
Partial Spectral Projected Gradient Method with Active-Set

Strategy for Linearly Constrained Optimization ∗

Marina Andretta † Ernesto G. Birgin † J. M. Mart́ınez ‡

May 5, 2008

Abstract

A method for linearly constrained optimization which modifies and generalizes recent
box-constraint optimization algorithms is introduced. The new algorithm is based on a
relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected
steps, internal iterations restricted to faces of the polytope are performed, which enhance
the efficiency of the algorithms. Convergence proofs are given and numerical experiments are
included and commented. Software supporting this paper is available through the Tango

Project web page: http://www.ime.usp.br/∼egbirgin/tango/.

Key words: Linearly constrained optimization, spectral projected gradient method, active
set methods.

1 Introduction

The seminal 1988 paper of Barzilai and Borwein [7] on alternative steplengths for the steepest
descent method gave rise to a lot of computational optimization research.

The Spectral Projected Gradient (SPG) method was introduced, analyzed and implemented
in [16, 17, 18]. This method combines the basic spectral-step ideas [7, 52, 53] with projected
gradient strategies [9, 36, 44]. The extension of the spectral gradient method to smooth convex
programming problems [5, 14, 13, 16, 17, 18] was motivated by the surprisingly good perfor-
mance of the spectral gradient for large-scale unconstrained minimization [53]. Nonmonotone
strategies, like the one proposed by Grippo, Lampariello and Lucidi [39], turned out to be an
important ingredient for the success of the spectral idea for unconstrained minimization and
other extensions.

The SPG method is applicable to convex constrained problems in which the projection onto
the feasible set is easy to compute. It has been intensively used in many different applied
problems [8, 10, 12, 21, 28, 42, 43, 51, 57, 59, 64]. Several interesting parameter modifications
were proposed in the papers [23, 22, 25, 26, 32, 40, 54, 63]. Alternative nonmonotone strategies

∗This work was supported by PRONEX-Optimization (PRONEX - CNPq / FAPERJ E-26 / 171.510/2006 -
APQ1), FAPESP (Grant 2006/53768-0) and CNPq.

†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do
Matão 1010 Cidade Universitária, 05508-090 São Paulo SP, Brazil. ({andretta|egbirgin}@ime.usp.br)

‡Department of Applied Mathematics, IMECC-UNICAMP, CP 6065, 13081-970 Campinas SP, Brazil.
(martinez@ime.unicamp.br)

1

have been suggested in [23, 26, 27, 58, 65], whereas convergence and stability properties were
studied in [24, 31, 61, 62]. In addition, SPG has been combined with other algorithms for par-
ticular optimization problems. Bound constrained minimization was addressed in [6, 13, 14].
Linearly constrained optimization and nonlinear systems were considered in [5, 47] and [41, 66],
respectively. In [47] a penalty approach was used and in [5] problems were solved by means of
sequential quadratic programming. For general nonlinear programming, a method combining
SPG with the augmented Lagrangian was proposed in [29], and augmented Lagrangian methods
that use the methods introduced in [6, 14] to solve bound constrained subproblems were devel-
oped in [3, 4, 11]. More recently, Gomes-Ruggiero, Mart́ınez and Santos [37] showed that the
Inexact Restoration framework [38, 45, 46] motivates a natural generalization of SPG to general
constrained optimization.

The main drawback for the application of SPG to arbitrary convex (in particular, linearly
constrained) problems is the expensiveness of computing projections in general cases. In the
present research, in order to apply SPG ideas to general linearly constrained optimization, we
used two different strategies:

1. Enlarging the set onto which projections must be computed.

2. Combining the SPG-like iterations with easy-to-compute “essentially unconstrained” iter-
ations which provide practical efficiency to the method.

The enlargement of the projection set involves elimination of constraints. So, by means of
this procedure, projections become less expensive. Radical elimination would involve preserving
only active constraints in the projection set, but this elimination would be inefficient and even
convergence proofs would be impossible. A careful management of the constraints that must be
preserved at each state of the calculation gives rise to the Partial Spectral Projected Gradient
(PSPG) strategy introduced in the present paper.

The strategy of combining SPG-like iterations with iterations restricted to proper faces was
already used in [6, 13, 14] in connection to box-constrained optimization. The main ideas of the
present research are inherited from the box-constrained ideas of [6, 14] but the consideration
of general linear constraints, instead of merely bounds, imposes different algorithmic decisions.
In the case of boxes, projections are trivially computed, therefore it is inexpensive to test,
at every iteration, if the face where the current approximation lies must be preserved or not,
using the comparison of internal and external components of the constrained steepest descent
direction [14]. In the case of linear constraints we prefer to preserve the same active set until
the boundary is reached or an approximate active-face constrained stationary point occurs. In
this way we reduce, as much as possible, projection steps. The idea of combining PSPG steps
with internal iterations can also be understood from the point of view of active-set methods.
In Rosen’s gradient projection method [55] (one of the first algorithms to which the active-set
paradigm applies), and many variations reported in text books, the procedure for giving up
active constraints involves removing one constraint per iteration (as in the Simplex method)
and, usually, no more than one constraint is added to the working set when the current point
hits the boundary. Removing many constraints per iteration is guaranteed in the algorithm
presented in the current paper by the PSPG procedure. The possibility of adding constraints
very slowly (possibly because of primal degeneracy) is monitored and also corrected by means
of PSPG.

2

This paper is organized as follows. In Section 2 we define the problem, faces and projections
that will be used in the algorithms. In Section 3 we present the main algorithm, the PSPG
iteration and the Internal Algorithm. The assumptions that must be fulfilled by the internal
procedures and a practical scheme to define an Internal Algorithm starting from an uncon-
strained method are also described. Convergence of the main algorithm is proved in Section 4.
In Section 5 we discuss the practical implementation of the algorithms. Numerical experiments
are reported in Section 6. In the last section we state some conclusions.

Notation

We denote IN = {0, 1, 2, . . .}.
If v,w ∈ IRn, we denote

[v,w] = {u ∈ IRn | u = tv + (1− t)w for some t ∈ [0, 1]}

and
v+ = (max{v1, 0}, . . . ,max{vn, 0})T .

If v,w ∈ IRn, the statement v ≤ w means that vi ≤ wi for all i = 1, . . . , n. We denote PA(v) the
Euclidian projection of v onto the set A. The symbol ‖ · ‖ denotes the Euclidian norm, although
many times may be replaced by an arbitrary norm. The closure of the set A will be denoted, as
usually, by Ā.

2 Statement of the problem

Let f : IRn → IR be continuously differentiable. Let Ω ⊂ IRn be defined by:

Ω = {x ∈ IRn | Ci(x) ≤ 0, i = 1, . . . , p}, (1)

where, for all i = 1, . . . , p,
Ci(x) = (ai)T x− bi

and
ai = (ai

1, ..., a
i
n)T .

The problem addressed here is

Minimize f(x) subject to Ci(x) ≤ 0, i = 1, . . . , p. (2)

Given I ⊂ {1, . . . p} we denote

FI = {x ∈ Ω | Ci(x) = 0 if and only if i ∈ I}.

Clearly, Ω is the union of the sets FI , for I ⊂ {1, . . . , p}. Moreover, FI 6= FJ implies that
FI ∩ FJ = ∅. The smaller affine subspace that contains a nonempty face FI will be denoted by
VI and the parallel linear subspace to VI will be SI .

Given z ∈ Ω and δ ∈ [0,∞]p, we define

Ω(z, δ) = {x ∈ IRn | Ci(x) ≤ 0 for all i ∈ I(z, δ)},

3

where
I(z, δ) = {i | Ci(z) ≥ −δi}.

Clearly, Ω ⊂ Ω(z, δ) and Ω(z,∞) = Ω. Observe that, if z ∈ Ω satisfies the KKT conditions of
(2) then it also satisfies the KKT conditions of

Minimize f(x) subject to x ∈ Ω(z, δ) (3)

for all δ ≥ 0. Reciprocally, if z satisfies the KKT conditions of (3) for some δ ≥ 0, then z fulfills
the KKT conditions of (2).

Given z ∈ Ω, we define
gP (z) = PΩ(z −∇f(z))− z.

We also define
gP (z, δ) = PΩ(z,δ)(z −∇f(z))− z

and, for all σ > 0,
gP (z, δ, σ) = PΩ(z,δ)(z − σ∇f(z))− z.

The following identities hold trivially:

gP (z) = gP (z,∞) = gP (z,∞, 1)

and
gP (z, δ) = gP (z, δ, 1).

Note that, given δ ∈ [0,∞]p, σ > 0, the fulfillment of the KKT conditions at z ∈ Ω is equivalent
to gP (z, δ, σ) = 0. Moreover, if δk

i ≥ δmin > 0 for all i = 1, . . . , p, k ∈ IN , zk → z and z is a
KKT point, we have that ‖gP (zk, δk)‖ → 0. This justifies the use of ‖gP (zk, δk)‖ as stopping
criterion for numerical algorithms.

Finally, if z ∈ FI ⊂ Ω, we define

gS(z) = PSI
(−∇f(z)).

3 Main Algorithm

Algorithm 3.1 describes the main method presented in this paper to solve linearly constrained
optimization problems. All the iterates xk will be feasible if k ≥ 1. If x0 is infeasible, we project
this point onto the feasible region for obtaining x1. If this projection does not exist, the original
problem is infeasible.

At every iteration, xk belongs to a face FI . If the norm of the inner gradient gS(xk) is
larger than a tolerance ε, the algorithm judges that it is still worthwhile to stay in the same face
and, so, an internal iteration is performed using, essentially, an unconstrained algorithm. In
this process, the new iterate may hit the boundary of FI . If this happens 20 consecutive times,
the algorithm imposes that the next iteration must be of PSPG type. In this way we aim to
incorporate as many new constraits as possible.

A PSPG iteration is also performed when ‖gS(xk)‖∞ ≤ ε. By means of PSPG steps we aim
to add or remove many constraints at a single iteration. The tolerance vector δk for PSPG is
chosen adaptively with the only requirement that all the components must be not smaller than
a fixed parameter δmin > 0. PSPG iterations are more expensive the bigger is δk but, on the

4

other hand, very small values of δk provide poor information on the geometry of the feasible set.

Algorithm 3.1. (Main Algorithm)
Assume that x0 ∈ IRn, 0 < σmin < σmax <∞, α ∈ (0, 1/2], δmin > 0, ε > 0.

Step 1. Compute, if possible, x1 = PΩ(x0). If this projection does not exist, stop declaring
that the original problem is infeasible. Else, set k ← 1, k1 ← 0.

Step 2. If k1 = 20, perform Step 6.

Step 3. Let I ⊂ {1, . . . , p} be such that xk ∈ FI . If ‖gS(xk)‖∞ > ε, perform Steps 4 and 5 ,
else perform Step 6.

Step 4. Compute xk+1 ∈ F̄I using the Internal Algorithm, whose main characteristics are
given in Assumption A1 below.

Step 5. Let J be such that xk+1 ∈ FJ . If I is strictly contained in J , set k1 ← k1 + 1, else set
k1 ← 0. Set k ← k + 1 and go to Step 2.

Step 6. Choose δk ∈ IRp such that δk
i ≥ δmin for all i = 1, . . . , p. If ‖gP (xk, δk)‖∞ ≤ ε,

stop. Else, compute xk+1 using a Partial SPG (PSPG) iteration (Algorithm 3.2 below), set
k ← k + 1, k1 ← 0 and go to Step 3.

The PSPG iteration used at Step 6 of Algorithm 3.1 is described below.

Algorithm 3.2 (Partial SPG Iteration)

Step 1. If k = 0 or (xk − xk−1)T (∇f(xk) −∇f(xk−1)) ≤ 0, set σk = 1. Else, define σk as the
safeguarded spectral coefficient:

σk = max

{
σmin,min

{
σmax,

‖xk − xk−1‖2
(xk − xk−1)T (∇f(xk)−∇f(xk−1))

}}
.

Step 2. Define dk = gP (xk, δk, σk).

Step 3. Compute
tbreak = max{t ∈ [0, 1] | [xk, xk + tdk] ⊂ Ω}.

Set t← tbreak.

Step 4. Test the Armijo condition

f(xk + tdk) ≤ f(xk) + αt(dk)T∇f(xk). (4)

Step 5. If (4) holds, set tk = t, define xk+1 = xk + tkd and return. Else, choose

tnew ∈ [0.1t, 0.9t], (5)

5

set t← tnew and go to Step 4.

The internal steps used at Step 4 of Algorithm 3.1 admit many possible implementations.
Essentially, they correspond to the iterations of some convergent algorithm for unconstrained
minimization with some modification that corresponds to the case in which the algorithm gener-
ates nonfeasible points. Before giving more detailed descriptions we will state here the essential
assumption that the Internal Algorithm must satisfy.

Assumption A1

• If xk+1 is computed by the Internal Algorithm and xk ∈ FI , then xk+1 ∈ F̄I and f(xk+1) ≤
f(xk).

• If xk+j ∈ FI is computed by the Internal Algorithm for all j ≥ 1, there exists j such that
‖gS(xk+j)‖∞ ≤ ε.

