Partial Differentiation

oseph Louis Lagrange
is remembered for his
great treatises on ana-
Iytical mechanics and on
the theory of functions
that summarized much of
eighteenth-century pure and
applied mathematics. These
treatises—Mécanique  an-
alvtigue  (1788).  Théorie
des fonctions analvtigues
(1797). and Lecons sur
jnseph Louis [,;igr;mgc le caleul  des ﬁJH['H'(HI.\'
(1736-1813) (1806)—systematically de-
veloped and applied widely
the differential and integral calculus of multivariable func-
tions expressed in terms of the rectangular coordinates x.
¥. z in three-dimensional space. They were written and
published in Paris during the last quarter-century of La-
grange’s career. But he grew up and spent his first 30 years
in Turin, Italy. His father pointed Lagrange toward the law,
but by age 17 Lagrange had decided on a career in sci-
ence and mathematics. Based on his early work in celes-
tial mechanics (the mathematical analysis of the motions
of the planets and satellites in our solar system). Lagrange
in 1766 succeeded Leonhard Euler as director of the Berlin
Academy in Germany.

Lagrange regarded his far-reaching work on
maximum-minimum problems as his best work in mathe-
matics. This work, which continued throughout his long
career. dated back to a letter to Euler that Lagrange wrote
from Turin when he was only 19. This letter outlined a
new approach to a certain class of optimization problems
that comprise the calculus of variations. A typical example
is the isoperimetric problem, which asks what curve of a
given arc length encloses a plane region with the greatest
area. (The answer: a circle.) In the Mécanique analvtique,
Lagrange applied his “method of multipliers” to investi-

gate the motion of a particle in space that is constrained
to move on a surface defined by an equation of the form
g(x,y,z) = 0. Section 12.9 applies the Lagrange multi-
plier method to the problem of maximizing or minimizing
a function f(x, v, z) subject to a “constraint™ of the form

glx,v,.2)=0.

Today this method has applications that range from mini-
mizing the fuel required for a spacecraft to achieve its de-
sired trajectory to maximizing the productivity of a com-
mercial enterprise limited by the availability of financial.
natural, and personnel resources.

Modern scientific visualization often employs com-
puter graphic techniques to present different interpreta-
tions of the same data simultaneously in a single figure.
The following color graphic shows both a graph of a sur-
face - = f(x.y) and a contour map showing level curves
that appear to encircle points (x. v) corresponding to pits
and peaks on the surface. In Section 12.5 we learn how to
locate multivariable maximum-minimum points like those
visible on this surface.
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@ 12.1 INTRODUCTION
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FIGURE 12.1.1 A box whose total
cost we want to minimize.

We turn our attention here and in Chapters 13 and 14 to the calculus of functions of
more than one variable. Many real-world functions depend on two or more variables.
For example:

o In physical chemistry the ideal gas law pV = nRT (where n and R are constants)
is used to express any one of the variables p (pressure), V (volume), and T
(temperature) as a function of the other two.

« The altitude above sea level at a particular location on the earth’s surface depends
on the latitude and longitude of the location.

« A manufacturer’s profit depends on sales. overhead costs. the cost of each raw
material used, and in many cases, additional variables.

« The amount of usable energy a solar panel can gather depends on its efficiency.
its angle of inclination to the sun’s rays, the angle of elevation of the sun above
the horizon, and other factors.

A typical application may call for us to find an extreme value of a function of
several variables. For example, suppose that we want to minimize the cost of making
a rectangular box with a volume of 48 ft*, given that its front and back cost $1/ft%, its
top and bottom cost $2/ft*, and its two ends cost $3/ft>. Figure 12.1.1 shows such a
box of length x, width v, and height z. Under the conditions given, its total cost will
be

C =2xz+4xy +6yz  (dollars).
But x, v. and 7 are not independent variables, because the box has fixed volume
V =xyz =48.

We eliminate z, for instance, from the first formula by using the second: because z =
48/(xy). the cost we want to minimize is given by
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C=dxy+—+—.
X by

Because neither of the variables x or y can be expressed in terms of the other. the
single-variable maximum-minimum techniques of Chapter 3 cannot be applied
here. We need new optimization techniques applicable to functions of two or more
independent variables. In Section 12.5 we shall return to this problem.

