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Abstract

In inexact Newton methods for solving nonlinear systems of equations, an approximation

to the step sk of the Newton’s system J(xk)s = −F (xk) is found. This means that sk must

satisfy a condition like ‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖ for a forcing term ηk ∈ [0, 1). Possible

choices for ηk have already been presented. In this work, a new choice for ηk is introduced.

The method is globalized by the introduction of a robust backtracking strategy proposed by [2],

and its convergence properties are proved. Several numerical experiments with boundary value

problems are presented. The numerical performance of the proposed algorithm is analyzed by

the performance profile tool proposed by Dolan and Moré in [11]. The results obtained show a

competitive inexact Newton method for solving academic and applied problems in several areas.
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Consider the nonlinear system

F (x) = 0, (1)

where F ∈ C1(D, IRn) with D an open convex set, and assume that there is x∗ ∈ D such that

F (x∗) = 0 with J(x∗) nonsingular, where J(y) is the Jacobian matrix of F at y. From now on, ‖ · ‖
is a norm in IRn and also the corresponding induced matrix norm.

The most popular method for solving problem (1) is Newton’s method. The k–th step of this

method consists on: given xk, find sk, the exact solution of

J(xk)s = −F (xk). (2)

Then,

xk+1 = xk + sk. (3)

Equation (2) is called Newton’s equation.

It is well known that Newton’s method has local quadratic convergence [9] if the Jacobian

matrix is Lipschitz continuous and nonsingular at a solution of the system. On the other hand

Newton’s method may be computationally expensive: at each iteration the Jacobian matrix at

xk must be computed and the solutions of the linear system (2) is required. To get rid of these

drawbacks, several modifications of Newton’s method were proposed in the last 40 years, such as

the quasi-Newton methods, see [6], [7], [14], [15], [19], [20] and [21], the discrete Newton method,

see [9] and the inexact Newton methods, see [8].

These methods are largely used for solving applied problems in several areas such as Geo-

physics, Engineering, Chemistry, Physics and so on. In this work we focused in a set of boundary

value problems. Further applications considered by us are ray-tracing problems in Geophysics [3],

[22] and combustion, see [22].

For solving (1) with an inexact Newton method, the step sk in the k–th iteration (called

an outer iteration) is found approximately. Solving approximately means that sk must satisfy a

condition like

‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖, (4)

for a forcing term ηk ∈ [0, 1) [8]. For solving (4) we use in this work an iterative linear system

solver, the Generalized Minimum Residual with restarts, GMRES(m), [24]. At the k–th iteration

of inexact Newton method, each iteration of GMRES is called an inner iteration.

In this work, we make a brief description of commonly used choices for the forcing term

ηk, proposed by Eisenstat and Walker in [13]. A new choice is then introduced with the aim of

reducing the number of inner iterations performed by the linear solver. The algorithm proposed
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incorporates a globalizing nonmonotone backtracking strategy. Monotone backtracking strategies

for inexact Newton methods have been widely used in recent researches, [12]. Even though the

search direction that satisfies (4) using the 2–norm is a descent direction for ‖F‖2 (see [5]) a

nonmonotone strategy results in a more tolerant process, mainly at the initial outer iterations. We

expect a small number of backtrackings even knowing that some small increases in ‖F‖ may occur.

In Section 1 we describe the new algorithm which incorporates our choice for ηk and a nonmonotone

backtracking strategy, and prove convergence results for it. In Section 2 we present and analyze the

numerical performance of this algorithm. This is done by plotting the performance profile [11] of

the method with the choice proposed, in comparison with the ones proposed in [13] and the choice

with a constant value for ηk. Concluding remarks are given in Section 3.

1 The Inexact Newton Method with the New Choice for ηk

The inexact Newton method proposed in this work introduces a new choice for the forcing term

ηk. A backtracking strategy is incorporated to increase the algorithm robustness. These features

of the method will be described after a brief review of existing inexact Newton methods.

1.1 About Inexact Newton Methods

Dembo, Eisenstat and Steihaug [8] proposed an algorithm for an inexact Newton method for finding

x∗, in which an approximate solution sk for (2) must be found, such that the inexact Newton

condition

‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖, (5)

is satisfied for 0 ≤ ηk ≤ η < 1.

