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Use of the Singular Value Decomposition in Regression Analysis 
JOHN MANDEL* 

Principal component analysis, particularly in the form 
of singular value decomposition, is a useful technique 
for a number of applications, including the analysis of 
two-way tables, evaluation of experimental design, em- 
pirical fitting of functions, and regression. This paper is 
a discussion in expository form of the use of singular 
value decomposition in multiple linear regression, with 
special reference to the problems of collinearity and 
near collinearity. 

KEY WORDS: Collinearity; Multiple linear regres- 
sion; Principal component regression; Singular value 
decomposition. 

INTRODUCTION 

While multiple linear least squares regression has 
been in use for a long time as the major statistical tech- 
nique for "fitting equations to data," the full implica- 
tions, limitations, and inherent problems associated 
with it have been treated in the literature only recently. 
In addition to clarifying the issues, much recent work 
has also provided modifications of the technique aimed 
at increasing its reliability as a data-analytic tool. 

Undoubtedly, the greatest source of difficulties in 
using least squares is the existence of "collinearity" in 
many sets of data, and most of the modifications of the 
ordinary least squares approach are attempts to deal 
with the problem of collinearity. Among these mod- 
ifications one can cite principal components regression 
(Draper and Smith 1981; Hocking, Speed, and Lynn 
1976), latent root regression (Webster, Gunst, and Ma- 
son 1974), shrinkage (Hocking, Speed, and Lynn 1976; 
Stein 1960), ridge regression (Chatterjee and Price 
1977; Draper and Smith 1981; Hocking, Speed, and 
Lynn 1976; Hoerl and Kennard 1970; Marquardt 1970; 
Marquardt and Snee 1975; Snee 1973), and a number of 
variants of these techniques. 

The present paper does not attempt to discuss all 
these techniques, or to compare their relative merits. Its 
purpose is rather to present the nature of the problems 
through a careful exposition of the pertinent mathe- 
matical and conceptual aspects. It is almost indispens- 
able, in order to achieve this purpose, to use matrix 
notation and to resort to the method of principal com- 
ponents or to related techniques. We use the technique 
known as singular value decomposition (SVD) (Rao 
1973, p. 42) of the design matrix, a technique closely 
related to the method of principal components, to eluci- 

date the problem of collinearity, and we attempt to 
explain this technique mainly through graphical inter- 
pretations. 

This paper is of an expository type, and we do not 
claim completeness in our treatment. For a more com- 
prehensive and more advanced treatment, to which this 
paper may serve as a useful introduction, the reader is 
referred to a recent book by Belsley, Kuh, and Welsch 
(1980). Another general reference dealing with this top- 
ic is the new edition of Draper and Smith (1981). 

THE MODEL 

We assume that the model is known and of the form 

Y=Xr3+e, (1) 

where Y and e are vectors of N elements each, X is an 
N x p matrix of elements xij and ,B a vector of p ele- 
ments. The matrix X, consisting of nonstochastic ele- 
ments, is given. The Y vector consists of the mea- 
surements yi, each of which is the sum of two terms, the 
expected value 

E(y,) = >x4j3j, 

and the error term ei. The errors e, are assumed to be 
uncorrelated, of zero mean and constant variance a2, 
the value of which is not known. The vector of ei is 
represented by the term e in (1). The general ideas in 
this paper will be illustrated for the artificial data dis- 
played in Table 1, in which N = 8 and p = 3. There are 
in this case three regressor variables, xi, x2, and x3, of 
which the first is equal to unity for all i. The regression 
equation is 

yi = r3Xi1 + f2Xi2 + 3Xi3 + ei, 

but since xi, 1, the equation becomes 

Yi = i + r32xi2 + rB3Xi3 + ei, 

with an "independent term" ,B,. Inclusion of such an 
independent term is a common practice in regression 
work. Its usefulness is apparent when one considers 
regressors that can be expressed in linearly related, but 
nonproportional units. For example, if the regressor x2 
is temperature, a conversion from Celsius to Fahrenheit 
units would be impossible within the assumed model if 
no allowance had been made for an independent term. 

Many practitioners of regression analysis perform a 
"standardization" on all regressor variables other than 
the independent term, prior to analysis. The standard- 
ization of regressor xj consists in replacing it in the 
regression equation by 

XI = Xj + sit], 
where,x; is the average, and sj is the standard deviation, 
of the elements x,1 in column x;. The regression is now 
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Table 1. Data Set A 

Point xI x2 X3 y 

1 1 16.85 1.46 41.38 
2 1 24.81 -4.61 31.01 
3 1 18.85 -.21 37.41 
4 1 12.63 4.93 50.05 
5 1 21.38 -1.36 39.17 
6 1 18.78 -.08 38.86 
7 1 15.58 2.98 46.14 
8 1 16.30 1.73 44.47 

that of y on the regressors tj, and the latter are such that 
for each j tj = 0 (centering) and st, = 1 (scaling). The 
uses and usefulness of centering and scaling are dis- 
cussed in some detail in Draper and Smith (1981). For 
simplicity of presentation we omit this step throughout 
this paper. 