The problem of optimization is merely one example. We shall see in this chap-
ter that many of the main ingredients of single-variable differential calculus—limits.
derivatives and rates of change, chain rule computations, and maximum-minimum
techniques—can be generalized to functions of two or more variables.

‘ 12.2 FUNCTIONS OF SEVERAL VARIABLES

Recall from Section 1.1 that a real-valued function is a rule or correspondence [ that
associates a unique real number with each element of a set D. The domain D has
always been a subset of the real line for the functions of a single variable that we have
studied up to this point. If D is a subset of the plane. then f is a function of two
variables—for, given a point P of D. we naturally associate with P its rectangular
coordinates (x, v).

DEFINITION Functions of Two or Three Variables

A function of two variables, defined on the domain D in the plane, is a rule f that
associates with each point (x. y) in D a unique real number, denoted by f(x. v).
A function of three variables, defined on the domain D in space, is a rule f that
associates with each point (x. y. z) in D a unique real number f(x. y. 2).
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Functions of Several Variables SECTION 12.2 901

We can typically define a function f of two (or three) variables by giving a for-
mula that specifies f(x. v) in terms of x and y (or f(x. y. z) in terms of x. y, and z).
In case the domain D of f is not explicitly specified, we take D to consist of all points
for which the given formula is meaningful.

EXAMPLE 1 The domain of the function f with formula
flx,y) =/25—x2—y?

is the set of all (x. y) such that 25— x> —y> > O—that is, the circular disk x>+ y* < 25
of radius 5 centered at the origin. Similarly, the function g defined as
X4 y-+z

glx.yv.2) = e
PV s o i o o

is defined at all points in space where x> + y* + z% > 0. Thus its domain consists of
all points in three-dimensional space R* other than the origin (0. 0. 0). S,

EXAMPLE 2 Find the domain of definition of the function with formula

filx, p) = i (1)

VX —y?
Find also the points (x, y) at which f(x. y) = £1.

Solution For f(x. v) to be defined. the radicand x — y*> must be positive—that is,
y?> < x. Hence the domain of f is the set of points lying strictly to the right of the
parabola x = y?. This domain is shaded in Fig. 12.2.1. The parabola in the figure
is dashed to indicate that it is not included in the domain of f: any point for which
x = y? would entail division by zero in Eq. (1).
The function f(x. y) has the value =1 whenever
3
— = +1;

! 2
VX =y

that is, when ¥ = x — y*>. sox = 2y%. Thus f(x.y) = =l at each point of the
parabola x = 2y” [other than its vertex (0. 0). which is not included in the domain of
f1. This parabola is shown as a solid curve in Fig. 12.2.1. SRR

In a geometric, physical, or economic situation, a function typically results from
expressing one descriptive variable in terms of others. As we saw in Section 12,1, the
cost C of the box discussed there is given by the formula
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C=4xy+ —+ —

X y
in terms of the length x and width v of the box. The value C of this function is a
variable that depends on the values of x and y. Hence we call C a dependent variable,
whereas x and v are independent variables. And if the temperature T at the point
(x. v. ) in space is given by some formula 7 = fh(x, v, z). then the dependent variable

T is a function of the three independent variables x, y. and z.

We can define a function of four or more variables by giving a formula that in-
cludes the appropriate number of independent variables. For example, if an amount A
of heat is released at the origin in space at time r = 0 in a medium with thermal diffu-
sivity k, then—under appropriate conditions—the temperature 7" at the point (x. y. z)
attime t > 0 is given by

P A o ( B e
e T T e 4kt

If A and k are constants, then this formula gives the temperature 7 as a function of the
four independent variables x. v, z, and 1.
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FIGURE 12.2.2 The graph of a
function of two variables is typically
a surface “over” the domain of the
function.
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FIGURE 12.2.3 The planar graph
of Example 3.

We shall see that the main differences between single-variable and multivariable
calculus show up when only two independent variables are involved. Hence many of
our results will be stated in terms of functions of two variables. Most of these results
readily generalize by analogy to the case of three or more independent variables,

Graphs and Level Curves

We can visualize how a function f of two variables “works™ in terms of its graph. The
graph of f is the graph of the equation z = f(x. v). Thus the graph of f is the set
of all points in space with coordinates (x. v, z) that satisfy the equation z = f(x. v).
(See Fig. 12.2.2.) The planes and quadric surfaces of Sections 11.4 and 11.7 provide
some simple examples of graphs of functions of two variables.