As its name indicates, ηk controls the precision of solving (2); at the same time, it determines

the number of inner iterations to be performed at each outer iteration. Choosing ηk too small

may, at times, increase the number of inner iteration without guaranteeing significant reduction in

‖F‖, a phenomenon described by Eisenstat and Walker in [13] as oversolving. The main purpose of

introducing good choices of ηk is to avoid oversolvings; obviously, another purpose is the achieve-

ment of fast local convergence also. In [13] the authors introduce two choices for ηk and they prove

convergence results for both choices. Their first choice of ηk reflects the agreement between the

function and its local linear model:
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Choice 1: For α = (1 +
√

5)/2 and η0 ∈ [0, 1),

ηk =
‖F (xk)− F (xk−1)− J(xk−1)sk−1‖

‖F (xk−1)‖ , k = 1, 2, 3, . . . , (6)

using as safeguard

ηk = max{ηk, η
α
k−1} each time ηα

k−1 > 0.1. (7)

The second choice of Eisenstat and Walker in [13] measures the decreasing factor in the value

of ‖F‖:

Choice 2: Given γ ∈ [0, 1], α ∈ (1, 2] and η0 ∈ [0, 1), choose

ηk = γ

( ‖F (xk)‖
‖F (xk−1)‖

)α

, k = 1, 2, 3, . . . , (8)

using the safeguard

ηk = max{ηk, γηα
k−1} each time γηα

k−1 > 0.1. (9)

In both cases some other practical safeguards were also used for not allowing ηk to become too

small too fast, which causes oversolving.

Under adequate assumptions on F and assuming that F (xk) 6= 0 for all k, the authors in

[13] proved superlinear convergence results for the algorithm with Choice 1, and for Choice 2 the

convergence is proved to be of q−order α if γ < 1. If γ = 1 the convergence is of r−order α

and q−order p for every p ∈ [1, α). In order to get a globally convergent algorithm a line search is

usually performed, in which xk+1 = xk +αksk, where αk > 0 must be such that a sufficient decrease

in ‖F (x)‖ is achieved.

1.2 The New Choice for the Forcing Term ηk

In this work we propose a strategy in which the forcing term ηk+1 is made dependent on both the

change in ‖F‖ and the net computational cost invested during the k–th outer iteration, including

inner iterations and backtracking. We introduced in the algorithm the global line search used in

[2] and [10], focusing on minimizing both the inner and the outer number of iterations.

1.3 The Geometrical Motivation

When trying to choose the next value for the forcing term, ηk+1, it seems to be important to

consider the following: the change in the norm of F , and the computational cost at the iteration k.
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Since each outer iteration involves the solution of a linear system and a line search procedure, we

define the computational cost (pricek) as the number of iterations performed by the linear solver

(iterink) plus the number of function evaluations (fevalk), that is, pricek = iterink+ fevalk. Note

that both iterink and fevalk represent the total number of inner iterations and the total number of

function evaluations performed during the first k outer iterations. In Figure 1 the horizontal axis

represents the total number of inner iterations performed from the beginning of the process, and

the vertical axis represents the log10 ‖F (xk)‖. A situation is shown, where after 20 inner iterations

(at the first outer iteration) the value of the norm of the function F has increased. In contrast, the

second angle indicates that ‖F‖ decreased steadily during the nineth outer iteration.
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Figure 1: Geometrical motivation for choosing ηk

In general, cos(θk) can be described as the ratio:

bk√
a2

k + b2
k

, (10)

where

ak = (log10 ‖Fk‖ − log10 ‖Fk−1‖) and bk = log10(pricek − pricek−1).

Figure 1 shows that the ratio (10) is the cosine of the angle θk, (θk ∈ (−π/2 , π/2)). The value of

cos(θk) is a good measure for the tradeoff between convergence and computational costs. If it is

close to −1, we are doing fine and a stricter forcing term may be tried. If it is close to zero, the
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iterations are either too costly or are getting nowhere (oversolving) and the forcing term has to be

relaxed. If it is positive, ‖F‖ has actually increased and drastic action is necessary.

Therefore, our strategy is to tie the choice of ηk to the variations of θk ∈ [−π/2, 0] in the

following way: the value of ηk is decreased when θk is close to −π/2; otherwise, its value is increased.