Taking a basis of the subspace SI and using the coordinates that corresponds to this basis,
the auxiliary problem that consists of minimizing f subject to F̄I may be transformed into a
minimization problem on a closed convex set A. Except in the trivial case in which FI is a single
point, A is open and corresponds to the transformation of FI . With some abuse of notation, let
us express the new equivalent auxiliary problem as:

Minimize f(x) subject to x ∈ Ā.

Assume that Algorithm U is a monotone method for unconstrained optimization with the
property that every limit point of a sequence generated by this method is stationary. Then, a
typical iteration of a general internal algorithm that satisfies Assumption A1 may be described
as follows.

Algorithm 3.3. (Internal Algorithm Iteration)

Step 1. Compute xk+1 using Algorithm U. If xk+1 ∈ A, return. Else, define dk = xk+1 − xk

and continue.

Step 2. Compute
tbreak = max{t > 0 | [xk, xk + tdk] ⊂ Ā}. (6)

If f(xk + tbreakd
k) < f(xk), re-define xk+1 = xk + tbreakd

k and return.

Step 3. If
(dk)T∇f(xk) ≥ −10−6‖dk‖‖∇f(xk)‖

re-define dk ← −∇f(xk) and, consequently, re-define tbreak as in (6).

Step 4. Set t← tbreak.

Step 5. Test the Armijo inequality

f(xk + tdk) ≤ f(xk) + αt(dk)T∇f(xk). (7)

6

Step 6. If (7) is fulfilled, define tk = t, xk+1 = xk + tkd
k and return. Otherwise, choose

tnew ∈ [0.1t, 0.9t], set t← tnew and go to Step 5.

Theorem 3.1. Algorithm 3.1 satisfies Assumption A1.

Proof. By construction, the first requirement of Assumption A1 trivially holds. Let us go to
the second requirement. If, for all k large enough, the iterations are computed by Algorithm
U, the desired property comes from the basic assumption on this algorithm. It remains to con-
sider the case in which, for infinitely many iterations, one has that xk+1 is computed at Step 6.
In this case, using standard arguments on minimization algorithms based on sufficient descent
directions, we get that any limit point of the corresponding subsequence is, in fact, stationary.
Therefore, the theorem is proved. 2

In our implementations, we used two differents algorithms with the assumption needed by
Algorithm U. One is based on the unconstrained procedure implicit in Gencan [14] and the
other on the unconstrained trust-region procedure that underlies Betra [6]. These methods
will be called Genlin and Betralin, respectively.

4 Convergence

In this section we prove that Algorithm 3.1 necessarily terminates at a point that satisfies
‖gP (xk, δk)‖∞ ≤ ε.

The following auxiliary algorithm is a monotone version of the SPG method [16, 17].

Algorithm 4.1. (Monotone SPG)

Let Ω̂ ⊂ IRn be a closed and convex set. Assume α ∈ (0, 1), 0 < σmin < σmax < ∞, tmin > 0.
Let x0 ∈ Ω̂ be an arbitrary initial point. Given xk ∈ Ω̂, σk ∈ [σmin, σmax], the steps of the k−th
iteration of the algorithm are:

Step 1. Compute the search direction

Compute

dk = P
Ω̂

(
xk − σk∇f(xk)

)
− xk.

If dk = 0, stop the execution of the algorithm declaring that xk is a stationary point.

Step 2. Compute the steplength

Set tini ≥ tmin and t = tini. If

f(xk + tdk) ≤ f(xk) + αt∇f(xk)T dk, (8)

set xk+1 such that f(xk+1) ≤ f(xk + tdk) and finish the iteration. Otherwise, choose tnew ∈
[0.1t, 0.9t], set t← tnew and repeat test (8).

7

Theorem 4.1. Let Ω̂ be convex and closed. Assume that the sequence generated by Algorithm 4.1
is bounded.Then:

1. If Algorithm 4.1 does not terminate at xk ∈ Ω̂, then xk+1 is well defined.

2. If Algorithm 4.1 terminates at xk then xk is a stationary point of the problem

Minimize f(x) subject to x ∈ Ω̂. (9)

3. If x∗ is a limit point of a sequence generated by Algorithm 4.1 then x∗ is a KKT point of
(9). Moreover,

lim
k→∞

‖dk‖ = lim
k→∞

‖P
Ω̂
(xk − σk∇f(xk))− xk‖ = lim

k→∞
‖P

Ω̂
(xk −∇f(xk))− xk‖ = 0.

Proof. See, for example, Theorem 2.1 of [18]. 2

Now we are in position of proving the convergence of Algorithm 3.1.

Theorem 4.2. Assume that Algorithm 3.1 is applied to problem (2). Let Ω be bounded. Then:

1. For all k = 0, 1, 2, . . ., if the algorithm does not terminate at xk, then xk+1 is well defined.

2. The sequence {xk} generated by the algorithm terminates in a finite number of iterations
at a point where ‖gP (xk, δk)‖∞ ≤ ε.

Proof. The first part of the thesis follows from Assumption A1 and Theorem 4.1. Let us prove the
second part. Assume, by contradiction, that the algorithm generates infinitely many iterations.
We consider two cases.

1. There are infinitely many iterations of PSPG type.

2. There are only finitely many iterations of PSPG type.

Consider the first case. Let K ⊂ IN be the set of indices k such that xk+1 is computed by the
Partial SPG method. Since the number of faces FI is finite, there exists I ⊂ {1, . . . , p} and K1

an infinite subset of K such that xk ∈ FI for all k ∈ K1. Now, the number of different subsets
Ω(xk, δk) is also finite, therefore, there exist Ω̂ and K2, an infinite subset of K1, such that

Ω(xk, δk) = Ω̂ for all k ∈ K2.

Therefore, for all k ∈ K2,
dk = P

Ω̂
(xk − σk∇f(xk))− xk.

Assume, without loss of generality, that Ω̂ is defined by the inequalities

(ai)T x− bi ≤ 0 for all i = 1, . . . , q.

Let i ∈ {q + 1, . . . , p}. Then,
(ai)T xk − bi < −δk

i .

8

Assume that t ≥ 0 is such that

(ai)T (xk + tdk)− bi = 0.

Thus,

t =
bi − (ai)T xk

(ai)T dk
.

Therefore,

t >
δk
i

‖ai‖‖dk‖ .

Since Ω is compact, the sequence {xk} is bounded and, so, the sequence {dk} is bounded too.
Say, ‖dk‖ ≤ c for all k. Therefore,

t >
δk
i

‖ai‖c ≥
min{δk

i }
max{‖ai‖}c ≡ tmin.

This implies that the first trial point of the form xk+tbreakd
k that is tested in the PSPG algorithm

is bounded away from tmin > 0. Therefore, since f(xk+1) < f(xk) for all k, the sequence
{xk}k∈K2

may be thought, after relabeling, as being generated by Algorithm 4.1 applied to the
minimization of f on Ω̂ (taking tini = tbreak). Therefore, any limit point x∗ of this sequence is
a stationary point of the auxiliary problem. Since Ω ⊂ Ω̂ this implies that x∗ is a stationary
point of (2). So, limk→K2

‖gP (xk, δk)‖ = 0. Therefore, for k ∈ K2 large enough, we have that
‖gP (xk, δk)‖∞ ≤ ε and the algorithm would have stopped at xk. This contradicts the assumption
that {xk} is infinite.

In the case that there are only finitely many iterations of PSPG type, we have that, for k
large enough, all the iterations are internal. Moreover, after a finite number of iterations, all
the iterates belong to the same face FI . By Assumption A1, this implies that there exists k
such that ‖gS(xk)‖∞ ≤ ε. Therefore, at this iteration we must have that ‖gP (xk, δk)‖∞ ≤ ε,
otherwise the next iterate would have been obtained by PSPG. 2

5 Implementation

For the implementation of Algorithm 3.1 several decisions are necessary. The practical effi-
ciency of the algorithm strongly depends on the correctness of them. We will sketch the main
algorithmic decisions in this section.

5.1 Projection Algorithm

Algorithm 3.1 computes projections on the polytopes Ω or Ω(xk, δk). We adopted Subroutine
QL, the Goldfarb-Idnani method [35] implemented by Powell [49] and modified by Schittkowski
[56] for computing these projections. Subroutine QL can be downloaded from the web site
(www.scilab.org) of the open source software Scilab (scientific software package for numerical
computations). The Goldfarb-Idnani algorithm is a dual method for positive definite quadratic
programming that uses the unconstrained minimizer as initial point. It uses Cholesky and QR
decompositions as well as low-rank updating of factorizations.

Subroutine QL has two parameters related to stopping criteria: a small tolerance εQL > 0
and a maximum number of iterations maxitQL. On return, there is an output parameter infoQL

whose meaning is:

9

infoQL=0: Success. Maximal violation of the normalized constraints (using 1/‖ai‖∞ for con-
straint Ci(x) = (ai)T x− bi ≤ 0, i = 1, . . . , p) smaller than or equal to εQL.

infoQL=1: Maximum number of iterations maxitQL reached.

infoQL=2: Accuracy is insufficient to mantain increasing function values.

infoQL<0: Problem is infeasible.

Note that our Algorithm 3.1 is not necesarily dealing with normalized constraints. Therefore,
independently of the stopping criteria satisfied by Subroutine QL, we check feasibility at its final
iterate.

Our projections aim to obtain feasible points with tolerance εfeas. In the terms of (2) this
means that

Ci(x) ≤ εfeas for all i = 1, . . . , p. (10)

In order achieve (10), we proceed as follows:

Step 1. First trial.
Call Subroutine QL with εQL = (εfeas)

1.25. Let x̄ be the projected point and infoQL be the
output flag. Let R = {x̄}. If (10) holds for x̄ then return x̄ declaring “Projection successfully
computed”. Otherwise, if infoQL=0 then go to Step 2, else go to Step 3.

Step 2. Try tighter tolerances aiming to satisfy (10).
Step 2.1. Set εQL ← εQL/100.

Step 2.2. Call Subroutine QL with εQL. Let x̄ be the projected point and infoQL be the
output flag. Let R = R∪{x̄}. If (10) holds for x̄ then return x̄ declaring “Projection successfully
computed”.

Step 2.3. If infoQL=0 and εQL > 10−16 go to Step 2. Otherwise, go to Step 4.

Step 3. Try a looser tolerance.
Call Subroutine QL with εQL =

√
(εfeas)1.25. Let x̄ be the projected point and infoQL be

the output flag. Let R = R ∪ {x̄}. If (10) holds for x̄ then return x̄ declaring “Projection
successfully computed”.

Step 4. Treatment for loss of feasibility.
Let x̂ = argminx∈R{maxi=1,...,p{Ci(x)}}. If Ci(x̂) ≤ √εfeas for all i = 1, . . . , p, then return x̂

declaring “Partial loss of feasibility” and continue the execution of the main algorithm. Other-
wise, stop the main algorithm declaring “Projection failure”. (A second algorithmic option, not
used in the experiments reported in this paper, is not to tolerate any loss of feasibility and to
stop the main algorithm declaring “Projection failure” when arriving to this step.)

5.2 Internal Algorithms

As mentioned in Section 3, we employed two internal methods for computing iterations that
preserve the current face FI . The first (Genlin) is a variation of Gencan [14] and the second

10

(Betralin) is the adaptation of Betra [6] to the case in which the internal face is a polytope,
instead of a box (as in [6] and [14]). The “unconstrained directions” of Genlin are, therefore,
inexact-Newton directions preconditioned with the technique presented in [15]. On the other
hand, Betralin, as Betra, uses a trust-region strategy. The differences between Genlin

and Betralin in terms of robustness and efficiency were not meaningful in our experiments.
Therefore, we are going to report here only experiments related to Genlin.

5.3 Linear Algebra

For computing internal iterations one needs to transform the face FI into a convex polytope
with nonempty interior in a finite-dimensional Euclidian space. The tool for doing this is to
compute a basis of the parallel subspace SI . In this way, every point of FI may be expressed as
the addition of xk and a linear combination of the coefficients of the basis. The constraints are
defined in terms of these coefficients in an obvious way. The basis of SI is computed using the
LQ factorization of the matrix formed by the rows ai, i ∈ I. When the face FI changes and new
constraints need to be added to form the new current face, the corresponding LQ factorization
is updated using the technique described in [34].

5.4 Feasibility and Rounding

In the absence of rounding errors, all the iterates of Algorithm 3.1 are feasible. As a consequence,
the algorithm may stop only when the criterion ‖gP (xk, δk)‖∞ ≤ ε is satisfied, as established
by the convergence theory. In floating point computations, however, small losses of feasibility
may occur at different stages of the algorithm. The default option in the presence of feasibility
loss is to tolerate infeasibilities up to the level

√
εfeas while still requiring projections to satisfy

(10). Projections and Partial SPG iterations are used to correct higher levels of infeasibility. As
a consequence, at a final successful point x∗, it may happen that εfeas ≤ Ci(x

∗) ≤ √εfeas. In
our experiments, although feasibility was partially lost at a few iterations in a few problems, we
always recovered the inequalities (10) at the final point.