EXAMPLE 3 Sketch the graph of the function f(x.yv)=2— :l.\' — 1y

Solution We know from Section 11.4 that the graph of the equation z =2 — 1x — 1y
is a plane. and we can visualize it by using its intercepts with the coordinate axes to
plot the portion in the first octant of space. Clearly z = 2 if x = y = (. Also the
equation gives y = 6if x =z = 0and x =4 if y = z = 0. Hence the graph looks as
pictured in Fig. 12.2.3. —

EXAMPLE 4 The graph of the function f(x.y) = x* 4+ y* is the familiar circular

paraboloid z = x” + y? (Section 11.7) shown in Fig. 12.2.4. —— 1§

EXAMPLE 5 Find the domain of definition of the function
glx,y) = %\,-"'4 —4x? —y? (2)
and sketch its graph.

Solution The function g is defined wherever 4—4x*—y? = O—thatis, x>+ y? < I—
so that Eq. (2) does not involve the square root of a negative number, Thus the domain
of g is the set of points in the xy-plane that lie on and within the ellipse x* + }_\-3 =
1 (Fig. 12.2.5). If we square both sides of the equation z = 1,/4 —4x? — 2 and
simplify the result, we get the equation

.3+l‘l_*__3 1
X 1_\ I =

of an ellipsoid with semiaxes ¢ = 1. b = 2, and ¢ = 1 (Section 11.7). But g(x. v) as

defined in Eq. (2) is nonnegative wherever it is defined. so the graph of g is the upper

half of the ellipsoid (Fig. 12.2.6). — )
x= 1_\': =]

X

FIGURE 12.2.4 The paraboloid is the

FIGURE 12.2.5 The domain of the FIGURE 12.2.6 The graph of the

graph of the function f(x,v) = 24 y2, function g(x. v) = *Lw'4 — 452 = 2. function g is the upper half of the

ellipsoid.
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FIGURE 12.2.7 A contour curve
and the corresponding level curve.
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Functions of Several Variables SECTION 12.2 903

The intersection of the horizontal plane ; = k with the surface z = f(x.y) is
called the contour curve of height k on the surface (Fig. 12.2.7). The vertical projec-
tion of this contour curve into the xv-plane is the level curve f(x.y) = k of the
function f. Thus a level curve of f is simply a set in the xy-plane on which the value
f(x.y) is constant. On a topographic map. such as the one in Fig. 12.2.8, the level
curves are curves of constant height above sea level.

= = |
le : Kevhoard —_ =
P?@;Ml\

FIGURE 12.2.8 The region near Longs Peak. Rocky Mountain National Park. Colorado.
showing contour lines at intervals of 200 feet.

Level curves give a two-dimensional way of representing a three-dimensional
surface z = f(x.y). just as the two-dimensional map in Fig. 12.2.8 represents a
three-dimensional mountain range. We do this by drawing typical level curves of
z = f(x,y) in the xy-plane, labeling each with the corresponding (constant) value
of z. Figure 12.2.9 illustrates this process for a simple hill.

EXAMPLE 6 Figure 12.2.10 shows some typical contour curves on the paraboloid
z =25 — x* — y°. Figure 12.2.11 shows the corresponding level curves. )

Feet
400

FIGURE 12.2.9 Contour curves and level FIGURE 12.2,10 Contour curves on FIGURE 12.2.11 Level curves of the

curves for a hill.

the surface z = 25 — x° — y2, function f(x.y) =25 —x7 — v,
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FIGURE 12.2.12 Level curves for FIGURE 12.2.13 Contour curves on
the function f(x, v) = y2 — x2, z=y? — x7 (Example 7).