The object of the regression analysis is to estimate the 
coefficients r1(ij = 1 to p ), as well as u2, to "predict" the 
value of y for any "future" vector of regressor variables 
x = (xI x2 ... xp), and to estimate the error of such a 
predicted value, say y. To avoid confusion, a set of 
values (xi, x2, . .. , xp) for which a y-value is to be found 
are referred to henceforth as a "point in X space," or 
simply as a "point," rather than as a vector. 

Additional aspects of the regression problem appear 
in the course of our discussion. 

GEOMETRIC REPRESENTATION 
OF THE REGRESSION 

Assume a situation in which there are only two re- 
gressor variables, xi and x2. Then the "design points" 
(xI, x2) can be plotted in a plane D, such as that shown 
in Figure 1. At each of the design points a segment is 
erected, in a direction perpendicular to the D plane and 
of height y, where y is the value of the "response" 
variable at the point (xI, x2). According to the model 
equation (1), the end points of these segments should 
lie close to a plane. They would lie exactly in a plane if 
the response variable y were completely free of experi- 
mental error. 

Let P designate the (true) response plane. Because of 
the errors in y, P cannot be exactly determined, but it 
can be approximated by a fitted plane, say Pf, as shown 
in Figure 1. 

In the more general situation of p regressor variables, 
the D plane becomes a p -dimensional hyperplane, and 
so do the P and Pf planes. 

SINGULAR VALUE DECOMPOSITION OF X 

Given any N x p matrix X, it is possible to express 
each element x,1 of X in the following way: 

Xi1 = O, u, V ,1 + O2U2iV21 + . .. + OrllriVrj (2) 

or, more compactly, by the relation 

X >. OkUkiVk1, 
k = I 

where 01 - 0, ... O or. This is known as the singular 
value decomposition (SVD) of the matrix X. The num- 
ber of terms in (2) is r, the rank of the matrix X; r 
cannot exceed N or p, whichever is smaller. 

We will always assume that N - p, and it follows that 
r S p. The r vectors u are orthogonal to each other, as 
are the r vectors v. Furthermore, each of these vectors 
has unit length, so that 

Uk= Vk = 1 for all k. (4) 

In matrix notation, we have 

X= U 0 V. (5) 
Nxp Nxr rxr 'rxp 

The matrix 0 is diagonal, and all ok are positive. The 
columns of the matrix U are the u vectors, and the rows 
of V' are the v vectors of (2). The orthogonality of the 
u and v and their unit length implies the conditions 

U'U =I (6) 

V'V =1, (7) 

where a prime (') indicates transpose of a matrix and I 
is an r x r identity matrix. The ok can be shown to be 
the square roots of the nonzero eigenvalues of the 
square matrix X'X as well as of the square matrix XX'. 
The columns of U are the eigenvectors of XX' and the 
rows of V' are the eigenvectors of X'X. Excellent algo- 
rithms exist for obtaining the SVD of a matrix (see 
Chambers 1977). Table 2 shows the matrix X of data set 
A, along with its SVD. The U, 0, and V' matrices are 
displayed to show their dimensional relations to the X 
matrix. In this case the rank r is 3, that is, r = p. This 
is known as the full-rank case. Each element of X is 
easily reconstructed by multiplying the corresponding 
elements of the U, 0, and V' matrices and summing the 

9 I 

o Observed 
* Fitted 

D-Plane 

Figure 1. Geometric Representation of a Regression 
Surface 
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Table 2. SVD of the X Matrix of Data Set A 

x U 
U1 U2 U3 

1 16.85 1.46 .322575 .176104 .193765 
1 24.81 -4.61 .473864 -.603455 .049884 
1 18.85 -.21 .360574 - .038169 .333727 
1 12.63 4.93 .242392 .621398 - .036214 
1 21.38 -1.36 .408731 -.186949 -.659192 
1 18.78 -.08 .359251 -.021580 .241838 
1 15.58 2.98 .298488 .370545 - .453637 
1 16.30 1.73 .312108 .210988 .385321 

VI ~~~~0 
vI .053067 .998579 .004786 52.347807 0 0 
V2 .067340 -.008360 .997695 0 7.853868 0 
V3 .996317 -.052622 - .067688 0 0 .055690 

terms. For example, the element 4.93 in the fourth row 
and third column is equal to: 

[.004786 x 52.347807 x .2423921 

+ [.997695 x 7.853868 x .6213981 

+ [(-.067688) x .055690 x (-.036214)]. 