If, due to rounding errors, the Internal Algorithm fails to satisfy the monotonicity assump-
tion, a Partial SPG iteration is performed to (presumably) correct this anomaly.

5.5 Parameters and Stopping Criteria

In Algorithm 3.1 we use ε = 10−8 for the stopping criterion related to the sup-norm of gP (xk, δk).
We used εfeas = ε in (10). The choice of δk will be explained below. We set σmin = 10−10,
σmax = 1010 (for the safeguarded spectral coefficient of Algorithm 3.2). We use α = 10−4 for the
Armijo condition of Algorithm 3.2. In the implementation of Algorithm 3.3, we use the default
parameters of Gencan and Betra (see [6] and [14] for details.)

6 Numerical Experiments

The objective of the present section is to test the reliability of Algorithm 3.1, with the implemen-
tation features described in Section 5. We chose, as test problems, all the linearly constrained
examples included in the Cuter collection [19], with a limited size. Above this size, sparse
matrix techniques need to be used for factorizations, which are not employed in our present

11

implementation. The Cuter collection has been chosen for testing due to its popularity among
algorithmic developers.

We compared Genlin with the Harwell subroutine Ve11 [50], with the popular active set
method for large-scale optimization Minos [48] and with the interior-point algorithm for large
nonlinear programming Ipopt [60]. Minos and Ipopt use sparse matrix technology, which has
a benefical effect in the larger problems chosen in this study, therefore, time comparisons with
respect to these two algorithms are not meaningful. However, it is interesting to compare the
results with respect to the capacity of finding probably global minimizers and the number of
function evaluations performed.

All the experiments were run using a 2.2GHz AMD Athlon 64 Processor 3200+ with 1.0GB
of RAM memory and a (32 bits) Linux Operating System (Debian 3.4.6-6). The algorithms
were coded in double precision Fortran 77 and compiled with g77 (GNU Fortran (GCC) 3.4.6).
The compiler optimization option -O3 was adopted.

6.1 Linearly Constrained Test Problems

Linearly constrained optimization problems can always be formulated in the form (2). However,
in practice, one uses to say that this type of problems possess three types of constraints: bounds
on the variables, equality constraints and proper (not bound) inequality constraints. Of course,
each equality constraint can be conceptually reduced to two inequality constraints and, for the
basic description of our Algorithm 3.1, this distinction is quite irrelevant.

From now on, nbounds will be the number of bound constraints of a problem. We consider that
a variable bounded both above and below contributes with two bounds. We denote by neq the
number of equality constraints and by nineq the number of inequality constraints. The number
of independent variables will be denoted by n. We selected, for our tests, all the problems of the
Cuter collection with at most 500 variables and with 1 ≤ neq + nineq ≤ 2000. This corresponds
to 133 problems. The main characteristics of the problems are in Table 1. In this table, the
problems are roughly ordered from the smallest to the largest one. Some problems from Cuter
have variables where the lower bound coincides with the upper bound. In Table 1, n = n1(n2)
means that problem has n1 genuine variables plus n2 fixed variables. In this case, nbounds is the
number of bounds imposed to the genuine variables.

Problems nash, model, arglale, arglble, arglcle and lincont are infeasible and,
thus, Algorithm 3.1 stops at Step 1 saying that it failed to compute x1 (the projection of the
initial guess x0 onto the feasible set). These 6 problems were removed from the experiments
below. So, from now on we consider the remaining 127 problems.

6.2 Supporting Internal Decisions

6.2.1 Choice of δk

We tried two choices for the Partial SPG parameters δk:

Choice 1: δk
i = δ̄k max{1, |bi|}, where δ̄1 = 0.1 and δ̄k+1 = 100 δ̄k whenever the iteration k is

PSPG and tbreak < 0.1. Else δ̄k+1 = δ̄k.

Choice 2: δk
i ≡ ∞ ∀ i and ∀ k.

The second choice corresponds to use the full SPG iteration in the cases in which PSPG is
invoked.

12

Problem n nbounds neq nineq Problem n nbounds neq nineq

EXTRASIM 2 1 1 0 AVGASB 8 16 0 10
HS9 2 0 1 0 DUALC5 8 16 1 277
TAME 2 2 1 0 DUALC8 8 16 1 502
HS21 2 4 0 1 DUALC1 9 18 1 214
HS35MOD 2(1) 2 0 1 HS112 10 10 3 0
HUBFIT 2 1 0 1 ODFITS 10 10 6 0
LSQFIT 2 1 0 1 GENHS28 10 0 8 0
BOOTH 2 0 2 0 PORTFL1 12 24 1 0
HIMMELBA 2 0 2 0 PORTFL2 12 24 1 0
SUPERSIM 2 1 2 0 PORTFL3 12 24 1 0
SIMPLLPA 2 2 0 2 PORTFL4 12 24 1 0
ZECEVIC2 2 4 0 2 PORTFL6 12 24 1 0
HS24 2 2 0 3 LOTSCHD 12 12 7 0
SIMPLLPB 2 2 0 3 HS118 15 30 0 29
PT 2 0 0 501 HS119 16 32 8 0
SIPOW1M 2 0 0 2000 NASH 18(54) 6 24 0
SIPOW1 2 0 0 2000 FCCU 19 19 8 0
SIPOW2M 2 0 0 2000 RES 20 40 12 2
SIPOW2 2 0 0 2000 DEGENLPA 20 40 15 0
HS28 3 0 1 0 DEGENLPB 20 40 15 0
HS62 3 6 1 0 KSIP 20 0 0 1001
HS35I 3 6 0 1 MAKELA4 21 0 0 40
HS35 3 3 0 1 WATER 31 62 10 0
HS36 3 6 0 1 LOADBAL 31 42 11 20
HS37 3 6 0 2 MODEL 42(1500) 84 23 15
STANCMIN 3 3 0 2 HIMMELBJ 43(2) 43 14 0
ZANGWIL3 3 0 3 0 DALLASS 46 92 31 0
TFI2 3 0 0 101 AVION2 49 98 15 0
TFI3 3 0 0 101 GOFFIN 51 0 0 50
OET1 3 0 0 1002 DUAL4 75 150 1 0
HONG 4 8 1 0 LINSPANH 81(16) 162 33 0
HS41 4 8 1 0 SPANHYD 81(16) 162 33 0
LIN 4 8 2 0 QPCBLEND 83 83 43 31
HS76I 4 8 0 3 QPNBLEND 83 83 43 31
HS76 4 4 0 3 DUAL1 85 170 1 0
S277-280 4 4 0 4 DUAL2 96 192 1 0
HS44NEW 4 4 0 6 HIMMELBI 100 200 0 12
HS44 4 4 0 6 DUAL3 111 222 1 0
BIGGSC4 4 8 0 13 SMBANK 117 234 64 0
HATFLDH 4 8 0 13 QPCBOEI2 143 197 4 181
OET3 4 0 0 1002 QPNBOEI2 143 197 4 181
SIPOW3 4 0 0 2000 AGG 163 163 36 452
SIPOW4 4 0 0 2000 HYDROELS 167(2) 334 0 336
HS48 5 0 2 0 GMNCASE1 175 0 0 300
HS49 5 0 2 0 GMNCASE4 175 0 0 350
BT3 5 0 3 0 GMNCASE2 175 0 0 1050
HS50 5 0 3 0 GMNCASE3 175 0 0 1050
HS51 5 0 3 0 SSEBLIN 192(2) 360 48 24
HS52 5 0 3 0 DALLASM 196 392 151 0
HS53 5 10 3 0 ARGLCLE 200 0 399 0
LSNNODOC 5 6 4 0 ARGLALE 200 0 400 0
HS268 5 0 0 5 ARGLBLE 200 0 400 0
S268 5 0 0 5 PRIMALC1 230 215 0 9
HS86 5 5 0 10 PRIMALC2 231 229 0 7
EXPFITA 5 0 0 22 LINCONT 249(1008) 0 419 0
EXPFITB 5 0 0 102 PRIMALC5 287 278 0 8
EXPFITC 5 0 0 502 PRIMAL1 325 1 0 85
HS54 6 12 1 0 QPCBOEI1 384 540 9 431
HS55 6 8 6 0 QPNBOEI1 384 540 9 431
PENTAGON 6 0 0 15 QPCSTAIR 385(82) 385 209 147
HS21MOD 7 8 0 1 QPNSTAIR 385(82) 385 209 147
EQC 7(2) 14 0 3 STEENBRA 432 432 108 0
QCNEW 7(2) 14 0 3 STATIC3 434 144 96 0
QC 7(2) 14 0 4 STEENBRB 468 468 108 0
DUALC2 7 14 1 228 STEENBRD 468 468 108 0
HS105 8 16 0 1 STEENBRF 468 468 108 0
AVGASA 8 16 0 10

Table 1: Linearly constrained selected problems from Cuter.

13

There are 10 problems (booth, himmelba, supersim, tame, stancmin, zangwil3, hs55,
res, linspanh and gmncase4) for which the solution is given by x1, the projection of the initial
point x0 onto the feasible set. Since the versions with choices 1 and 2 for δk coincide in those
cases, we eliminate them from the experiments of the present subsection. So, we have at hand
the remaining 117 problems.

Both versions found equivalent functional values at their final iterate in all the 117 problems.
(We say that f1 and f2 are equivalent if

[|f1 − f2| ≤ max{10−10, 10−6 min{|f1|, |f2|}}] or [f1 ≤ −1020 and f2 ≤ −1020].) (11)

For comparing these two versions of the method we use the CPU time as a performance measure.
(Note that the cost of the projection may depend on δk.)

Figure 1 shows the performance profile [30]. The figure shows that there is no difference in
the robustness of both versions. On the other hand, with Choice 1 the method is more efficient.
Choice 1 is faster than Choice 2 in 70.08% of the problems; whereas the percentage of cases in
which Choice 2 is faster is 36.75%.

We arrived to the dynamic Choice 1 after tests that showed us that using a fixed small
δk could be harmful in critical cases. When, in a neighborhood of xk one has many active
constraints that are not active at xk, small δk–PSPG iterations do not take most of these
constraints into account and, so, for obtaining a feasible xk+1 one needs to use a small fraction
of the natural PSPG step dk. As a consequence, few constraints are added at each iteration and
convergence is very slow. When this phenomenon is detected, Choice 1 increases δk, in such a
way that the (previously not considered) nearly active constraints are now taken into account
for the projection. Similar considerations lead to the tolerant quadratic programming strategy
of Ve11 [50].

6.2.2 Choice of σk

According to the experiments in the previous subsection, we adopted Choice 1 for δk. We will
now corroborate that, in Algorithm 3.2, using σk as the safeguarded spectral step σspec, where

σspec =

{
‖xk−xk−1‖2

(xk−xk−1)T (∇f(xk)−∇f(xk−1))
, if (xk − xk−1)T (∇f(xk)−∇f(xk−1)) > 0,

1, otherwise,

is better than using σk ≡ 1.
Since both choices coincide for problems with linear or constant objective function, we will

exclude the 26 problems with this characteristic. Therefore, we have at hand the remaining 101
problems. Both choices also coincide if Algorithm 3.1 never executes Step 6, as is the case for
other 40 problems (including the 10 problems for which x1 is the solution). Eliminating these 40
problems too, we arrive to a set of 61 problems to be considered for the numerical experiments
of the current subsection.

We will use the number of function evaluations to evaluate the efficiency of these methods.
Figure 2 shows the corresponding performance profile. With both choices we found equiva-
lent functional values for all the problems but the figure shows that using the spectral step is
considerably more efficient.

The detailed performance of Genlin is given in Tables 2 and 3. In these tables, ITER
is the number of iterations, PSPGit is the number of Partial SPG iterations, FCNT is the

14

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2

Choice 1 for δ
Choice 2 for δ

Figure 1: Performance profile comparing choices 1 and 2 of the Partial SPG parameter δk.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10

Spectral choice for σ
Unitary σ

Figure 2: Performance profile comparing the choice of the safeguarded spectral step for σk and
σk ≡ 1.