2 2

EXAMPLE 7 Sketch some typical level curves for the function f(x, y) = v> — x2.
Solution If k # O then the curve y* — x* = & is a hyperbola (Section 9.6). It opens
along the y-axis if k > 0. along the x-axis if k < 0. If k = 0 then we have the equation
v? — x? = 0, whose graph consists of the two straight lines vy = x and vy o= —x.
Figure 12.2.12 shows some of the level curves, each labeled with the corresponding
constant value of z. Figure 12.2.13 shows contour curves on the hyperbolic paraboloid
z = y* — x> (Section 11.7). Note that the saddle point at the origin on the paraboloid
corresponds to the intersection point of the two level curves vy = x and v = —x in
Fig. 12.2.12. =)

The graph of a function f(x, v.z) of three variables cannot be drawn in three
dimensions, but we can readily visualize its level surfaces of the form f(x, v.z) = k.
For example, the level surfaces of the function f(x, y,z) = x* + y? + z* are spheres
(spherical surfaces) centered at the origin. Thus the level surfaces of f are the sets in
space on which the value f(x. y. 7) is constant,

If the function f gives the temperature at the location (x. v) or (x. y. z). then its
level curves or surfaces are called isotherms. A weather map typically includes level
curves of the ground-level atmospheric pressure: these are called isobars. Even though
you may be able to construct the graph of a function of two variables, that graph might
be so complicated that information about the function (or the situation it describes) is
obscure. Frequently the level curves themselves give more information, as in weather
maps. For example, Fig. 12.2.14 shows level curves for the annual numbers of days of

Scale 1 : 34,000,000 Days of
high air pollution
potential forecasted

FIGURE 12.2.14 Days of high air pollution forecast in the United States (from
National Atlas of the United States. U.S. Department of the Interior. 1970).



FIGURE 12.2.15 Some level
surfaces of the function
w=flx.y.2)=x+y*—
(Example 8).

Functions of Several Variables SECTION 12.2 905

high air pollution forecast at different localities in the United States. The scale of this
figure does not show local variations caused by individual cities. But a glance indicates
that western Colorado. south Georgia, and central Illinois all expect the same number
(10, in this case) of high-pollution days each year.

EXAMPLE 8 Figure 12.2.15 shows some level surfaces of the function
Fflx.y.2)=x4+y* =2

If k > 0, then the graph of x> + y? — z2 = k is a hyperboloid of one sheet., whereas if

k < 0 it is a hyperboloid of two sheets. The cone x? + y* — > = 0 lies between these
two types of hyperboloids. —D

Computer Plots

Many computer systems have surface and contour plotting routines like the Maple
commands

plot3d(ya2 - xA2, x = -3..3, vy = -3..3);

with(plots): contourplot(yAa2 - xA2, x = -3..3, v = -3..3);

and the Mathematica commands

Plot3D[ yA2 - xA2, {x,-3,3}, {y,-3,3} ]
ContourPlot[ yA2 - xA2, {x,-3,3}, {v,-3,3} 1

~4

for the function f(x, y) = v* — x* of Example 7.
EXAMPLE 9 Figure 12.2.16 shows both the graph and some projected contour curves
of the function

flxoy) = (x" =y )exp(—x~ — y7).

Observe the patterns of nested level curves that indicate “pits” and “peaks™ on the
surface. In Fig. 12.2.17, the level curves that correspond to surface contours above the
xy-plane are shown in red. while those that correspond to contours below the xy-plane
are shown in blue. In this way we can distinguish between peaks and pits. It appears
likely that the surface has peaks above the points (+1. 0) on the x-axis in the xy-plane,
and has pits below the points (0. 1) on the v-axis. Because f(x.=%x) = 0, the two
45° lines y = = in Fig. 12.2.17 are also level curves: they intersect at the point (0, 0)
in the plane that corresponds to a saddle point or “pass™ (as in mountain pass) on the
surface. — )

0.4 : 3
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FIGURE 12.2.17 Level curves
for the function f(x.v) =

FIGURE 12.2.16 The graph and projected contour
curves of the function f(x.yv) = (x2 — y2)e= 1",

» e e
(X~ — e =

REMARK In Section 12.5 we will study analytic methods for locating maximum and
minimum points of functions of two variables exact/y. But Example 9 indicates that
plots of level curves provide a valuable tool for locating them approximately.
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FIGURE 12.2.18 The curve
z = sinr (Example 10).

FIGURE 12.2.19 The hat surface

2 =sin /x4 y* (Example 10).