GEOMETRIC INTERPRETATION OF SVD 

To simplify the exposition, we consider an example 
with only two regressor variables. Table 3 shows the X 
matrix, consisting of five points, as well as the two u- 
vectors, the two v-vectors, and the diagonal 0 matrix. 
Each row of the X matrix consists of two numbers xi, x2. 
We can interpret these as a "point" in 2-dimensional 
space, with coordinates xi and x2 (see Fig. 2). The vec- 
tor joining the origin to that point can also be used to 
represent that point, and we will therefore not hesitate 
to refer to any such set of two numbers as a vector as 
well as a point. Thus the X-matrix is represented by five 
points, or five vectors. 

Similarly, the rows labeled v, and v2 also represent 
one point each or one vector each. The coordinates of 
the point v1, for example, are the numbers .7309 and 
.6825. First, we note that the distance of the origin to 
that point is unity, and that the same holds for vector v2. 
Thus, the vectors v1 and v2 have unit length. Second, it 
is easily verified that these two vectors are perpendic- 
ular (or "orthogonal") to each other (just as the original 
coordinate axes are perpendicular to each other). This 
follows from the fact that the sum of products of corre- 
sponding terms in v, and v2 is zero. 

Therefore, the two vectors v, and v2 can be consid- 
ered as an alternative set of orthogonal coordinate axes. 
If we now refer any one of the five points of X to these 
new axes, for example the second point (4.2, 2.8), the 
new "coordinates" of this point (i.e., the projections of 
the point on the v,, v2 axes) will be given by 0, u, and 02 
u2, in this case by (19.8360) (.2511) and (1.6040) 
(- .5113), or 4.9808 and - .8201. 

The relative sizes of these two numbers are not coin- 

Table 3. SVD of an X Matrix of Two Variables 

X-Matrix U-Matrix 
Xi X2 U1 U2 

1.3 1.2 .1202 .4037 
4.2 2.8 .2511 -.5113 
6.3 7.4 .4867 .6912 
8.0 7.1 .5391 -.1689 
9.4 8.2 .6285 -.2634 

VI 0-Matrix 
V1 .7309 .6825 19.8360 0 
V2 -.6825 .7309 0 1.6040 

cidental; the projections of the points on the v1-axis 
cover a wider range than those on the v2-axis. In other 
words, the five points of the design matrix fall predom- 
inantly "along" the v,-axis, and less along the v2-axis. 
Note that if we had 02 = 0, the coordinate of each of the 
five points on the v2-axis would be zero; in that case, all 
five points would lie on the v,-line (the line that is per- 
pendicular to v2 at the origin). We see that the purpose 
accomplished by the SVD is to reorient the coordinate 
axes in such a way as to make them follow more closely 
the pattern made by the points of the X matrix them- 
selves. The SVD helps us understand the structure of 
the X matrix. 

An entirely analogous interpretation holds for Table 
2, but here the vector space of the design variables is 
three-dimensional. If in Table 2 03 were exactly zero, all 
the points would lie in the vI, v2 plane, that is, in the 
plane that is perpendicular to v3 at the origin. Since, for 
data set A, 03 is actually close to zero, the points lie 
close to the v,, v2 plane, rather than in this plane. 

PRINCIPAL COMPONENTS REGRESSION 

The main objective of this paper can now be stated in 
more precise terms. Having introduced the SVD of the 
matrix X, we now propose to demonstrate the advan- 

x2 

. - 

Figure 2. Geometric Interpretation of Singular Value 
Decomposition in the Case of Two Regressor 
Variables 
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tages of replacing X by its SVD in carrying out the 
regression of Y on X. This procedure is called principal 
components regression. We will see that while this tech- 
nique can be used in every regression situation covered 
by (1) as defined above, it is particularly illuminating in 
the case of collinearity or near collinearity. These terms 
will be explained below. 

Introducing (5) into (1), we obtain 

Y= UOV'13+e. (8) 

Written in this form, the model is referred to as the 
principal components regression model. 

Equation (8) can be written as 

Y = U(OV'3) + e (9) 

where OV'13 is a r x 1 matrix, that is, a vector of r 
elements. Let us denote this vector by a. Then 

a= OV'r (10) 

and 

Y = Uot +e. (1 1) 
The vector Y and the matrix U are known. The least 
squares solution for the unknown coefficients a is ob- 
tained by the usual matrix equation, 

ai = (U'U)-IU'Y, 

which, as a result of (6), becomes 

& = U' Y. (12) 

This equation is easily solved since oj is simply the inner 
product of the vector Y with the jth vector uj. 

Through application of (12) we obtain, for the data 
set A using the U matrix shown in Table 2, 

(111. 285635\ 
(x U'Y 136.565303 . 

