t < rM . So,
the winner in terms of robustness will be the solver ŝ for which tŝ = min{ts,∀s ∈ S}.

We performed this analysis, considering the 25 problems listed at Tables 2 and 3 (13
Bratu problems and 12 convection-diffusion problems), the two algorithms DN and DNLV
and the number of iterations as the measure of performance. We plotted at Figure 3 the
function ρs : [1, 20]→ [0, 1] for both solvers. From this figure we observe that DNLV solves
approximately 70% of the problems with the minimum number of iterations and this solver
get ρs(t) = 1 for t ∼ 14. The algorithm DN solves approximately 45% of the problems with
the minimum number of iterations, and only 55% of the problems can be solved by this
software. So, for this set of problems, the solver DNLV has the best “performance profile”
in terms of minimum number of iterations and robustness.

6 Conclusions

Analyzing the Tables 1–3, we can conclude that the new algorithm DNLV is competitive.
Specially for the boundary value problems tested, the performance of DNLV is much better
than that of the discrete Newton’s method implemented in DN, taking into account the
number of problems solved by DNLV which DN could not solve. This can be seen in Tables
2 and 3. We observe that this conclusion can also be taken from the analysis made of the
performance of both methods, considering their performance profiles (using the number

22

of iterations as measure, see Figure 3). DNLV solved all the problems, 70% of them with
the minimum number of iterations, while DN solved only 55% of the problems and only
45% of them were solved with the minimum number of iterations.

One of the most interesting conclusions of these experiments is related to the Bratu
problems with λ > 0. These problems are harder to solve than those with λ < 0. It is
interesting to observe, however, that the discrete Newton method with local variations
solved all of them, whereas the ordinary discrete Newton method failed. This seems to
confirm that the method with local variations is less prone to convergence to undesirable
local minimizers of ‖F (x)‖.

Concluding, the discrete Newton method with local variations seems to be more ro-
bust than the ordinary discrete Newton algorithm. We believe that this fact is due to
the different strategies that we used in our method: the local variations, that allow us to
change the base points; the reduction of the step size of the discretization and the line
search process, that produces the global convergence results.

Acknowledgement. We are indebted to an anonymous referee whose comments helped
us to improve the first version of this paper.

References

[1] Banitchouk, N. V., Petrov, V. M. and Chernousko, R. L., Numerical Solution of
Problems with Variational Limits by the Method of Local Variations, Z̆. Vyčisl. Mat.
i Mat. Fiz., Vol. 6, pp 947-961, (1966).

[2] Coleman, T. F. and Moré, J. J., Estimation of Sparse Jacobian Matrices and Graph
Coloring Problems, SIAM J. Numer. Anal., Vol. 20, pp 187-209, (1983).

[3] Curtis, A., Powell, M. J. D. and Reid, J., On the Estimation of Sparse Jacobian
Matrices, J. Inst. Math. Appl., Vol. 13, pp 117-119, (1974).

[4] Dennis, Jr., J. E. and Schnabel, R. B., Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, SIAM Classics in Applied Mathematics, (1996).

[5] Dolan, E. D. and Moré, J. J., Benchmarking Optimization Software with Performance
Profiles, Math. Program. Series A91, pp 201-213, (2002)

[6] Friedlander, A., Gomes–Ruggiero, M. A., Kozakevich, D. N., Mart́ınez, J. M. and
Santos, S. A., Solving Nonlinear Systems of Equations by Means of Quasi–Newton
Methods with a Nonmonotone Strategy, Optimization Methods and Software, Vol.8,
pp 25-51, (1997).

[7] Goldfarb, D. and Toint, Ph. L., Optimal Estimation of Jacobian and Hessian Matrices
that Arise in Finite Difference Calculations, Mathematics of Computation, Vol. 43,
167, pp 69-88, (1984).

23

[8] Gomes–Ruggiero, M. A., Kozakevich, D. N. and Mart́ınez, J. M., Numerical Study
on Large–Scale Nonlinear Solvers, Computers and Mathematics with Applications,
Vol.32, 3, pp 1-13, (1996).

[9] Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations, SIAM, (1995).

[10] Li, Dong-Hui and Fukushima, M., Derivative-Free Line Search and Global Conver-
gence of Broyden-Like Method for Nonlinear Equations, Optimization Methods and
Software 13, pp 181–201, (2000).

[11] Moré, J. J., Garbow, B. S. and Hillstrom, K. E., Testing Unconstrained Optimization
Software, ACM Transactions on Mathematical Software, Vol. 7, 1, pp 17-41, (1981).

[12] Newsam, G. N. and Ramsdell, J.D., Estimation on Sparse Jacobian Matrices, SIAM
J. Algebraic Discrete Methods, Vol. 4, pp 404-418, (1983).

[13] Pérez, R., Lopes, V. L. R., Solving Recent Applications by Quasi-Newton Methods, to
appear in Applied Numerical Mathematics.

[14] Polak, E., Computational Methods in Optimization: A Unified Approach, Academic
Press, New York, (1970).

[15] Polak, E., A Globally Convergent Secant Method with Applications to Boundary Value
Problems, SIAM Journal of Numerical Analysis, Vol. 11 , 3, pp 529-537, (1974).

24