Keeping in mind the convergence of the algorithm, we now introduce our choice: given ρ ∈ (1, 2],

ηk = [1/(k + 1)]ρ cos2(θk)
‖F (xk)‖
‖F (xk−1)‖ . (11)

We observe that θk is a product of three terms. The first term, [1/(k + 1)]ρ guarantees that

lim
k→0

ηk → 0, implying a superlinear convergence rate (see [8]). Besides that, this factor constitutes

also a weight for the term cos2(θk). Observe that, for the same angle θ, [1/(k+1)]ρ cos2(θ) decreases

as k increases, ensuring superlinear convergence. The second term, cos2(θk) has the geometrical

motivation already described. We use the second power to avoid the computation of a square root

and also to accelerate the convergence of the process, since the function cos(θ) increases very slowly

from 0 to 1, when θ ∈ [−π/2, 0]. This power was also found numerically satisfactory. Finally, the

factor ‖F (xk)‖/‖F (xk−1)‖ reflects the decreasing rate in ‖F‖ from iteration (k− 1) to iteration k.

Safeguards are triggered in two situations: (i) when θk > 0 and (ii) to maintain ηk bounded from

1 as required by the convergence theorems.

Although the expression (11) for ηk is similar to that of Choice 2, from Eisenstat and Walker

([13]), we observe that there exists a crucial difference between them: in our choice γ changes

dynamically during the process, while in Choice 2 of [13], γ remains constant.

1.4 Model Algorithm and Convergence

1.4.1 The Algorithm

We are now ready to introduce the algorithm. Assume that F : IRn → IRn is continuously dif-

ferentiable in IRn and assume also that there exists η ∈ (0, 1). Let σ ∈ (0 , 1 − η) and let

0 < %min < %max < 1. Assume further that {µk} is a positive sequence such that
∑∞

k=0 µk = µ < ∞.

In this section, ‖ . ‖ means the Euclidean norm.

Let x0 ∈ IRn be an arbitrary initial point, and set k = 0. Given xk ∈ IRn, the steps for

obtaining the new iterate xk+1 of the inexact Newton algorithm with a nonmonotone backtracking

strategy and precision ε > 0, are the following:
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Algorithm 1 (Inexact Newton method with nonmonotone global strategy):

While ‖F (xk)‖ > ε,

Step 1: Choose ηk ≤ η.

Step 2: (Compute the search direction) Find sk such that ‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖.
Step 3: (Backtracking) Set ξ = 1, compute xaux = xk + ξsk and F (xaux).

Step 4: While

‖F (xaux)‖ > [1− ξσ]‖F (xk)‖+ µk, (12)

step 4.1: compute ξnew ∈ [%minξ, %maxξ],

step 4.2: set ξ = ξnew and xaux = xk + ξsk.

Step 5: Set ξk = ξ ; xk+1 = xk + ξksk; k = k + 1.

The line search used in step 4, see [2], besides being a global strategy, is intended to avoid

outer oversolvings. It is a nonmonotone strategy similar to the one introduced by Li and Fukushima

in [18], but less prone to scaling problems. Observe that this iteration is well defined and that sk

is allowed to be equal to zero. Note that the process with the strategy proposed by Birgin, Krejić

and Mart́ınez in [2] is asymptotically monotone.

1.4.2 Convergence

In what follows we state and prove convergence results for Algorithm 1.

Lemma 2.5.1. Let {xk} be a sequence generated by Algorithm 1. If, for some sequence of indices

K0 ⊂ {0, 1, 2, . . .}, lim
k∈K0

F (xk) = 0, then lim
k→∞

F (xk) = 0. In particular, if x∗ is a limit point of xk

such that F (x∗) = 0, then every limit point of the sequence xk is a solution of (1).

Proof. As in [2] Lemma 1. Note that our −σ, corresponds to the term σ(θ − 1) in [2].

The next lemma will be used in the proof of Theorem 2.5.2.

Lemma 2.5.2. Let {xk} be a sequence generated by Algorithm 1 and assume that all the limit points

of the sequence {xk} are solutions of (1). Assume also that x∗ is a limit point of {xk} such that

J(x∗) is nonsingular and

lim
k→∞

‖xk+1 − xk‖ = 0.

Then, the whole sequence converges to x∗.

Proof. As in [2] Lemma 2.