\ .018803 
It follows from (11) and (12) that 

d = U' (Uo + e) = o + U'e or 

d(.- ot = U'e. (13) 

It follows that 

E(dij- otj) = 0 

or 

E (ot) =otj. (14) 

Thus, 6t& is unbiased. Furthermore, the variance of &j is 

var(dtj) = E(dtj1 - otj) 

= E[Euij uj e,e,] 
It 

= (EU72) u2 =(a2 

Hence, 

var(& ) =a2. (15) 

It is also easily shown that the (Xj are mutually un- 
correlated. Note that whereas the number of elements 

of ,B is p, that of a is r, which may be less than p. Now 
the relation between ,B and a is given by (10), which also 
holds for the least squares estimates of a and 3, 

ci=OV'13. (16) 

In (16), OV' has the dimensions r x p. Thus, given the 
r values of &, the matrix relation (16) represents r equa- 
tions in the p unknown parameter estimates ,B. If r = p, 
(the full-rank case), the solution is possible and unique. 

In this case V' is a p X p orthogonal matrix (see (7)). 
Hence, the solution is given by 

= V'-0-'i = V 0-'. (17) 
Note that 0-'& is a p x 1 vector, obtained by dividing 
each &j by the corresponding Oj. Applying (17) to data 
set A, using the SVD of X of Table 2, we obtain at once 

(,B,\ 1.053067 .067340 .996317 
l32} = l.998579 -.008360 - .052622 
\,2, .004786 .997695 -.067688/ 

(&1/52.3478070 
x &2I7.853868 )(18) 

631/.055690 
An important use of (17), apart from its supplying the 
estimates of ,B as functions of the &, is the ready calcu- 
lation of the variances of the 1,. We will illustrate this 
calculation in terms of the numerical relations (18). 
Thus, we obtain from (18) 

053067) ' ? (.067340) d2 3 = (.053067) 52.347807 7.853868 

(.996317) 053690 

In general notation this equation is written as 
P 

= Vjk (19) 
k=l Ok 

Since the &j are mutually orthogonal and have all vari- 
2 ance ua, we see that 

var(Ij ) = (f V-)2 (20) 
k=i ok 

Applied to our data, for ,B,, (20) becomes 

(A (. 053067)2 + (.067340)2 + (.996317)2 
( j) =(52. 347807)2 (7. 853868)2 (.055690)2) 

x u2. (20a) 

The numerators in each term are the squares of the 
elements in the first row of the V matrix, that is, values 
between 0 and 1. But the denominators are the squares 
of O0. Now, we note that 03 is considerably smaller than 
0O and 02, so that the third term in (20) contributes an 
unduly large portion to the variance of ,B, (and also to 
the variances of 12 and 3). In fact, we find from (20a) 

var(,B) = [(1. 03 x 10-6) + (74. 4 x 10-') 
+ (320)] U2. (21) 

The reason for this unfavorable state of affairs is the 
very small value of 03 (as compared to those of 0, and 
02). We see that the use of the SVD technique allows us 
to pinpoint the cause or causes for the large variances 
found for some coefficients. In our example, the value 
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of 03 may be considered, for all practical purposes, to be 
equal to zero. But, a 0-value equal to zero has impor- 
tant consequences for the interpretation of regression 
results, as we will see shortly. We therefore interrupt 
the discussion of our numerical example to explore the 
consequences of a zero or near-zero value of 0. 

COLLINEARITY AND ITS 
EFFECTS ON REGRESSION 

Since the 0's are the square roots of the eigenvalues 
of the X'X matrix, a zero 0 value implies a zero eigen- 
value. This in turn implies that a linear relationship 
exists between at least some of the p x-vectors of the X 
matrix. A near-zero 0-value consequently implies an 
approximate linear relationship between at least some 
of these p x-vectors. 

Figure 3 shows that an approximate linear relation, 
namely 

15xi, - . 75xi2 - xi3 0 for all i, (22) 

holds among the columns of X (recall xi1 - 1). 
We have therefore discovered the relation that causes 

the very small value for 03. This can, however, also be 
accomplished without making graphs. 

First we observe that the meaning of (22) is more 
readily grasped if we consider a Euclidean space in 
three dimensions, with axes labeled xl, x2, and x3. For 
each i, the triplet (xl, X2, X3) represents a point in this 
space. (See Figure 2 for a two-dimensional analog.) 
Equation (22) simply means that all N points lie in a 
single plane (just as a linear relation between two x- 
variables indicates that all points lie on a straight line). 
They are therefore coplanar, an extension of the con- 
cept of collinearity (points on the same line). The exis- 
tence of a linear relation such as (22) is however always 
referred to as collinearity (which is thus used as a ge- 
neric term, including a generalization of the more lim- 
ited case of points on the same line). 

To study the effects of collinearity on the regression 
analysis, we introduce a second set of data, labeled data 
set B, which is shown in Table 4. Set B is merely a 
modified form of set A (Table 1): the relation between 
x2 and X3 is now an exact straight line. 

The SVD of the X matrix of data set B is shown in 
Table 5. The value of 03 is now exactly zero, so that the 
rank of the matrix is 2, rather than 3. We now have the 
case r <p. 