15

Problem ITER PSPGit FCNT f(x∗) ‖C(x∗)+‖∞ Time ProjTime

EXTRASIM 2 0 2 1.00000E+00 4.4E−16 0.00007 20.70% (3)
HS9 2 0 6 -5.00000E−01 1.7E−13 0.00007 19.30% (4)
TAME 1 0 1 0.00000E+00 0.0E+00 <0.00001 60.00% (2)
HS21 2 0 2 -9.99600E+01 0.0E+00 0.00007 27.20% (4)
HS35MOD 3 0 3 2.50000E−01 0.0E+00 0.00008 8.80% (3)
HUBFIT 5 1 5 1.68935E−02 0.0E+00 0.00018 11.10% (5)
LSQFIT 5 1 5 3.37870E−02 0.0E+00 0.00017 14.30% (5)
BOOTH 1 0 1 0.00000E+00 0.0E+00 <0.00001 59.00% (2)
HIMMELBA 1 0 1 0.00000E+00 0.0E+00 <0.00001 59.60% (2)
SUPERSIM 1 0 1 6.66667E−01 0.0E+00 <0.00001 63.30% (2)
SIMPLLPA 2 1 2 1.00000E+00 0.0E+00 0.00007 37.50% (4)
ZECEVIC2 3 1 4 -4.12500E+00 0.0E+00 0.00010 17.20% (5)
HS24 3 0 3 -1.00000E+00 0.0E+00 0.00011 3.80% (3)
SIMPLLPB 2 0 2 1.10000E+00 0.0E+00 0.00007 22.80% (3)
PT 4 2 4 1.78394E−01 0.0E+00 0.00095 25.60% (5)
SIPOW1M 15 9 15 -1.00000E+00 0.0E+00 0.01140 3.30% (12)
SIPOW1 15 9 15 -1.00000E+00 0.0E+00 0.01150 5.90% (12)
SIPOW2M 14 8 14 -1.00000E+00 0.0E+00 0.01010 3.10% (11)
SIPOW2 15 8 15 -1.00000E+00 0.0E+00 0.01080 1.10% (11)
HS28 2 0 2 3.59918E−30 1.6E−15 0.00004 23.20% (3)
HS62 10 0 13 -2.62725E+04 0.0E+00 0.00043 6.10% (4)
HS35I 3 0 3 1.11111E−01 0.0E+00 0.00013 15.80% (4)
HS35 3 0 3 1.11111E−01 0.0E+00 0.00012 4.50% (4)
HS36 4 0 4 -3.30000E+03 0.0E+00 0.00015 14.80% (4)
HS37 6 0 6 -3.45600E+03 0.0E+00 0.00023 14.00% (4)
STANCMIN 1 0 1 4.25000E+00 0.0E+00 <0.00001 73.30% (2)
ZANGWIL3 1 0 1 0.00000E+00 0.0E+00 <0.00001 74.40% (2)
TFI2 22 10 22 6.49031E−01 5.6E−17 0.00187 17.00% (13)
TFI3 5 2 5 4.30116E+00 0.0E+00 0.00048 33.00% (6)
OET1 13 6 13 5.38243E−01 2.8E−17 0.00667 7.30% (9)
HONG 7 0 7 2.25711E+01 2.2E−16 0.00031 20.00% (4)
HS41 6 1 6 1.92593E+00 4.4E−16 0.00023 28.60% (5)
LIN 2 1 3 -1.75775E−02 5.0E−13 0.00009 45.30% (5)
HS76I 6 1 6 -4.68182E+00 8.9E−16 0.00025 16.10% (5)
HS76 6 1 6 -4.68182E+00 8.9E−16 0.00023 15.10% (5)
S277-280 4 0 4 5.07619E+00 0.0E+00 0.00017 13.50% (3)
HS44NEW 6 0 6 -1.50000E+01 0.0E+00 0.00024 12.10% (3)
HS44 6 2 6 -1.50000E+01 0.0E+00 0.00023 24.20% (5)
BIGGSC4 4 1 4 -2.43750E+01 0.0E+00 0.00018 17.90% (4)
HATFLDH 3 1 3 -2.43750E+01 0.0E+00 0.00014 41.90% (5)
OET3 4 2 4 4.50505E−03 2.8E−17 0.00281 37.90% (5)
SIPOW3 9 3 9 5.34659E−01 0.0E+00 0.00950 6.20% (6)
SIPOW4 11 3 11 2.72362E−01 5.6E−17 0.01260 6.70% (6)
HS48 2 0 2 3.94430E−31 8.9E−16 0.00006 25.30% (3)
HS49 20 0 20 1.06000E−11 5.3E−15 0.00084 4.10% (4)
BT3 2 0 2 4.09302E+00 2.8E−15 0.00010 40.60% (4)
HS50 10 0 10 2.66302E−28 2.2E−14 0.00039 8.50% (3)
HS51 2 0 2 1.77494E−30 1.3E−15 0.00006 29.20% (3)
HS52 2 0 2 5.32665E+00 3.2E−16 0.00010 46.80% (4)
HS53 2 0 2 4.09302E+00 2.2E−16 0.00010 44.70% (4)
LSNNODOC 7 1 7 1.23112E+02 8.9E−16 0.00030 21.40% (5)
HS268 7 2 20 3.63798E−12 0.0E+00 0.00033 10.50% (5)
S268 7 2 20 3.63798E−12 0.0E+00 0.00033 9.30% (5)
HS86 10 2 10 -3.23487E+01 8.9E−16 0.00053 14.00% (6)
EXPFITA 19 3 19 1.13661E−03 1.4E−14 0.00134 3.60% (7)
EXPFITB 24 4 24 5.01937E−03 3.8E−15 0.00426 3.90% (8)
EXPFITC 46 12 48 2.33026E−02 5.7E−14 0.03330 2.90% (16)
HS54 851 16 861 -9.03490E−01 1.1E−09 0.03920 2.00% (20)
HS55 1 0 1 6.66667E+00 8.9E−16 0.00002 78.80% (2)
PENTAGON 15 0 15 1.36522E−04 0.0E+00 0.00073 9.10% (4)
HS21MOD 2 0 2 -9.59600E+01 0.0E+00 0.00009 47.60% (4)
EQC 2 1 2 -8.29548E+02 0.0E+00 0.00011 62.50% (4)
QCNEW 2 1 2 -8.06522E+02 0.0E+00 0.00012 66.70% (4)
QC 7 0 7 -9.56538E+02 0.0E+00 0.00041 14.40% (3)
DUALC2 7 1 7 3.55131E+03 0.0E+00 0.00161 9.90% (5)
HS105 24 2 30 1.06188E+03 0.0E+00 0.02570 0.60% (6)
AVGASA 4 0 4 -4.63193E+00 1.1E−16 0.00024 36.70% (4)

Table 2: Performance of Genlin (Part I).

16

Problem ITER PSPGit FCNT f(x∗) ‖C(x∗)+‖∞ Time ProjTime

AVGASB 4 0 4 -4.48322E+00 1.2E−16 0.00023 32.40% (4)
DUALC5 5 0 5 4.27233E+02 0.0E+00 0.00166 6.00% (4)
DUALC8 11 2 12 1.83094E+04 0.0E+00 0.00571 1.90% (6)
DUALC1 12 2 13 6.15525E+03 0.0E+00 0.00323 2.50% (6)
HS112 22 2 31 -4.77611E+01 4.4E−16 0.00180 7.70% (6)
ODFITS 6 0 6 -2.38003E+03 2.3E−13 0.00043 35.90% (4)
GENHS28 2 0 2 9.27174E−01 1.6E−15 0.00020 62.90% (4)
PORTFL1 8 0 8 2.04863E−02 3.3E−16 0.00082 12.50% (4)
PORTFL2 9 0 9 2.96892E−02 2.2E−16 0.00090 10.40% (4)
PORTFL3 11 1 12 3.27497E−02 2.2E−16 0.00107 8.20% (5)
PORTFL4 8 0 8 2.63070E−02 2.2E−16 0.00085 11.40% (4)
PORTFL6 8 0 8 2.57918E−02 1.1E−16 0.00084 9.10% (4)
LOTSCHD 5 0 5 2.39842E+03 2.5E−14 0.00040 57.50% (4)
HS118 16 1 16 6.64820E+02 1.4E−14 0.00136 31.30% (5)
HS119 12 1 12 2.44900E+02 8.9E−16 0.00195 29.90% (5)
FCCU 6 1 6 1.11491E+01 8.9E−15 0.00069 62.30% (5)
RES 1 0 1 0.00000E+00 9.2E−15 0.00006 87.60% (2)
DEGENLPA 3 1 3 3.06039E+00 1.1E−16 0.00096 87.00% (4)
DEGENLPB 2 0 2 -3.07312E+01 7.5E−16 0.00070 89.00% (3)
KSIP 23 5 25 5.75798E−01 3.3E−16 0.07820 12.90% (9)
MAKELA4 16 0 16 2.10942E−15 3.8E−15 0.00149 18.20% (3)
WATER 21 2 23 1.05494E+04 1.1E−13 0.00306 65.40% (6)
LOADBAL 15 3 14 4.52851E−01 1.4E−14 0.00343 47.40% (7)
HIMMELBJ 622 102 1233 -1.91034E+03 2.0E−10 0.22000 31.20% (129)
DALLASS 49 3 60 -3.23932E+04 8.3E−14 0.02190 33.00% (7)
AVION2 5 0 5 9.46801E+07 1.8E−12 0.00312 78.20% (4)
GOFFIN 7 0 7 -8.65974E−15 5.4E−14 0.00666 72.80% (3)
DUAL4 19 1 19 7.46091E−01 0.0E+00 0.02750 17.00% (5)
LINSPANH 1 0 1 -7.70000E+01 1.4E−13 0.00134 98.20% (2)
SPANHYD 6 2 7 2.39738E+02 5.1E−13 0.01820 90.30% (6)
QPCBLEND 8 2 10 -7.84254E−03 1.2E−17 0.03760 93.20% (6)
QPNBLEND 20 5 22 -9.13614E−03 1.2E−15 0.06240 91.30% (9)
DUAL1 49 3 57 3.50130E−02 1.1E−15 0.13600 5.60% (7)
DUAL2 8 0 8 3.37337E−02 8.9E−16 0.04150 12.40% (4)
HIMMELBI 65 4 67 -1.73557E+03 2.8E−14 0.03680 73.70% (8)
DUAL3 30 3 34 1.35756E−01 5.6E−16 0.15500 8.30% (7)
SMBANK 54 5 69 -7.12929E+06 2.3E−10 0.18100 66.10% (10)
QPCBOEI2 10 2 9 8.17196E+06 1.8E−12 0.17500 93.90% (6)
QPNBOEI2 42 4 40 1.37140E+06 1.1E−12 0.28100 87.70% (8)
AGG 60 5 60 -3.59918E+07 4.1E−09 0.44900 65.30% (8)
HYDROELS 16 3 16 -3.58227E+06 3.6E−14 0.32900 92.00% (7)
GMNCASE1 16 0 16 2.66973E−01 4.2E−17 0.25000 42.90% (4)
GMNCASE4 1 0 1 5.94688E+03 1.8E−15 0.23600 95.90% (2)
GMNCASE2 28 1 28 -9.94445E−01 3.5E−17 0.64300 26.00% (5)
GMNCASE3 26 1 27 1.52515E+00 4.2E−17 0.63100 29.20% (5)
SSEBLIN 100 4 100 1.61706E+07 5.8E−11 0.28600 84.10% (7)
DALLASM 40 2 43 -4.81982E+04 6.4E−13 0.68900 73.00% (6)
PRIMALC1 6 1 6 -6.15525E+03 1.5E−11 0.13800 100.00% (5)
PRIMALC2 5 2 6 -3.55131E+03 1.1E−10 0.17200 100.00% (6)
PRIMALC5 7 1 7 -4.27233E+02 1.8E−11 0.27600 97.30% (5)
PRIMAL1 3 1 3 -3.50130E−02 2.5E−16 0.53300 98.40% (5)
QPCBOEI1 19 2 20 1.15039E+07 1.9E−13 5.40000 94.50% (6)
QPNBOEI1 114 7 119 6.77711E+06 1.2E−12 14.02000 91.60% (11)
QPCSTAIR 9 1 9 6.20439E+06 2.8E−14 4.67000 97.50% (5)
QPNSTAIR 15 2 15 5.14603E+06 2.8E−14 5.26000 96.50% (6)
STEENBRA 38 4 37 1.69577E+04 2.3E−13 5.28000 98.40% (8)
STATIC3 8 0 8 -1.05655E+20 2.9E−09 2.11000 98.90% (7)
STEENBRB 116 9 111 9.07586E+03 2.3E−12 9.96000 97.20% (13)
STEENBRD 144 14 149 9.14472E+03 2.3E−11 13.83000 97.60% (18)
STEENBRF 114 10 108 8.99185E+03 1.5E−10 10.76000 97.60% (14)

Table 3: Performance of Genlin (Part II).

17

number of functional evaluations, f(x∗) is the functional value at the final iterate, ‖C(x∗)+‖∞
is the maximal violation of feasibility, Time is the total CPU time in seconds and ProjTime
is the percentage of Time used by Subroutine QL to compute projections (the total number of
projections is within parentheses). In the cases in which the CPU time is very small, we obtained
the correct value running the subroutine many times and taking the average. In all the problems
except static3 and himmelbj, Genlin stopped because the criterion ‖gP (xk, δk)‖ ≤ ε = 10−8

was fulfilled. In the case of static3, Genlin stopped because f(xk) < −1020. In the case of
himmelbj, Genlin stopped at a feasible point with well-defined objetive function, after several
trials of evaluating the objective function at iterates where it was not well-defined.

6.3 Comparison with Ve11

Ve11 is a Harwell subroutine that implements Powell’s tolerant method [50]. It has only one
relevant parameter εVe11 related to tolerances and stopping criteria, which was defined for these
experiments as εVe11 = 10−8.