FIGURE 12.2.20 The intersection
of z = f(x,y) and the plane y = ¥

(Example 11).

=3.3.09) B

i4, 6.67)

FIGURE 12.2.21 The curve

3 9
z=3+ 4yt — &y

(Example 11).

4

EXAMPLE 10 The surface

z=sinyx2+y? (3)

is symmetrical with respect to the z-axis. because Eq. (3) reduces to the equation z =
sinr (Fig. 12.2.18) in terms of the radial coordinate r = /x° + y* that measures
perpendicular distance from the z-axis. The surface ; = sinr is generated by revolving
the curve z = sinx around the z-axis. Hence its level curves are circles centered at the
origin in the xy-plane. For instance, z = 0 if r is an integral multiple of 7. whereas
z = =l if r is any odd integral multiple of /2. Figure 12.2.19 shows traces of this
surface in planes parallel to the yz-plane. The “hat effect”™ was achieved by plotting
(x. v. z) for those points (x, v) that lie within a certain ellipse in the xy-plane. ___»

Given an arbitrary function f(x, v). it can be quite a challenge to construct by
hand a picture of the surface z = f(x. v). Example |1 illustrates some special tech-
niques that may be useful. Additional surface-sketching techniques will appear in the
remainder of this chapter.

EXAMPLE 11 Investigate the graph of the function
flx.y) = %_\‘3 + :LJ_\"‘ - %_\'4 —g® (4)

Solution The key feature in Eq. (4) is that the right-hand side is the sum of a function
of x and a function of y. If we set x = 0. we get the curve
2 |

o+ 33 Y %‘\'J (5)

s

in which the surface z = f(x. v) intersects the yz-plane. But if we set v = ¥ in
Eq. (4), we get

z= (3‘\(: — ﬁ_\ﬁ - %":':) = 3%

that is,
=k -2y (6)
which is the equation of a parabola in the xz-plane. Hence the trace of z = f(x. y) in

We can use the techniques of Section 4.5 to sketch the curve in Eq. (5). Calcu-
lating the derivative of = with respect to v, we get

d‘: 3 l a2 1 3 l ] ]
— = =y ey — = ===y =y — 12) =—=y(y-3)(y—4).
dy 27 & 8 L i 8 - ’
Hence the critical points are ¥y = =3, v = 0. and v = 4. The corresponding values of

Zare
f0.-3)=F =309, f0.00=0. and f(0.4)=2 ~6.67.

Because ; — —oc as y — =%oc. it follows readily that the graph of Eq. (5) looks like
that in Fig. 12.2.21.

Now we can see what the surface = = f(x. v) looks like. Each vertical plane
¥ = yp intersects the curve in Eq. (5) at a single point. and this point is the vertex of a
parabola that opens downward like that in Eq. (6): this parabola is the intersection of
the plane and the surface. Thus the surface - = f(x. v) is generated by translating the
vertex of such a parabola along the curve
e L

1By —mY

c -
..—3‘\ +

shows a computer plot of level curves of the function f(x. v). The nested level curves
enclosing the points (0. —3) and (0. 4) correspond to the peaks at the point (0. —3, %)
and (0. 4. %,\ on the surface = f(x. v). The level figure-eight curve through (0, 0)
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¥ 1=-3
=-15
2=00
2= 1.5
3 X
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‘2=4.5
1 =60
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St
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FIGURE 12.2.22 Trace parabolas of FIGURE 12.2.23 Contour curves on FIGURE 12.2.24 Level curves of the
z= f(x.y) (Example 11). z= f(x.y) (Example 11). function f(x.v) = %_\»3 4+
vt — g5y¥ —x% (Example 11).
marks the saddle point (or pass) that we see at the origin on the surface in Figs. 12.2.22
and 12.2.23. Extreme values and saddle points of functions of two variables are dis-
cussed in Sections 12.5 and 12.10. — )

12.2 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1.

Suppose the function f of two variables is defined by a formula giving the value
f(x,y)interms of x and y. If the domain D is not explicitly specified. then we
take D to consist of all points for which the given formula is meaningful.

The domain of the function f defined by the formula
Flx.y)=25=-x2—32

is the set of all points (.x. v) whose distance from the origin (0, 0) is less than 3.