X3 

. 

4 

. 

2 

0~~~~~~~~ 

5 10 15 20 25 X2 

-2 

-4 

-6 

Figure 3. Near Collinearity for Three Regressor Vari- 
ables X1, X2, and X3 When x, =1. The (X2, x3) Points Fall 
Close to a Straight Line 

Using (12), we can calculate a which now consists of 
only two values: 

&, = 11.252(23) (=(35.628363).(3 

Even though there are only two a-values, there still are 
three 3-values, one for each of the three x-vectors. We 
try to obtain estimates for these ,B-values by using (10). 
Writing 

(OV')r3=a, (24) 

Table 4. Data Set B 

Point x, x2 X3 y 

1 1 16.85 2.3625 41.38 
2 1 24.81 -3.6075 31.01 
3 1 18.85 .8625 37.41 
4 1 12.63 5.5275 50.05 
5 1 21.38 -1.0350 39.17 
6 1 18.78 .9150 38.86 
7 1 15.58 3.3150 46.14 
8 1 16.30 2.7750 44.47 

X3= 15 x, - .75 X2 

Table 5. SVD of X Matrix of Data Set B; X = UOV' 

.323879 .193143 
/ .469906 -.598138 

.360569 -.005670 
x = .246463 .612642 52.406330 0 .053074 .997433 .048047 

.406982 -.257171 0 8.036461 .063871 - .051408 .996633 

.359285 .001287 

.300581 .319391 

.313789 .247817 

C) The American Statistician, February 1982, Vol. 36, No. 1 19 



we obtain 

(2.781414 52.271803 2.517967( (: 
.513297 -.413138 8.009402 3 

111.5245620 
= 35.628363! (25) 

Equation (25) represents two equations in three un- 
knowns, and does not yield a unique solution for the (3. 
However, it allows us to exprmss any two of the three 
,B-values as a function of the third. 

To treat the general case, let us denote the r X p 
matrix (OV') by Z, 

Z-OV', (26) 
and partition Z into ZA and ZB, the dimensions of 
which are respectively r x r and r x (p - r). Partition- 
ing the vector (3 accordingly, into r x 1 and (p - r) x 1, 
we have 

(ZA ZB) D)( (27) 
which can be written 

ZA OA + ZB B =() . (28) 

For the data in (25), this equation becomes 

(2.781414 52.271803 ( (3 + (2.517967 
k.513297 -.413138J (32' +8.009402, 

(111.524562) . (29) 

Premultiplying both sides of (28) by Z - (the inverse of 
an r x r nonsingular matrix), we obtain 

(3A+ZAZ,ZB4BZA .t (30) 

Equation (30) shows that, once a value for (B has 
been arbitrarily selected, PA is uniquely determined for 
this selection. Thus, in (29), (3I and (2 are uniquely 
determined for any arbitrarily selected value of (3. We 
could of course also have chosen either (,3 or (2 as the 
arbitrarily selected parameter. 

PREDICTION IN THE CASE OF COLLINEARITY 

Continuing with our quest for the consequences of 
collinearity, let us consider a "new" point x, for which 
we wish to estimate 9. We have 

y=x , (31) 

or, introducing the partitioning of , 

y x( ) (32) 

Since A is of dimensions r x 1, and x has the dimen- 
sions 1 x p, we partition x, accordingly, into XA (Of 
dimensions 1 x r) and XB (of dimensions 1 x (p - r)). 
Thus, 

Y=(XA XB) ( 13) 
or 

Y=XA3A + XB(3R. (33) 

Introducing (30) into (33), we obtain 

9=XAZA a-ZA ZB OR + XBX,B 
or 

YXA (ZA ) + (XB XAZAZB)B (34) 

Recall that B cannot be determined by the data, but is 
arbitrary. In order for (34) to make sense, then, we 
must insist that the value of 9 be unchanged for any 
arbitrary value of ,B. This implies that 

XB -XAZA'ZB = . (35) 
It is easily seen that ZAIZB = (VA)-IVB where V' is 
partitioned analogously to Z. (note that VA is not an 
orthogonal matrix.) Thus, this product does not involve 
the 0 matrix, and (35) can be written as 

XB = XA [VA 'VB] (35a) 
If (35) is fulfilled, the solution is 

Y =XA(ZA ?i) . (36) 
It is important to realize that (34) yields two relations: 
the condition-(35)-and the solution-(36). But the 
solution is valid only when the condition is fulfilled. 