Tables 4 and 5 show the performance of Ve11 for the 127 feasible problems of Table 1. In the
tables, ITER is the number of iterations, FCNT is the number of functional evaluations, f(x∗)
is the functional value at the final iterate, ‖C(x∗)+‖∞ is the maximal violation of feasibilty, and
Time is the total CPU time in seconds. When the CPU time is very small we obtain the correct
value taking averages as in Genlin. When FCNT is zero and the final iterate is feasible, it is
because the problem has no objective function or the feasible region has a unique point.

The final iterate of Ve11 does not satisfy the feasibility requirement (10) with tolerance
εfeas = 10−8 in 16 problems:

• Problem steenbra is the unique problem for which Ve11 stopped due the CPU time
limit of 10 minutes imposed for each pair problem/method in our numerical experiments.

• In problems water and static3, Ve11 stops saying that the current point is feasible but
the line search fails to reduce the objective function value.

• In problems smbank, dallasm, steenbrb, steenbrd, steenbrf, Ve11 stops saying
that the current point is feasible but rounding errors seem to be preventing higher accuracy.

• In problems hs55, linspanh and spanhyd, Ve11 stops saying that the equality constraints
and the bounds on the variables are incompatible.

• In problems agg, gmncase4, dallass, qpcboei2 and qpnboei2, Ve11 stops saying that
it is possible to satisfy all the equality constraints and bounds but the general inequality
constraints cannot be satisfied.

In the other 111 problems, the final iterate of Ve11 is feasible (in the sense of (10) with
tolerance εfeas = 10−8). In 84 out of those 111 problems, Ve11 stops satisfying its stopping
criterion related to “success”. For the remaining 27 problems, the diagnostics provided by the
subroutine were:

• In problems hs62 and primalc1, Ve11 stops saying the current point is feasible but
rounding errors seem to be preventing higher accuracy.

18

• In problems hs268, s268, qcnew, dualc8, hs105, dualc1, hs119, loadbal, avion2,
qpcblend, qpnblend, dual1, dual2, dual3, hydroels, gmncase1, gmncase2, sse-

blin, primal1 and qpcstair, Ve11 stops saying that the current point is feasible but
the line search fails to reduce the objective function value.

• In problem himmelbj, Ve11 stops saying that the equality constraints and the bounds
on the variables are incompatible.

• In problems himmelbi, qpcboei1, qpnboei1 and qpnstair, Ve11 stops saying that it
is possible to satisfy all the equality constraints and bounds but the general inequality
constraints cannot be satisfied.

Considering the 111 problems in which Ve11 obtained feasible final points, we observed
that, in most of them, the final functional value at the final point is equivalent to that obtained
by Genlin. The exceptions were:

1. In 8 problems (lsnnodoc, qpcblend, qpnblend, himmelbi, qpcboei1, qpnboei1, qpc-

stair, qpnstair) Genlin obtained a smaller final functional value than Ve11.

2. In 3 problems (hs54, eqc, hs105) Ve11 obtained a smaller final functional value than
Genlin.

3. In 2 problems (qcnew, himmelbj) the final functional value provided by Ve11 was not
defined (NaN message).

In the remaining 98 problems both Genlin and Ve11 obtained feasible points with equiva-
lent functional values. Considering these 98 problems:

1. Genlin performed less function evaluations in 83 cases.

2. Ve11 performed less function evaluations in 11 cases.

3. Genlin and Ve11 performed the same number of function evaluations in 4 cases.

4. Genlin was faster than Ve11 (up to a tolerance of 10%) in 15 cases.

5. Ve11 was faster than Genlin (up to a tolerance of 10%) in 79 cases.

6. Genlin and Ve11 spent the same amount of time (up to a tolerance of 10%) in 4 cases.

7. Restricting the three items above to the problems in which one of the methods used more
than 0.1 seconds (11 problems) Genlin was faster than Ve11 7 times and Ve11 was faster
than Genlin 3 times (both methods spent the same time in one case).

6.4 Comparison with Minos

We ran the experiments of this subsection using Minos [48] with feasibility and optimality
tolerances εfeas = εopt = 10−8. All the other parameters were set with their default values.

Tables 6 and 7 show the performance of Minos for the 127 feasible problems of Table 1. In the
tables, ITER is the number of iterations, FCNT is the number of functional evaluations, f(x∗)
is the functional value at the final iterate, ‖C(x∗)+‖∞ is the maximal violation of feasibilty, and

19

Problem ITER FCNT f(x∗) ‖C(x∗)+‖∞ Time

EXTRASIM 1 2 1.00000E+00 0.0E+00 0.00002
HS9 5 10 -5.00000E−01 0.0E+00 0.00004
TAME 0 1 0.00000E+00 0.0E+00 0.00003
HS21 1 3 -9.99600E+01 0.0E+00 0.00003
HS35MOD 3 4 2.50000E−01 0.0E+00 0.00003
HUBFIT 7 9 1.68935E−02 5.6E−17 0.00006
LSQFIT 6 8 3.37870E−02 0.0E+00 0.00006
BOOTH 0 0 0.00000E+00 7.8E−16 <0.00001
HIMMELBA 0 0 0.00000E+00 0.0E+00 <0.00001
SUPERSIM 0 0 6.66667E−01 1.1E−16 <0.00001
SIMPLLPA 1 2 1.00000E+00 0.0E+00 0.00003
ZECEVIC2 4 5 -4.12500E+00 0.0E+00 0.00004
HS24 2 7 -1.00000E+00 2.1E−16 0.00003
SIMPLLPB 1 3 1.10000E+00 0.0E+00 0.00003
PT 4 7 1.78394E−01 0.0E+00 0.00170
SIPOW1M 6 13 -1.00000E+00 2.8E−17 0.00235
SIPOW1 5 11 -1.00000E+00 1.1E−19 0.00232
SIPOW2M 6 13 -1.00000E+00 0.0E+00 0.00244
SIPOW2 4 9 -1.00000E+00 0.0E+00 0.00199
HS28 3 6 4.49897E−31 0.0E+00 0.00004
HS62 12 26 -2.62725E+04 6.9E−18 0.00008
HS35I 5 7 1.11111E−01 0.0E+00 0.00004
HS35 5 7 1.11111E−01 0.0E+00 0.00004
HS36 3 5 -3.30000E+03 0.0E+00 0.00003
HS37 9 24 -3.45600E+03 3.6E−15 0.00005
STANCMIN 1 3 4.25000E+00 0.0E+00 0.00005
ZANGWIL3 0 0 0.00000E+00 2.7E−31 <0.00001
TFI2 6 16 6.49031E−01 8.6E−18 0.00026
TFI3 6 10 4.30116E+00 0.0E+00 0.00019
OET1 4 10 5.38243E−01 8.9E−17 0.00429
HONG 8 15 2.25711E+01 2.8E−17 0.00007
HS41 5 7 1.92593E+00 0.0E+00 0.00005
LIN 8 16 -1.75775E−02 2.8E−17 0.00011
HS76I 9 11 -4.68182E+00 0.0E+00 0.00006
HS76 9 11 -4.68182E+00 0.0E+00 0.00006
S277-280 4 12 5.07619E+00 0.0E+00 0.00011
HS44NEW 4 7 -1.50000E+01 0.0E+00 0.00004
HS44 5 7 -1.50000E+01 0.0E+00 0.00004
BIGGSC4 2 4 -2.43750E+01 0.0E+00 0.00005
HATFLDH 2 4 -2.43750E+01 0.0E+00 0.00005
OET3 15 19 4.50505E−03 3.5E−17 0.00533
SIPOW3 9 27 5.34659E−01 3.7E−17 0.00400
SIPOW4 14 18 2.72362E−01 0.0E+00 0.00513
HS48 3 8 2.46519E−32 2.2E−16 0.00005
HS49 38 52 7.78022E−16 2.2E−16 0.00014
BT3 2 6 4.09302E+00 1.2E−16 0.00005
HS50 13 19 8.03772E−26 5.6E−16 0.00007
HS51 2 6 6.16298E−32 2.2E−16 0.00005
HS52 2 8 5.32665E+00 1.4E−17 0.00005
HS53 2 5 4.09302E+00 0.0E+00 0.00005
LSNNODOC 1 2 3.63589E+02 0.0E+00 0.00004
HS268 30 82 -7.27596E−12 0.0E+00 0.00030
S268 30 82 -7.27596E−12 0.0E+00 0.00029
HS86 10 13 -3.23487E+01 1.1E−16 0.00013
EXPFITA 23 31 1.13661E−03 3.6E−15 0.00037
EXPFITB 27 33 5.01937E−03 8.8E−15 0.00140
EXPFITC 30 37 2.33026E−02 1.4E−14 0.00694
HS54 37 92 -9.08075E−01 7.1E−15 0.00022
HS55 0 0 5.69248E+00 4.6E−01 <0.00001
PENTAGON 25 40 1.36522E−04 3.2E−17 0.00023
HS21MOD 2 4 -9.59600E+01 0.0E+00 0.00005
EQC 4 6 -1.04794E+03 5.6E−17 0.00011
QCNEW 3 5 NaN 5.6E−17 0.00011
QC 7 8 -9.56538E+02 0.0E+00 0.00012
DUALC2 8 11 3.55131E+03 6.9E−17 0.00036
HS105 55 98 1.04461E+03 0.0E+00 0.02640
AVGASA 8 12 -4.63193E+00 1.4E−16 0.00010

Table 4: Performance of Ve11 (Part I).

20

Problem ITER FCNT f(x∗) ‖C(x∗)+‖∞ Time

AVGASB 9 15 -4.48322E+00 0.0E+00 0.00016
DUALC5 11 16 4.27233E+02 6.9E−17 0.00052
DUALC8 12 39 1.83094E+04 3.5E−17 0.00140
DUALC1 26 31 6.15525E+03 3.0E−17 0.00114
HS112 31 50 -4.77611E+01 5.6E−17 0.00056
ODFITS 12 17 -2.38003E+03 8.5E−14 0.00020
GENHS28 3 6 9.27174E−01 2.8E−17 0.00009
PORTFL1 26 31 2.04863E−02 6.6E−17 0.00065
PORTFL2 19 24 2.96892E−02 5.6E−17 0.00050
PORTFL3 23 27 3.27497E−02 7.8E−17 0.00057
PORTFL4 25 29 2.63070E−02 1.2E−16 0.00061
PORTFL6 22 28 2.57918E−02 9.7E−17 0.00058
LOTSCHD 5 8 2.39842E+03 9.0E−15 0.00011
HS118 23 43 6.64820E+02 0.0E+00 0.00076
HS119 24 76 2.44900E+02 7.2E−16 0.00195
FCCU 18 24 1.11491E+01 3.6E−15 0.00036
RES 0 2 0.00000E+00 5.3E−16 0.00013
DEGENLPA 11 18 3.06039E+00 9.1E−17 0.00076
DEGENLPB 10 18 -3.07312E+01 7.2E−17 0.00076
KSIP 57 62 5.75798E−01 2.5E−17 0.01740
MAKELA4 37 69 1.23260E−32 1.5E−33 0.00131
WATER 10 14 3.99793E+04 4.5E+01 0.00081
LOADBAL 59 105 4.52851E−01 1.6E−14 0.00303
HIMMELBJ 0 0 NaN 1.0E−11 0.00252
DALLASS 23 24 1.22164E+07 3.8E+02 0.00456
AVION2 44 133 9.46801E+07 9.0E−12 0.00421
GOFFIN 19 31 1.25642E−30 1.2E−29 0.00539
DUAL4 85 175 7.46091E−01 5.3E−17 0.03880
LINSPANH 0 0 -7.70100E+01 4.6E+03 1.06000
SPANHYD 0 0 3.34654E+12 4.6E+03 1.06000
QPCBLEND 12 19 -7.54958E−03 7.2E−19 0.01690
QPNBLEND 23 30 -9.00575E−03 8.0E−19 0.02200
DUAL1 111 158 3.50130E−02 1.2E−17 0.05140
DUAL2 109 230 3.37337E−02 1.7E−17 0.08160
HIMMELBI 81 113 -1.73514E+03 1.7E−14 0.03210
DUAL3 130 291 1.35756E−01 1.4E−17 0.15000
SMBANK 742 959 -6.24980E+06 7.0E+03 0.26500
QPCBOEI2 0 0 6.27747E+00 3.2E+50 4.96000
QPNBOEI2 0 0 5.23936E+00 3.2E+50 4.94000
AGG 0 0 2.26677E+17 5.7E+16 0.84700
HYDROELS 153 865 -3.58227E+06 1.7E−14 0.43400
GMNCASE1 139 174 2.66973E−01 1.0E−17 0.60900
GMNCASE4 0 0 NaN 1.3E+192 37.97000
GMNCASE2 120 152 -9.94445E−01 8.5E−18 0.71800
GMNCASE3 134 203 1.52515E+00 1.5E−17 0.91800
SSEBLIN 344 412 1.61706E+07 2.2E−11 0.50500
DALLASM 85 99 -5.44923E+04 7.6E+01 0.18000
PRIMALC1 28 84 -6.15525E+03 3.2E−13 0.12100
PRIMALC2 4 10 -3.55131E+03 1.5E−12 0.11100
PRIMALC5 6 29 -4.27233E+02 2.8E−13 0.36800
PRIMAL1 127 140 -3.50130E−02 3.6E−18 1.54000
QPCBOEI1 1 2 1.16535E+07 3.7E−15 15.98000
QPNBOEI1 1 2 7.04380E+06 3.7E−15 13.81000
QPCSTAIR 284 298 6.20450E+06 3.0E−14 10.97000
QPNSTAIR 168 179 5.14618E+06 3.6E−14 10.60000
STEENBRA 11955 12029 3.05685E+04 1.4E+02 <0.00001
STATIC3 9 72 -4.89562E+28 7.8E−01 0.63700
STEENBRB 512 528 7.55025E+09 1.7E+03 29.40000
STEENBRD 902 921 1.42615E+05 4.7E+02 27.34000
STEENBRF 739 750 1.49703E+06 2.4E+01 17.19000

Table 5: Performance of Ve11 (Part II).