If the cost C(x, v) of a box with base of length x and height y is given by
288 96
C=4xy+4+ —+ —,
X ¥

then C is an independent variable and x and y are dependent variables.

. The graph of the function f of two variables is the set of all points in space with

coordinates of the form (x. v. f(x. v)).
1

5. The graph of the function f(x,y) =2 — jx — %\ is a plane.

. The graph of the function g(x. y) = /4 — 4x? — y? is an ellipsoid.
. A level curve of a function f of two variables is precisely the same thing as a

contour curve of f.

-

. If k is a constant. then the graph of the equation x” + v* —z? = k is a hyperboloid

of one sheet, because there is one minus sign on the left-hand side of the equation.

. The pattern of level curves of a function f(x. v) looks essentially the same near

a point (x, y) corresponding to a “peak”™ on the surface z = f(x, y) as near a
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point corresponding to a saddle point or “pass.” In particular, in either case we
see level curves encircling the point in question.

10. Every level curve of the function

L]
("]

—_
i

=]

fx,y)= 1.\'2 + ﬁ_\‘ - ﬁ_\' —x-

is a closed curve that encircles either the point (0, —3) or the point (0, 4).

12.2 CONCEPTS: QUESTIONS AND DISCUSSION

1. Summarize the relationship between the level curves of a function f(x. y) and
the pits, peaks, and passes on the surface z = f(x. y). In short, how can you
locate likely pits. peaks. and passes by looking at a plot of level curves?

2. Give examples of other types of data for your country that might be presented in
the form of a contour (level curve) map like the one shown in Fig. 12.2.14.

3. The function graphed in Example 11 is of the form z = f(x) + g(y), the sum
of single-variable functions of the two independent variables x and y. Describe
a way of sketching the graph of any such function.

12.2 PROBLEMS

In Problems I through 20, state the largest possible domain of
definition of the given function f.

1. flx,y)=4—3x—2y 2 flx, y) =22 +2y7
3. flx.y) ] 4. fi ) :
. X.v)= . X ¥)=
T T x4 y? ="
5 fx.y)=Jy—x2 6. f(x.y)=2x + 3y FIGURE 18050 Mol
smixy
. o= f“.;‘ of Problem 14.
TR 4 3 ! x= V=
7. fx,y) =sin"'(x* + %) 8. flx, y)y= Ian"'('—) ’
X
- . W— xy
9. flx.y) =exp(—x*—y?) (Fig.12.2.25) 15. [ 3) =3
1
16. fix,y. )= = =
VR e
17. f(x.y.2) ( : )
7 e . X, V. Z)=¢€Xx T
- s = : P\eyi+2

18. f(x,y.z) =In(xyz)
19. f(x.y.2) =In(z —x* =37
20. f(x,yv.2)=sin'BG—=-x=y' =2

FIGURE 12.2.25 The graph of the , T i o : s
rtckion oF Problei 9. In Problems 21 through 30, describe the graph of the function f.

2). féx, ) =10 22. fx, M) =x
23, fx.yv)=x+y 24, f(x.y) =2 +°
10, flx.y)=In(x?—y*—1) 25, fx,y)=x>+1y° 26. flx,v)=4—x>—3?

27. flx,y) =/4—x2—y? 28. fix.vi=16—1?
1, )=ty =2 Flxin \ ¥=— ) flx.y) ¥

29. flx,y)=10—=4/3*4y*

12. f{,\.‘. y) = \34 =T == 30. ,ff'l ) -—\m
13, ey 1 4+ sinxy In Problems 31 through 40, sketch some tvpical level curves of
4 o Ly xy the function f.
1 +sinxy . flry)=x—y 32. flx,y)=x*—)

14. f{\ ¥y = PENT [Flg 12.2.26) 33. ff.l‘. V)= 4 4),3 34, fl.\'. V)=y— y2



5. flry)=y—°
37, flx,y)=x*+y' —4x
8. flx,.)=x"+y —6r+4v+7
39. f(x.y) =exp(—x? —?)

1

36. f(x,y)=y—cosx

40. f(x.y)

In Problems 41 through 46, describe the level surfaces of the
Junction f.

41 f(x. y.)=x*+y* -z

2. flx.y.2) =2+ /x*+y?