For data set B we have 

Z -I = 68. 206904)(7 ZA = _1.49577zj (37) 

ZAZB = (750)0 (38) 

Thus, the condition becomes 

X3= 15x, - 0. 75x2 (39) 

and the solution, subject to (39), is 

9 = 68.207x1 - 1.496x2 
which, as a result of (39), can be written as 

y=1.9144x2 + 4.5471x3 . (40) 
Since xl 1, (39) is the graph of a straight-line rela- 

tion between x2 and x3. A schematic plot of X3 versus x2, 
using the data of Table 4, is shown in Figure 4 and 
exhibits this relationship. But our derivation of (39) 

y 

x2 

D-Plane 

X3 

Figure 4. Effect of Co/linearity on the PRegression 
Surface 
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shows that this relation must also hold for any future 
point (xI, X2, X3) for which an estimate y' is desired. 

Thus, we can obtain a valid estimate for 
x = (1 15 3.75), namely y = 45.767; but not for the 
point x = (1 20 3.75). The reason is readily under- 
stood in terms of Figure 4. The X matrix on which our 
estimation process is based is such that an exact re- 
lationship exists between x2, and X3, represented by a 
straight line in the D plane of the (X2, X3) points. Call 
this line Lx. The regression problem is to find a plane 
Pf in the (X2, X3, y) space, possibly with a nonzero inter- 
cept, that best fits the observed y. But since all the y 
occur at points (X2, X3) that fall along the line Lx, the 
desired plane is defined only in its intersection with the 
vertical plane erected on Lx. This intersection is de- 
noted by Lp in Figure 4, and it is apparent that the plane 
to be found can freely swivel around this intersecting 
line, yielding no unique value of j for any point that is 
not situated on LX. 

To summarize: if r <p, there is no unique solution 
for g for an x point, except in the case in which this x 
point fulfills the collinearity condition resulting from 
the zero 0-value. This condition is given by (35), and if 
it is fulfilled the solution is given by (36). 

THE CASE OF NEAR COLLINEARITY 

Regression and Prediction 

We now return to our data set A (Table 1), in which 
the X matrix \vas full-rank but had one very small 
0-value. Here, the line LX discussed in the previous 
section does not strictly exist, but all eight points of the 
X matrix fall very close to such a line. Strictly speaking, 
the plane to be found does not swivel freely now, and 
estimates for 9 can be obtained for any point x. How- 
ever, because of the unfortunate choice of the points 
defining the X matrix, the exact position of the desired 
plane is poorly known, except in the close vicinity of its 
intersection with the vertical plane erected on the ap- 
proximate LX line. 

To prove this contention, consider a "new" point x 
(1 x p). We first express this point in equivalent u- 
coordinates, by using the basic SVD equation 

X= U0v' 

When applied to a single point x (e.g., a single row in 
X, but also any "new" point of p elements), this equa- 
tion yields: 

x = u OV' , (41) 

where both x and u are vectors of p elements. From 
(41) we derive (since V-' = V' for the full-rank case) 

u = xVO -l . (42) 

We will further discuss this relation below, but first deal 
with the prediction of 9 at the point x. Expressing the 
point in u coordinates, given by (42), we have 

9=u&, (43) 

and consequently (see (15)) 
p 

var(9) = u2 > u 2j (44) 
1=1 

This equation shows that even a single numerically large 
component of the u-vector can substantially increase 
the variance of j. 

We now investigate under what circumstances the 
vector u can have large components. 

From the basic relation X = U0V' we obtain 

Uo = XV. (45) 

Let us divide the 0's into two groups, OA and 08, such 
that the latter contains all the 0 values that are consid- 
erably smaller than the others. For example, in Table 2 
we would make 

A = (52.347807 7 3 ) (46) 

and 

OB = .055690 (47) 

In this case OB consists of a single value, but in general 
it could contain, say, I values. Then OA is a diagonal 
matrix of p - I values. Let 

p-l=t. (48) 

Then OA is a square, diagonal t x t matrix and OB a 
square, diagonal I x l matrix. Partitioning both 0 and V 
in (45), we have 

u (OA )= X(VA VB) , (49) 

where VA is p x t and VB iS P X 1. This equation can be 
written 

((OA) O(HB)) = (XVA XVB) . (50) 

Now, because all the 0-values in the B group are very 
small, the columns represented by U((8, ) contain ele- 
ments that are all very small. The same is then neces- 
sarily true of all the elements in XVB. Thus the small- 
ness of the 0-values in the B group implies that 

XVB - , . (51) 

where - represents approximate equality. Equation 
(51) is the condition imposed on the X matrix by the 
smallness of the 0's in the B group, and represents one 
or more linear relations between the columns of X. For 
example, for Table 2, we have 

.996317 

XVB =X ~-I067688 (52) 

implying that for every row in X, 

.996317x,- .052622x2- .067688x3 - 0. (53) 

This can be verified to hold for matrix X, and it is 
essentially the equation of a line Lx that represents a 
linear fit to the points (X2, X3) (recall that xl--1). In fact, 
by dividing both sides of (53) by the coefficient of xX, it 
is seen that (53) is essentially the same as (39). 
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Returning now to the problem of predicting y for a 
new point x, we write equation (42) in the form 

U = (XVA XVB)0f' (54) 

or 

U = (XVA XVB) ( 0 (55) 

The last I elements of u arise from the product 

and because each 0 in 0B is very small and its reciprocal 
0-' consequently very large, these elements of u will be 
very large, causing the variance of 9 to be very large, 
unless XVB- 0, that is, unless (cf. (52)) the new point x 
satisfies the near-collinearity condition of the X matrix. 
The further the new point x lies from the Lx line, the 
larger will be the variance of 9, that is, the poorer will 
be the precision of the predicted value. This is really the 
heart of the collinearity problem, when viewed from the 
standpoint of usability of the estimated regression for 
prediction purposes. 