21

Time is the total CPU time in seconds. Note that Minos does not count functional evaluations
in the case of linear or constant objective functions. The reported computer time corresponds
to the measured CPU time of a unique run per problem.

The final iterate of Minos in 2 out of the 127 problems (hs54 and agg) does not satisfy
the feasibility requirement (10) with tolerance εfeas = 10−8. In the other 125 problems, the final
iterate of Minos is feasible with tolerance εfeas = 10−8. In 119 problems, Minos stops satisfying
its stopping criterion related to “success”. For the remaining 6 problems, the diagnostics were:

• In problem static3, Minos stops declaring that the problem is unbounded (or badly
scaled).

• In problem hs55, Minos stops declaring that the current point cannot be improved.

• In problems hs118, himmelbj, spanhyd and steenbrd, Minos stops declaring that a
near-optimal solution was found.

Considering the 125 problems in which Minos obtained feasible final points, we observed
that, in most of them, the functional value at the final point is equivalent to the one obtained
by Genlin. The exceptions are:

1. In 6 problems (hs41, pentagon, qc, hs118, qpnblend, steenbrd) Genlin obtained a
smaller functional value than Minos.

2. In 6 problems (hatfldh, lin, eqc, hs105, degenlpa, qpnboei1, Minos obtained a
smaller functional value than Genlin.

3. In one problem (himmelbj) the final functional value provided by Minos was not defined
(NaN message).

Considering the 111 problems in which Genlin and Minos obtained feasible points with
equivalent functional values (excluding here problem static3 for which both methods detected,
by different ways, that it seems to be unbounded), we observed that:

1. Genlin performed less function evaluations in 84 cases.

2. Minos performed less function evaluations in 26 cases.

3. Genlin and Minos performed the same number of function evaluations in one case.

4. Considering the problems in which one of the methods used at least 0.01 seconds (40
problems) Genlin was faster than Minos (up to a tolerance of 10%) 17 times and Minos

was faster than Genlin (up to a tolerance of 10%) 22 times (both methods spent the same
amount of time in one case).

5. Restricting the item above to the problems in which one of the methods used at least 0.1
seconds (27 problems) Genlin was faster than Minos 8 times and Minos was faster than
Genlin 18 times (both methods spent the same amount of time in one case).

We recall that, due to the use of sparsity techniques in Minos (and not in Genlin), computer
time comparisons have little significance.

22

Problem ITER FCNT f(x∗) ‖C(x∗)+‖∞ Time

EXTRASIM 1 0 1.00000E+00 0.0E+00 0.00
HS9 4 11 -5.00000E−01 2.2E−15 0.00
TAME 3 7 0.00000E+00 0.0E+00 0.00
HS21 3 7 -9.99600E+01 0.0E+00 0.00
HS35MOD 2 5 2.50000E−01 0.0E+00 0.00
HUBFIT 6 11 1.68935E−02 0.0E+00 0.00
LSQFIT 6 11 3.37870E−02 0.0E+00 0.00
BOOTH 2 0 0.00000E+00 8.9E−16 0.00
HIMMELBA 1 0 0.00000E+00 0.0E+00 0.00
SUPERSIM 2 0 6.66667E−01 1.1E−16 0.00
SIMPLLPA 4 0 1.00000E+00 0.0E+00 0.00
ZECEVIC2 4 8 -4.12500E+00 0.0E+00 0.00
HS24 2 7 -1.00000E+00 2.1E−16 0.00
SIMPLLPB 2 0 1.10000E+00 0.0E+00 0.00
PT 2 0 1.78394E−01 2.9E−17 0.01
SIPOW1M 298 0 -1.00000E+00 0.0E+00 0.10
SIPOW1 297 0 -1.00000E+00 0.0E+00 0.10
SIPOW2M 336 0 -1.00000E+00 0.0E+00 0.10
SIPOW2 150 0 -1.00000E+00 0.0E+00 0.06
HS28 5 11 7.24639E−23 2.2E−16 0.00
HS62 9 18 -2.62725E+04 1.7E−16 0.00
HS35I 6 11 1.11111E−01 1.1E−16 0.00
HS35 6 11 1.11111E−01 1.1E−16 0.00
HS36 4 7 -3.30000E+03 0.0E+00 0.00
HS37 9 15 -3.45600E+03 0.0E+00 0.00
STANCMIN 3 4 4.25000E+00 1.4E−14 0.00
ZANGWIL3 3 0 0.00000E+00 0.0E+00 0.00
TFI2 35 0 6.49031E−01 2.2E−16 0.00
TFI3 23 25 4.30116E+00 3.3E−16 0.00
OET1 103 0 5.38243E−01 1.5E−16 0.03
HONG 16 29 2.25711E+01 1.4E−16 0.00
HS41 2 4 2.00000E+00 0.0E+00 0.00
LIN 10 25 -2.01983E−02 4.3E−17 0.00
HS76I 7 12 -4.68182E+00 0.0E+00 0.00
HS76 7 12 -4.68182E+00 0.0E+00 0.00
S277-280 7 0 5.07619E+00 3.0E−16 0.00
HS44NEW 5 9 -1.50000E+01 0.0E+00 0.00
HS44 3 9 -1.50000E+01 0.0E+00 0.00
BIGGSC4 11 15 -2.43750E+01 0.0E+00 0.00
HATFLDH 4 7 -2.45000E+01 0.0E+00 0.00
OET3 167 0 4.50505E−03 3.1E−16 0.04
SIPOW3 60 0 5.34659E−01 1.5E−16 0.04
SIPOW4 30 0 2.72362E−01 5.2E−17 0.04
HS48 8 15 2.21867E−31 2.2E−16 0.00
HS49 32 74 6.69491E−20 1.4E−15 0.00
BT3 5 11 4.09302E+00 2.9E−15 0.00
HS50 12 24 1.22443E−23 2.9E−15 0.00
HS51 5 11 3.50096E−25 3.3E−16 0.00
HS52 5 10 5.32665E+00 3.7E−16 0.00
HS53 5 11 4.09302E+00 1.9E−16 0.00
LSNNODOC 3 6 1.23112E+02 0.0E+00 0.00
HS268 16 35 0.00000E+00 0.0E+00 0.00
S268 16 35 0.00000E+00 0.0E+00 0.00
HS86 8 12 -3.23487E+01 4.5E−16 0.00
EXPFITA 13 29 1.13661E−03 0.0E+00 0.00
EXPFITB 27 34 5.01937E−03 2.4E−15 0.00
EXPFITC 128 136 2.33026E−02 6.2E−14 0.04
HS54 9 177 -9.08075E−01 1.2E−05 0.00
HS55 3 4 6.66667E+00 4.9E−13 0.00
PENTAGON 6 11 1.46213E−04 7.9E−17 0.00
HS21MOD 3 7 -9.59600E+01 0.0E+00 0.00
EQC 3 6 -1.04901E+03 0.0E+00 0.00
QCNEW 5 8 -8.06522E+02 0.0E+00 0.00
QC 4 7 -9.16301E+02 0.0E+00 0.00
DUALC2 7 12 3.55131E+03 1.4E−16 0.00
HS105 36 73 1.04473E+03 0.0E+00 0.02
AVGASA 12 14 -4.63193E+00 1.4E−16 0.00

Table 6: Performance of Minos (Part I).

23

Problem ITER FCNT f(x∗) ‖C(x∗)+‖∞ Time

AVGASB 12 14 -4.48322E+00 1.2E−16 0.00
DUALC5 13 23 4.27233E+02 6.9E−17 0.00
DUALC8 9 12 1.83094E+04 1.2E−16 0.01
DUALC1 14 25 6.15525E+03 2.4E−16 0.00
HS112 31 87 -4.77611E+01 4.9E−16 0.00
ODFITS 12 30 -2.38003E+03 2.0E−13 0.00
GENHS28 6 12 9.27174E−01 3.4E−15 0.00
PORTFL1 21 48 2.04863E−02 2.2E−16 0.00
PORTFL2 23 50 2.96892E−02 6.9E−17 0.00
PORTFL3 22 51 3.27497E−02 2.8E−16 0.00
PORTFL4 22 48 2.63070E−02 2.1E−16 0.00
PORTFL6 21 48 2.57918E−02 1.1E−16 0.00
LOTSCHD 5 4 2.39842E+03 1.6E−14 0.00
HS118 12 24 7.46758E+02 3.3E−16 0.00
HS119 26 29 2.44900E+02 8.1E−15 0.00
FCCU 25 47 1.11491E+01 6.7E−15 0.00
RES 7 0 0.00000E+00 3.1E−11 0.00
DEGENLPA 16 0 3.06036E+00 1.4E−09 0.00
DEGENLPB 15 0 -3.07312E+01 1.6E−13 0.00
KSIP 3063 5092 5.75798E−01 1.7E−14 0.94
MAKELA4 2 0 -2.45000E−13 4.9E−13 0.00
WATER 16 27 1.05494E+04 4.7E−13 0.00
LOADBAL 51 131 4.52851E−01 3.6E−14 0.00
HIMMELBJ 24 27 NaN 1.0E−11 0.00
DALLASS 69 151 -3.23932E+04 5.9E−14 0.01
AVION2 9 28 9.46801E+07 1.1E−12 0.00
GOFFIN 26 0 -1.03778E−13 6.2E−13 0.00
DUAL4 126 253 7.46091E−01 8.5E−17 0.05
LINSPANH 16 0 -7.70000E+01 3.5E−09 0.00
SPANHYD 45 88 2.39738E+02 7.7E−13 0.00
QPCBLEND 100 157 -7.84254E−03 2.0E−12 0.01
QPNBLEND 83 123 -8.70562E−03 2.0E−12 0.00
DUAL1 165 350 3.50130E−02 3.2E−16 0.08
DUAL2 208 418 3.37337E−02 3.6E−16 0.13
HIMMELBI 176 360 -1.73557E+03 7.5E−14 0.02
DUAL3 216 432 1.35756E−01 6.7E−17 0.18
SMBANK 333 788 -7.12929E+06 8.8E−10 0.03
QPCBOEI2 357 357 8.17196E+06 5.8E−10 0.02
QPNBOEI2 363 341 1.37140E+06 7.5E−10 0.02
AGG 118 0 -3.59918E+07 1.8E−06 0.02
HYDROELS 96 476 -3.58227E+06 5.7E−14 0.02
GMNCASE1 229 319 2.66973E−01 8.9E−13 0.43
GMNCASE4 143 73 5.94688E+03 7.7E−13 0.18
GMNCASE2 326 460 -9.94445E−01 3.2E−13 0.68
GMNCASE3 400 497 1.52515E+00 3.2E−13 0.75
SSEBLIN 149 0 1.61706E+07 8.7E−11 0.00
DALLASM 240 456 -4.81982E+04 9.6E−13 0.11
PRIMALC1 37 69 -6.15525E+03 2.4E−13 0.00
PRIMALC2 6 12 -3.55131E+03 4.1E−13 0.00
PRIMALC5 18 30 -4.27233E+02 2.6E−13 0.00
PRIMAL1 372 746 -3.50130E−02 1.6E−16 0.07
QPCBOEI1 1583 2180 1.15039E+07 1.7E−10 0.22
QPNBOEI1 1689 2416 6.75287E+06 3.7E−10 0.24
QPCSTAIR 494 524 6.20439E+06 3.6E−12 0.08
QPNSTAIR 470 529 5.14603E+06 5.1E−12 0.08
STEENBRA 105 127 1.69577E+04 2.0E−12 0.01
STATIC3 2 13 -5.37020E+27 0.0E+00 0.00
STEENBRB 897 1786 9.07586E+03 9.8E−13 0.07
STEENBRD 288 375 1.15373E+04 1.6E−12 0.02
STEENBRF 904 1795 8.99185E+03 1.1E−12 0.07

Table 7: Performance of Minos (Part II).

24

6.5 Comparison with Ipopt

Ipopt [60] is one of the best-qualified interior point methods for large-scale constrained opti-
mization. We ran this algorithm using all its default parameters. Tables 8 and 9 show the
performance of Ipopt for the 127 feasible problems of Table 1. In the tables, ITER is the num-
ber of iterations, FCNT is the number of functional evaluations, f(x∗) is the functional value at
the final iterate, ‖C(x∗)+‖∞ is the maximal violation of feasibilty, and Time is the total CPU
time in seconds. “Time” corresponds to the measured CPU time of a unique run per problem.