43, fle.yv.o)=x"+y+77—4x -2y -6z

4, fx.y. )= —x1—)*

45, f(x. v, =x"4+4y —4x -8y +17

46. f(x.v,2) =x>+y+25

In Problems 47 through 52, the function f(x, v) is the sum of a

function of x and a function of v. Hence yvou can use the method

of Example 11 to construct a sketch of the surface z = f(x., y).
Match each function with its graph among Figs. 12.2.27 through
12:2.32,

L= SV I SR = ¥

|
2

I
=

|

r
b D 19 =

I
ra
[

= :

FIGURE 12.2.31 FIGURE 12.2.32

47. flx,y) =x3+*

48. f(x,y)=2r—)?

49. f(x,y)=x"=3x+1y

50, flx,y)y=x2—y*

51 flx,y) =x2+yvH —4y?

52, flx,y) =2y =3y — 12y + 27
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Problems 33 through 58 show the graphs of six functions z =
flx.v). Figures 12.2.39 through 12.2.44 show level curve plots

for the same functions but in another order; the level curves in

each figure correspond to contours ar equally spaced heights
on the surface z = f(x.xy). Match each surface with its level
curves.

1

83 1= —5——.
I +x2 4yt

lx[=2.]yl£2

(Fig. 122.33)

FIGURE 12.2.33 : =

Jl=2) Ivj=2

54. z = rlexp(—r?)cos’(36).
(Fig. 12.2.34)

FIGURE 12.2.34 2 = r?exp(—r?)cos?(36),
Ix|£3,[y1£3.r20.
85, 2 =cos /¥ 12,

x| <10, |y <10  (Fig. 12.2.35)

FIGURE 12.2.35 : = cos/x” + .":--
lx| =10, [y = 10.

56. z =xexp(—x’ —y?). |x|£2.|y|£2 (Fig. 12.2.36)

X

FIGURE 12.2.36 - = vexp(—x~ — y7),

x| £2, I¥| £2.
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57. =3 +3y)exp(—x* —y?), |x|£25.|¥|£2.5
(Fig. 12.2.37)

FIGURE 12.2.37 = = 3(x? + 3y Hexp(—x? — y?),
x| £2.5, [¥| £25.

58. z=axyexp(—1(x*+37). [x|£35.|¥[£35
(Fig. 12.2.38)

FIGURE 12.2.38 - = xy n:xp(‘-%l,r3 . _\'31).
x| £3.5, |¥| £3.5.

59. Use a computer to investigate surfaces of the form : =
(ax + by)exp(—x® — y*). How do the number and loca-
tions of apparent peaks and pits depend on the values of the
constants ¢ and b?

60. Use a computer to graph the surface z = (ax” + 2bxy +
cy?)exp(—x* — v?) with different values of the parameters
a. b, and ¢. Describe the different types of surfaces that are
obtained in this way. How do the number and locations of
apparent peaks and pits depend on the values of the constants
a. b, and c?

61. Use a computer to investigate surfaces of the form z =
7* exp(—r?) sin n. How do the number and locations of ap-
parent peaks and pits depend on the value of the integer n??

62. Repeat Problem 61 with surfaces of the form z =
rexp(—r) cos® né.

7\l N
7N A\

i 'x/"_:\\..“:\'tl!l!lll‘l- ||I.i [ W

]

’:/.'rJr’ /

FIGURE 12.2.41

FIGURE 12.2.42

FIGURE 12.2.43

X

FIGURE 12.2.44

f12.3 LIMITS AND CONTINUITY

We need limits of functions of several variables for the same reasons that we needed
limits of functions of a single variable—so that we can discuss continuity, slopes. and
rates of change. Both the definition and the basic properties of limits of functions
of several variables are essentially the same as those that we stated in Section 2.2
for functions of a single variable. For simplicity, we shall state them here only for
functions of two variables x and y: for a function of three variables, the pair (x, v)
should be replaced with the triple (x. v. z).

For a function f of two variables. we ask what number (if any) the values f(x. v)
approach as (x, v) approaches the fixed point (. b) in the coordinate plane. For a func-
tion f of three variables, we ask what number (if any) the values f(x. v, z) approach
as (x. y. 2) approaches the fixed point (a. b. ¢) in space.