If the near-collinearity condition is exactly fulfilled 
for the point x, we have from (55) that 

XVB =O, and u =xVA (OA ) ' (56) 

which implies that the last I elements of u are zero, and 

9 = Uld +... + U,d, . (57) 

In this equation, only the first t a-values are involved, 
the others having zero-multipliers. 

For data set A (Table 1), the near-collinearity condi- 
tion is given by Eq. (53), and the predicted 9 for x 
satisfying (53) (considered as an equality) is 

9 = Ua = X(VA) ( )a 

(.053067 .067340\ 1 .998579 - .008360 
.004786 .997695 

_____ 0 111.524562~ 
(52.347807 1 

0 7.853868 36.628363 
7 .418452\ 

2X 2089422 (58) 
\4. 536091!(8 

To summarize: The near-collinear case is characterized 
by one or more very small (though nonzero) 0-values. 
The rank of X is p; hence predictions can in principle 
be made for any x-point for which the basic model is 
known (or assumed) to be valid. However, the precision 
of the predicted value becomes poorer and poorer as 
the x-point departs more and more from the near- 
collinearity condition given by the equation 

XVB -? . (59) 

When the equality sign holds exactly, the predicted 9 
for an x-point satisfying this condition is 

9 = XVA (0A)c ) (60) 

The poorer the approximation in (59), the poorer is the 
precision of 9 at that point. 

An important remark must be made at this point. If 
the 0-values in group B are very small, the correspond- 
ing portion of the V matrix, namely VB, will be known 
with very poor numerical precision and (59) may then 
contain very large rounding errors. In that case, it is far 
better to act as though 0B were exactly equal to zero and 
to express the near-collinearity condition through the 
use of (35). Using data set A as an illustration (though 
in this case (59) was adequate), we obtain, by ignoring 
03 and the third row of V', 

z-'z ( {14. 7193) ZA -. 7774J 
and consequently, applying (35), we obtain the col- 
linearity condition 

X3= 14. 7193x -.7774x2 

which is equivalent to (53). 

Biased Estimation 

We have seen that in the case of near-collinearity the 
variance of 9 increases drastically for x -points that are 
appreciably removed from the subspace of X in which 
the points of the design matrix essentially lie (the sub- 
space defined by the collinearity condition). This condi- 
tion has led to various attempts to obtain more precise 
estimates by sacrificing the condition of unbiasedness of 
the 9 estimator. The proposed procedures are therefore 
known as "biased estimation." We will deal with only 
one of the proposed methods: that directly associated 
with the principal components regression technique. 
Our discussion will however suffice to reveal the basic 
nature of the problem and of the proposed solutions. 

Principal Components Regression 

In the following, we assume that we have a near- 
collinear X matrix. According to (56) and (57), if a 
point x satisfies the condition XVB = 0, the estimate of 
y corresponding to this point is given by the first t 
terms in 9 = 1.ujgi, where 

u =xV0-' 

While this estimate of y yields the correct least 
squares solution for points satisfying XVB = 0, it is not 
the least squares solution for x -points that do not satisfy 
this condition, that is, for points that do not lie in the 
subspace defined by the collinearity condition. 

Let us, however, denote by y the quantity 

9=>u1ci1, (61) 

regardless of whether the condition XVB = 0 iS or is not 
satisfied. Equation (61) is often called the biased prin- 
cipal component prediction equation. The reason for 
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considering such an estimate is of course the reduction 
of variance it accomplishes. We have 

p p 

var() =var( =ujj) =2>uj2 , (62) 
j=1 j=1 

var(j) = var( uj A) = u72 . (63) 
j=l j=I 

For data set A, making t = 2, and considering as an 
example the point x = (1 23 -6), we have 

u=x(V0-1)=(.439 -.778 3.450) 

and consequently 

var(y) = [(.439)2 + (-.778)2 + (3. 45)2]o.2 
= 12.70lo2 , 

var(j9) = [(439)2 + (-. 778)2Ju2 = .7980o& 

In this case, then, the reduction in the variance of the 
estimate of y is very large. 