The final iterate of Ipopt in one problem (himmelbj) does not satisfy the feasibility re-
quirement with tolerance εfeas = 10−8. In this case Ipopt stops declaring that restoration
failed.

In the other 126 problems, the final iterate of Ipopt is feasible with tolerance εfeas = 10−8. In
121 out of those 126 problems, Ipopt stops satisfying its stopping criterion related to “success”.
For the remaining 5 problems, the diagnostics were:

• In problems eqc and dallasm, Ipopt stops declaring that the problem was solved to an
acceptable level.

• In problem static3, Ipopt stops declaring that the problem might be unbounded.

• In problem qcnew, Ipopt stops declaring that restoration failed.

• In problem lin, Ipopt stops declaring that search direction is becoming too small.

Considering the 126 problems in which Ipopt obtained feasible final points, we observed
that, in most of them, the final functional value at the final point is equivalent to the one
obtained by Genlin. The exceptions were:

1. In 12 problems (hs44, expfita, expfitb, expfitc, hs268, s268, hs55, pentagon,
eqc, makela4, goffin, primal1) Genlin obtained a smaller final functional value than
Ipopt.

2. In 17 problems (biggsc4, hatfldh, hs54, qcnew, hs105, dualc1, degenlpa, de-

genlpb, qpcblend, qpnblend, qpnboei2, gmncase1, gmncase2, gmncase3, pri-

malc5, qpnboei1, steenbrd) Ipopt obtained a smaller final functional value than Gen-

lin.

3. In one problem (lin) the final functional value provided by Ipopt was not defined (NaN
message).

In the remaining 95 problems (excluding here problem static3 for which both methods
detected, by different ways, that it seems to be unbounded) Genlin and Ipopt obtained feasible
points with equivalent functional values. Considering these 95 problems:

1. Genlin performed less function evaluations in 71 cases.

2. Ipopt performed less function evaluations in 15 cases.

3. Genlin and Ipopt performed the same number of function evaluations in 9 cases.

25

4. Considering the problems in which one of the methods used at least 0.01 seconds (54
problems) Genlin was faster than Ipopt (up to a tolerance of 10%) 37 times and Ipopt

was faster than Genlin (up to a tolerance of 10%) 15 times (both methods spent the same
amount of time in 2 cases).

5. Restricting the item above to the problems in which one of the methods used at least 0.1
seconds (26 problems) Genlin was faster than Ipopt 11 times and Ipopt was faster than
Genlin 14 times (both methods spent the same time in 2 cases).

As in the case of Minos, we recall that time comparisons have little significance in this case
since Ipopt uses sparse matrix techniques for linear algebra computations.

6.6 Conclusions of the Numerical Experiments

One should be very cautious when stating conclusions from very preliminar numerical experience.
It must be warned that conclusions are restricted to the particular set of problems addressed and
that a thorough evaluation comes only after thousands of tests made by other users. We hope
that public availability of our codes may encourage some researchers (especially people involved
with applications) to use them for solving their own problems. Nevertheless, the following
statements seem to be well supported by the performed numerical experiments.

1. Genlin and Betralin have similar behavior both in terms of robustness and efficiency.

2. Genlin presents a good adequacy of numerical results to theoretical convergence proofs,
in the sense that, except in two cases, it stopped satisfying the predicted convergence
criterion ‖gP (xk, δk)‖∞ ≤ ε. The exceptions were a problem in which the code stopped
because the functional values seemed to tend to −∞ and a problem with an undefined
objective function at some trial points.

3. We think that the most interesting positive observation coming from comparative experi-
ments is the frequency in which Genlin obtains solutions using less function evaluations
than the competitors. In the case of Ve11 and Minos this can be partially attributed
to the fact that these codes use quasi-Newton directions, whereas Genlin employs trun-
cated Newton steps. However, this not the case of Ipopt, which uses Newtonian search
directions. Therefore, the efficiency in terms of functional evaluations seems to rely on the
strategy for dealing with linear constraints.

7 Final Remarks

As so happens to occur with unconstrained and box-constrained optimization, improvements
in the techniques for minimizing smooth functions with linear constraints may cause almost
immediate benefical effects in other practical optimization areas. Penalty and Augmented La-
grangian methods may solve problems with linear and nonlinear constraints placing the linear
ones in a lower level and reserving the penalty-dual approach only for the nonlinear constraints
[3, 20]. Inexact-Restoration techniques [38, 45, 46] and the traditional methods of GRG type
[1, 2, 33] use to employ linearly constrained minimization subproblems for their general nonlin-
early constrained calculations, and many other examples can be found in the literature involving
nontraditional optimization-like problems. The potentially multiplicative aspect of this research

26

Problem ITER FCNT f(x∗) ‖C(x∗)+‖∞ Time

EXTRASIM 5 6 1.00000E+00 4.8E−17 0.00
HS9 3 9 -5.00000E−01 0.0E+00 0.00
TAME 5 6 0.00000E+00 0.0E+00 0.00
HS21 8 9 -9.99600E+01 0.0E+00 0.00
HS35MOD 15 16 2.50000E−01 0.0E+00 0.00
HUBFIT 8 9 1.68935E−02 0.0E+00 0.00
LSQFIT 7 8 3.37870E−02 0.0E+00 0.00
BOOTH 1 2 0.00000E+00 0.0E+00 0.00
HIMMELBA 1 2 0.00000E+00 0.0E+00 0.00
SUPERSIM 1 2 6.66667E−01 1.1E−16 0.00
SIMPLLPA 8 9 1.00000E+00 0.0E+00 0.00
ZECEVIC2 8 9 -4.12500E+00 0.0E+00 0.00
HS24 12 15 -1.00000E+00 0.0E+00 0.00
SIMPLLPB 10 11 1.10000E+00 0.0E+00 0.00
PT 20 21 1.78394E−01 0.0E+00 0.03
SIPOW1M 96 102 -1.00000E+00 0.0E+00 0.48
SIPOW1 40 45 -1.00000E+00 0.0E+00 0.21
SIPOW2M 30 39 -1.00000E+00 0.0E+00 0.16
SIPOW2 31 33 -1.00000E+00 0.0E+00 0.16
HS28 1 2 1.19562E−30 1.1E−16 0.00
HS62 7 10 -2.62725E+04 3.5E−17 0.00
HS35I 7 8 1.11111E−01 0.0E+00 0.00
HS35 7 8 1.11111E−01 0.0E+00 0.00
HS36 12 13 -3.30000E+03 0.0E+00 0.00
HS37 11 12 -3.45600E+03 0.0E+00 0.00
STANCMIN 10 11 4.25000E+00 0.0E+00 0.00
ZANGWIL3 1 2 0.00000E+00 0.0E+00 0.00
TFI2 13 17 6.49031E−01 0.0E+00 0.01
TFI3 15 16 4.30116E+00 0.0E+00 0.01
OET1 45 53 5.38243E−01 0.0E+00 0.14
HONG 8 9 2.25711E+01 5.6E−17 0.00
HS41 9 12 1.92593E+00 0.0E+00 0.00
LIN 15 39 NaN 0.0E+00 0.01
HS76I 7 8 -4.68182E+00 0.0E+00 0.00
HS76 7 8 -4.68182E+00 0.0E+00 0.00
S277-280 13 14 5.07619E+00 0.0E+00 0.00
HS44NEW 14 15 -1.50000E+01 0.0E+00 0.01
HS44 18 22 -1.30000E+01 0.0E+00 0.01
BIGGSC4 26 34 -2.45000E+01 0.0E+00 0.01
HATFLDH 18 19 -2.45000E+01 0.0E+00 0.01
OET3 16 17 4.50505E−03 0.0E+00 0.06
SIPOW3 15 20 5.34659E−01 0.0E+00 0.12
SIPOW4 13 16 2.72362E−01 0.0E+00 0.10
HS48 1 2 1.97215E−31 4.4E−16 0.00
HS49 19 20 1.06000E−11 0.0E+00 0.01
BT3 1 2 4.09302E+00 7.1E−15 0.00
HS50 9 10 0.00000E+00 0.0E+00 0.00
HS51 1 2 0.00000E+00 0.0E+00 0.00
HS52 1 2 5.32665E+00 4.4E−16 0.00
HS53 6 7 4.09302E+00 1.4E−17 0.00
LSNNODOC 11 15 1.23112E+02 3.7E−11 0.01
HS268 16 17 6.35311E−07 0.0E+00 0.01
S268 16 17 6.35311E−07 0.0E+00 0.00
HS86 10 11 -3.23487E+01 0.0E+00 0.00
EXPFITA 29 31 1.13664E−03 0.0E+00 0.02
EXPFITB 34 35 5.01951E−03 0.0E+00 0.02
EXPFITC 46 50 2.33048E−02 0.0E+00 0.11
HS54 15 16 -9.08075E−01 7.2E−13 0.01
HS55 2 3 6.70530E+00 1.6E−16 0.00
PENTAGON 16 18 1.36532E−04 0.0E+00 0.01
HS21MOD 16 17 -9.59600E+01 0.0E+00 0.00
EQC 23 141 -8.27204E+02 0.0E+00 0.01
QCNEW 20 30 -9.92207E+02 0.0E+00 0.01
QC 28 30 -9.56538E+02 0.0E+00 0.01
DUALC2 27 28 3.55130E+03 2.8E−17 0.04
HS105 17 26 1.04461E+03 0.0E+00 0.04
AVGASA 10 11 -4.63193E+00 0.0E+00 0.01

Table 8: Performance of Ipopt (Part I).

27

Problem ITER FCNT f(x∗) ‖C(x∗)+‖∞ Time

AVGASB 12 13 -4.48322E+00 0.0E+00 0.00
DUALC5 15 16 4.27233E+02 5.7E−18 0.03
DUALC8 23 24 1.83094E+04 1.6E−19 0.07
DUALC1 26 31 6.15521E+03 2.5E−17 0.04
HS112 17 18 -4.77611E+01 1.7E−17 0.01
ODFITS 10 11 -2.38003E+03 2.8E−14 0.00
GENHS28 1 2 9.27174E−01 5.6E−16 0.00
PORTFL1 9 10 2.04863E−02 3.6E−18 0.01
PORTFL2 8 9 2.96893E−02 1.1E−18 0.01
PORTFL3 10 11 3.27497E−02 2.1E−17 0.01
PORTFL4 9 10 2.63070E−02 1.2E−17 0.01
PORTFL6 8 9 2.57918E−02 2.2E−17 0.00
LOTSCHD 14 15 2.39842E+03 5.2E−15 0.01
HS118 11 12 6.64820E+02 0.0E+00 0.00
HS119 14 15 2.44900E+02 1.4E−16 0.01
FCCU 8 9 1.11491E+01 2.7E−15 0.00
RES 11 20 0.00000E+00 1.8E−15 0.01
DEGENLPA 24 30 3.05488E+00 1.7E−17 0.01
DEGENLPB 27 41 -3.07640E+01 2.8E−15 0.01
KSIP 27 34 5.75798E−01 0.0E+00 0.38
MAKELA4 7 8 9.02362E−08 0.0E+00 0.00
WATER 23 24 1.05494E+04 9.3E−11 0.01
LOADBAL 15 17 4.52851E−01 3.5E−15 0.01
HIMMELBJ 2694 68302 -1.89626E+03 2.3E−08 11.05
DALLASS 28 29 -3.23932E+04 6.6E−15 0.02
AVION2 204 272 9.46801E+07 7.8E−13 0.12
GOFFIN 8 9 1.15291E−07 0.0E+00 0.04
DUAL4 13 14 7.46091E−01 1.2E−17 0.04
LINSPANH 13 14 -7.70000E+01 2.7E−13 0.01
SPANHYD 24 26 2.39738E+02 2.7E−13 0.03
QPCBLEND 23 24 -7.84285E−03 8.1E−19 0.02
QPNBLEND 23 24 -9.13638E−03 1.3E−18 0.02
DUAL1 16 17 3.50130E−02 1.6E−17 0.06
DUAL2 13 14 3.37337E−02 4.8E−18 0.06
HIMMELBI 25 26 -1.73557E+03 0.0E+00 0.02
DUAL3 14 15 1.35756E−01 4.7E−19 0.09
SMBANK 17 18 -7.12929E+06 6.3E−11 0.02
QPCBOEI2 124 125 8.17196E+06 2.9E−15 0.20
QPNBOEI2 242 253 1.36828E+06 3.1E−15 0.58
AGG 190 195 -3.59918E+07 1.1E−10 0.61
HYDROELS 120 121 -3.58227E+06 0.0E+00 0.12
GMNCASE1 12 13 2.66971E−01 0.0E+00 0.58
GMNCASE4 40 41 5.94688E+03 0.0E+00 4.14
GMNCASE2 12 13 -9.94447E−01 0.0E+00 0.67
GMNCASE3 11 12 1.52514E+00 0.0E+00 0.60
SSEBLIN 64 65 1.61706E+07 1.9E−11 0.05
DALLASM 40 53 -4.81982E+04 3.6E−15 0.08
PRIMALC1 17 18 -6.15525E+03 0.0E+00 0.03
PRIMALC2 18 19 -3.55131E+03 0.0E+00 0.02
PRIMALC5 15 16 -4.27233E+02 0.0E+00 0.03
PRIMAL1 19 20 -3.50129E−02 0.0E+00 0.14
QPCBOEI1 132 140 1.15039E+07 2.7E−15 0.56
QPNBOEI1 654 684 6.75287E+06 2.5E−15 4.02
QPCSTAIR 231 240 6.20439E+06 9.9E−15 1.10
QPNSTAIR 247 250 5.14603E+06 1.1E−14 1.32
STEENBRA 23 24 1.69577E+04 9.1E−14 0.49
STATIC3 393 394 -3.63976E+44 1.4E−15 1.01
STEENBRB 49 50 9.07586E+03 7.6E−14 1.05
STEENBRD 105 128 9.03008E+03 8.3E−14 3.34
STEENBRF 53 56 8.99185E+03 1.0E−13 1.13

Table 9: Performance of Ipopt (Part II).

28

is, therefore, one of the reasons for pursuing increasingly efficient algorithms for linearly con-
strained optimization. The other reason is, of course, that many Physical, Engineering and
Economic problems admit linearly constrained optimization as natural mathematical models.

In this paper we made the first practical and computational attempt to incorporate the well
established SPG ideas to an efficient software dedicated to optimization on polytopes without
special structure. Although our final goal is to address efficiently large-scale problems, we felt
the necessity of producing an acceptable piece of software for small to moderate size problems.
Many algorithmic decisions were taken in the process of developing this software and some crucial
features of the algorithm were introduced during the testing period. As a whole, we think that
the results were pleasantly good although, as mentioned in Section 6, only thousands of tests
performed by other users can confirm this initial feeling. With this purpose, we made our soft-
ware available through the Tango Project web page http://www.ime.usp.br/∼egbirgin/tango/
(alternatively, follow the direct link http://www.ime.usp.br/∼egbirgin/sources/genlin/) and we
hope that it is clear and friendly enough to be used by people having real-life problems. Software
for large-scale problems, with sparse technology, will be released soon, although we expect that
new algorithmic decisions will be necessary for achieving robustness and efficiency in this case.

References

[1] J. Abadie, Modification of the GRG method, RAIRO Operations Research 3, pp. 323–326,
1979.

[2] J. Abadie and G. Guerrero, The General Reduced Gradient Method (GRG), the global
Newton Method and their application to Mathematical Programming, RAIRO Operations
Research 18, pp. 319–351, 1984.

[3] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, On Augmented Lagrangian
methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–
1309, 2007.

[4] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification, Mathe-
matical Programming 111, pp. 5–32, 2008.

[5] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and J-Y. Yuan, Spectral projected gradient and
variable metric methods for optimization with linear inequalities, IMA Journal of Numerical
Analysis 25 pp. 221–252, 2005.

[6] M. Andretta, E. G. Birgin and J. M. Mart́ınez, Practical active-set Euclidian trust-region
method with spectral projected gradients for bound-constrained minimization, Optimization
54, pp. 305–325, 2005.

[7] J. Barzilai and J. M. Borwein, Two point step size gradient method, IMA Journal of
Numerical Analysis 8, pp. 141–148, 1988.

[8] L. Bello and M. Raydan, Convex constrained optimization for the seismic reflection tomog-
raphy problem, Journal of Applied Geophysics 62, pp. 158–166, 2007.

29

[9] D. P. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans-
actions on Automatic Control 21, pp. 174–184, 1976.

[10] E. G. Birgin, R. Biloti, M. Tygel, and L. T. Santos, Restricted optimization: a clue to a
fast and accurate implementation of the Common Reflection Surface method, Journal of
Applied Geophysics 42, pp. 143–155, 1999.

[11] E. G. Birgin, R. Castillo, and J. M. Mart́ınez, Numerical comparison of Augmented La-
grangian algorithms for nonconvex problems, Computational Optimization and Applications
31, pp. 31–56, 2005.

[12] E. G. Birgin and Y. G. Evtushenko, Automatic differentiation and spectral projected gra-
dient methods for optimal control problems, Optimization Methods and Software 10, pp.
125–146, 1998.

[13] E. G. Birgin and J. M. Mart́ınez, A box-constrained optimization algorithm with negative
curvature directions and spectral projected gradients, Computing [Suppl] 15, pp. 49–60,
2001.

[14] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Applications
23, pp. 101–125, 2002.

[15] E. G. Birgin and J. M. Mart́ınez, Structured minimal-memory inexact quasi-Newton method
and secant preconditioners for Augmented Lagrangian Optimization, Computational Opti-
mization and Applications 39, pp. 1–16, 2008.

[16] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Nonmonotone spectral projected gradient
methods on convex sets, SIAM Journal on Optimization 10, pp. 1196–1211, 2000.

[17] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Algorithm 813: SPG - Software for convex-
constrained optimization, ACM Transactions on Mathematical Software 27, pp. 340–349,
2001.

[18] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Inexact Spectral Projected Gradient methods
on convex sets, IMA Journal on Numerical Analysis 23, pp. 539–559, 2003.

[19] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: constrained and un-
constrained testing environment, ACM Transactions on Mathematical Software 21, pp.
123–160, 1995.

[20] A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint, Convergence properties of an
Augmented Lagrangian algorithm for optimization with a combination of general equality
and linear constraints, SIAM Journal on Optimization 6, pp. 674–703, 1996.

[21] D. Cores and M. Loreto, A generalized two-point ellipsoidal anisotropic ray tracing for
converted waves, Optimization and Engineering 8, pp. 373–396, 2007.

[22] Y. H. Dai, Alternate step gradient method, Optimization 52, pp. 395–415, 2003.

30

[23] Y. H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming, Numerische Mathematik 100, pp. 21–47, 2005.

[24] Y. H. Dai and R. Fletcher, On the asymptotic behaviour of some new gradient methods,
Mathematical Proramming 103 pp. 541–559, 2005.

[25] Y. H. Dai and R. Fletcher, New algorithms for single linearly constrained quadratic pro-
grams subject to lower and upper bounds, Mathematical Proramming 106 pp. 403–421,
2005.

[26] Y. H. Dai, W. W. Hager, K. Schittkowski, and H. C. Zhang, The cyclic Barzilai-Borwein
method for unconstrained optimization, IMA Journal of Numerical Analysis 26, pp. 604–
627, 2006.

[27] Y. H. Dai and H. C. Zhang, Adaptive two-point stepsize gradient algorithm, Numerical
Algorithms 27, pp. 377–385, 2001.

[28] G. P. Deidda, E. Bonomi, and C. Manzi, Inversion of electrical conductivity data with
Tikhonov regularization approach: some considerations, Annals of Geophysics 46, pp. 549–
558, 2003.

[29] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, J. M. Mart́ınez, and S. A. Santos, Aug-
mented Lagrangian algorithms based on the spectral projected gradient for solving non-
linear programming problems. Journal of Optimization Theory and Applications 123, pp.
497–517, 2004.

[30] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Mathematical Programming 91, pp. 101–213, 2002.

[31] R. Fletcher, On the Barzilai-Borwein method, Department of Mathematics, University of
Dundee, NA/207, Dundee, Scotland, 2001.

[32] A. Friedlander, J. M. Mart́ınez, B. Molina, and M. Raydan, Gradient method with retards
and generalizations, SIAM Journal on Numerical Analysis 36, pp. 275–289, 1998.

[33] D. Gabay and D. G. Luenberger, Efficiently converging minimization methods based on
reduced gradient, SIAM Journal on Control 14, pp. 42–61, 1976.

[34] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Mathematics of Computation 28, pp. 505–535, 1974.

[35] D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly convex
quadratic programs, Mathematical Programming 27, pp. 1–33, 1983.

[36] A. A. Goldstein, Convex Programming in Hilbert Space, Bulletin of the American Mathe-
matical Society 70, pp. 709–710, 1964.

[37] M. A. Gomes-Ruggiero, J. M. Mart́ınez, and S. A. Santos, Spectral Projected Gradient
Method with Inexact Restoration for Minimization with Nonconvex Constraints, submitted.

[38] C. C. Gonzaga, E. Karas, and M. Vanti, A globally convergent filter method for nonlinear
programming, SIAM Journal on Optimization 14, pp. 646–669, 2003.

31

[39] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for Newton’s
method, SIAM Journal on Numerical Analysis 23, pp. 707–716, 1986.

[40] L. Grippo and M. Sciandrone, Nonmonotone globalization techniques for the Barzilai-
Borwein gradient method, Computational Optimization and Applications 23, pp. 143–169,
2002.

[41] L. Grippo and M. Sciandrone, Nonmonotone derivative free methods for nonlinear equa-
tions, Computational Optimization and Applications 37, pp. 297–328, 2007.

[42] Z. Jiang, Applications of conditional nonlinear optimal perturbation to the study of the
stability and sensitivity of the Jovian atmosphere, Advances in Atmospheric Sciences 23,
pp. 775–783, 2006.

[43] J. J. Júdice, M. Raydan, S. S. Rosa, and S. A. Santos, On the solution of the symmetric
eigenvalue complementarity problem by the spectral projected gradient algorithm, Numer-
ical Algorithms 47, pp. 391–407, 2008.

[44] E. S. Levitin and B. T. Polyak, Constrained minimization problems, USSR Computational
Mathematics and Mathematical Physics 6, pp. 1–50, 1966.

[45] J. M. Mart́ınez, Inexact-restoration method with Lagrangian tangent decrease and new
merit function for nonlinear programming, Journal on Optimization Theory and Applica-
tions 111, pp. 39–58, 2001.

[46] J. M. Mart́ınez and E. A. Pilotta, Inexact-restoration algorithm for constrained optimiza-
tion, Journal on Optimization Theory and Applications 104, pp. 135–163, 2000.

[47] J. M. Mart́ınez, E. A. Pilotta, and M. Raydan, Spectral gradient methods for linearly
constrained optimization, Journal of Optimization theory and Application 125, pp. 629–
651, 2005.

[48] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Mathe-
matical Programming 14, pp. 41–72, 1978.

[49] M. J. D. Powell, On the quadratic programming algorithm of Goldfarb and Idnani, Math-
ematical Programming Study 25, pp. 46–61, 1985.

[50] M. J. D. Powell, A tolerant algorithm for linearly constrained optimization calculations,
Mathematical Programming 45, pp. 547–566, 1989.

[51] A. Ramirez-Porras and W. E. Vargas-Castro, Transmission of visible light through oxidized
copper films: feasibility of using a spectral projected gradient method, Applied Optics 43,
pp. 1508–1514, 2004.

[52] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method,
IMA Journal of Numerical Analysis 13, pp. 321–326, 1993.

[53] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem, SIAM Journal on Optimization 7, pp. 26–33, 1997.

32

[54] M. Raydan and B. F. Svaiter, Relaxed steepest descent and Cauchy-Barzilai-Borwein
method, Computational Optimization and Applications 21, pp. 155–167, 2002.

[55] J. B. Rosen, The Gradient Projection method for Nonlinear Programming 2. Linear con-
straints, Journal of the Society for Industrial and Applied Mathematics 8, pp. 181–217,
1960.

[56] K. Schittkowski, QL: a Fortran code for convex quadratic programming, User’s Guide, Ver-
sion 2.1, 2004.

[57] T. Serafini, G. Zanghirati, and L. Zanni, Gradient projection methods for quadratic pro-
grams and applications in training support vector machines, Optimization Methods and
Software 20, pp. 347–372, 2005.

[58] Ph. L. Toint, An assessment of non-monotone linesearch techniques for unconstrained op-
timization, SIAM Journal on Scientific Computing 17, pp. 725–739, 1996.

[59] W. E. Vargas, D. E. Azofeifa, and N. Clark, Retrieved optical properties of thin films
on absorbing substrates from transmittance measurements by application of a spectral
projected gradient method, Thin Solid Films 425, pp. 1–8, 2003.

[60] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Mathematical Programming 106, pp. 25–
57, 2006.

[61] C. Y. Wang and Q. Liu, Convergence properties of inexact projected gradient methods,
Optimization 55, pp. 301–310, 2006.

[62] C. Y. Wang, Q. Liu, and X. M. Yang, Convergence properties of nonmonotone spectral
projected gradient methods, Journal of Computational and Applied Mathematics 182, pp.
51–66, 2005.

[63] Y-X. Yuan, A new stepsize for the steepest descent method, Journal of Computational
Mathematics 24, pp. 149–156, 2006.

[64] N. Zeev, O. Savasta, and D. Cores, Non-monotone spectral projected gradient method
applied to full waveform inversion Geophysical Prospecting 54, pp. 525–534, 2006.

[65] L. Zhang and W. W. Hager, A nonmonotone line search technique and its application to
unconstrained optimization, SIAM Journal on Optimization 14, pp. 1043–1056, 2004.

[66] L. Zhang and W. J. Zhou, Spectral gradient projection method for solving nonlinear mono-
tone equations, Journal of Computational and Applied Mathematics 196, pp. 478–484, 2006.

33