On the other hand the estimator 9 is unbiased, while 
y is a biased estimator. We have 

E()=E(y) , (64) 
p 

E(y) = E(y) - I ujo, (65) 
j=t+I 

Hence 
p 

Bias (9) = EW ) - E(y) =- uja, (66) 
j=1+I 

Denoting by MSE the mean squared error, defined by 

MSE = Variance + (Bias)2 , (67) 

we have 
p 

MSE(y) = 2 > U ,2 (68) 
j=1 

p 

MSE(y)= uj+(- Ujj)2 (69) 
j=1 j=t+I 

By using y in the place of 9, we actually "trade" the 
reduction in variance, equal to U2 P t+1 uj, for the in- 
troduction of a (bias)2 equal to ( iit 

Let us examine the case where t = p - 1 (occurring 
when only one 0-value is very small). Then the reduc- 
tion in variance is u2up and the (bias)2 = 2p2 . Thus, y 
will have a smaller MSE than 9 if, and only if, 
(bias)2 < variance reduction, that is if 

u 2a2< 2 2 
p p UP 

or 

at 2<oa2 (70) 

Unfortunately, both aop and a are unknown parameters, 
for which only estimates are available. The estimate for 
a,, is of course ap, and the estimate for a2 is the residual 
variance after fitting &g, &2, and &3. We have, from least 
squares theory, N 

(E W, - 92) 

a='(N -p) ' (71) 

which, when using the a estimators, becomes 
( N p 

,Zdy 9)2) (Y2 
_ 

,2) 6- -- (72 ^2 i=l i=l j=l 7n 

(N -p) (N -p) 
(72 

For data set 1, we have (p = 3) 

a3= .018803, 

/13729.3041 - 13721.5143 
= V 8-3 =~~~1.248 

Undoubtedly, in this case, d3 <&, but this does not 
necessarily imply that a3 < a. Indeed, the standard er- 
ror of a3 is a (cf. (15)); if &3 is of the same order of 
magnitude as a, it will be virtually impossible to decide, 
on the basis of the data alone, whether condition (70) is 
satisfied. To decide whether y is preferable to 9, that is 
whether MSE(9) < MSE(9), it is therefore often neces- 
sary to make further assumptions. For example, if we 
assume that a3 = 0, then the y estimator is obviously 
the one to use. The hypothesis a3 = Ocan be tested in 
principal component regression using Student's t test, 

t a3-a3 - a3 (73 t ~~~~~~~~(73) 
which, for the hypothesis a3 =0, becomes 

at3 t = a^3, (74) 
For data set 1, we obtain 

t 
0 

i088 0151 t1.248-05 
The hypothesis a3 = 0 cannot be rejected, but this does 
not allow us to infer that condition (70) is satisfied. 

From the viewpoint of the philosophy of experi- 
mentation, another important matter deserves consid- 
eration. Our problem involves both an assumption of a 
linear model, (1), and a set of data. In a "good" experi- 
ment, the data themselves generally provide some diag- 
nostic means for testing the model. In the case of near 
collinearity, these diagnostic means are totally confined 
to the close vicinity of the subspace defined by the near 
collinearity. Thus, even if we knew that condition (70) 
is fulfilled, we would still be uncertain about the validity 
of the model for points with large u3-values, that is 
points far removed from the (vI,v2) plane, in the V3 

direction. 
Our analysis has led us to the conclusion that linear 

model inferences based on near-collinear X matrices 
should be made with great caution. 

OTHER APPLICATIONS OF 
THE SVD TECHNIQUE 

We have seen that the detection and treatment of 
collinearity and near collinearity is greatly facilitated 
through the use of the singular value decomposition. 
This interesting technique has other important uses in 
data analysis, such as in the study of the structure of 
two-way tables (Bradu and Gabriel 1978; Mandel 
1971), the evaluation of experimental designs in re- 
gression (Hahn, Meeker, and Feder 1976), and the em- 
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pirical fitting of functions of two or more arguments 
(Mandel 1981). 

SUMMARY AND CONCLUSION 

We have presented algebraic and geometric aspects 
of multiple linear regression, based primarily on the 
singular value decomposition technique, and shown 
that difficulties of interpretation arise when constraints 
(such as exact or approximate linear relations) exist 
between the regressor variables. Linear constraints are 
known as collinearity. Near collinearity manifests itself 
in the form of one or more very small singular values. 

Under linear constraints, the true coefficients of the 
relation between the response and the regressor vari- 
ables cannot be estimated unambiguously without in- 
troducing additional assumptions. Nevertheless, it is 
possible to make valid predictions of the response, pro- 
vided that the point for which the prediction is made lies 
in the same subspace as the points on which the re- 
gression calculations were based. 

Even though the coefficients of the regression equa- 
tion cannot be estimated precisely when applying the 
least squares technique to the case of collinearity, or 
near collinearity, certain linear combinations of the co- 
efficients can be estimated with confidence. 

[Received August 1980. Revised July 1981. 
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