We conclude this section with the convergence theorems.
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Theorem 2.5.1. Assume that the sequence {xk} is generated by Algorithm 1 and that there exists

M > 0 such that, for an infinite sequence of indices K1 ⊂ {0, 1, 2, . . .}, ‖sk‖ < M . Then, any

limit point of the subsequence {xk}k∈K1 is a solution to system (1). Moreover, if a limit point of

{xk}k∈K1 exists, then F (xk) → 0 and every limit point of {xk} is a solution to (1).

Proof. Let K2 ⊂ K1 be a sequence of indices such that lim
k∈K2

xk = x∗. The proof will be done,

considering two cases. First, let us assume that {ξk}k∈K2 does not tend to 0. In this case, there

exists a sequence K3 of indices, K3 ⊂ K2 and ξ̄ > 0 such that ξk ≥ ξ̄ > 0, ∀ k ∈ K3.

By (12), ‖F (xk+1)‖ ≤ ‖F (xk)‖ − ξ̄σ‖F (xk)‖+ µk, ∀k ∈ K3.

But, for all k, including k /∈ K3, ‖F (xk+1)‖ ≤ ‖F (xk)‖+µk. Then, adding all these inequalities

in k, we have:

σξ̄
∑

k∈K3

‖F (xk)‖ ≤ ‖F (x0)‖+
∞∑

k=0

µk = ‖F (x0)‖+ µ.

Therefore, lim
k∈K3

‖F (xk)‖ = 0 and then, F (x∗) = 0. By Lemma 2.5.1, we have that lim
k→∞

F (xk) = 0.

Let us consider now the second case, in which we assume that lim
k∈K2

ξk = 0. Taking into

account the way in which ξnew is chosen, for k ∈ K2, k large enough, there exists ξ
′
k > ξk, ξ

′
k ∈

[ξk/%max , ξk/%min] such that lim
k∈K2

ξ
′
k = 0 and

‖F (xk + ξ
′
ksk)‖ > ‖F (xk)‖ − ξ

′
kσ‖F (xk)‖+ µk.

Then,

‖F (xk + ξ
′
ksk)‖ > (1− ξ

′
kσ)‖F (xk)‖.

Hence,

‖F (xk + ξ
′
ksk)− [F (xk) + J(xk)ξ

′
ksk]‖+ ‖F (xk) + J(xk)ξ

′
ksk‖ > (1− ξ

′
kσ)‖F (xk)‖.

Thus, by the triangular inequality,

‖F (xk +ξ
′
ksk)−F (xk)−J(xk)ξ

′
ksk‖+‖ξ′k[F (xk)+J(xk)sk]‖+(1−ξ

′
k)‖F (xk)‖ > (1−ξkσ)‖F (xk)‖.

Therefore,

‖F (xk + ξ
′
ksk)− F (xk)− J(xk)ξ

′
ksk‖+ ξ

′
kη‖F (xk)‖+ (1− ξ

′
k)‖F (xk)‖ > (1− ξ

′
kσ)‖F (xk)‖.

After some algebraic manipulation, we have

ξ
′
k‖F (xk)‖(1− σ − η) < ‖F (xk + ξ

′
ksk)− F (xk)− J(xk)ξ

′
ksk‖.

Then,

(1− σ − η)‖F (xk)‖ <
‖F (xk + ξ

′
ksk)− F (xk)− J(xk)ξ

′
ksk‖

ξ
′
k

. (13)
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Now, ‖sk‖ is bounded, {ξ′k} tends to 0, σ + η < 1 and F
′
is continuous. These facts together

imply that the right-hand side of (13) tends to 0 when k ∈ K2. Therefore, lim
k∈K2

‖F (xk)‖ = 0 and

then F (x∗) = 0. The rest of the proof follows from Lemma 2.5.1.

The following lemma will be needed in the proof of Theorem 2.5.2.

Lemma 2.5.3. If the sequence {xk} is generated by Algorithm 1, then F (xk) is bounded.

Proof. By the line search procedure, for any k = 0, 1, 2, . . .,

‖F (xk + ξksk)‖ ≤ ‖F (xk)‖(1− σξk) + µk. (14)

Then, for a general k,

‖F (xk+1)‖ ≤ ‖F (x0)‖+
k∑

i=0

µi.

Since
k∑

i=0

µi = µ < +∞, ‖F (xk)‖ ≤ ‖F (x0)‖+ µ, ∀ k .

Theorem 2.5.2. Let {xk} be generated by Algorithm 1. Assume that:

1. F is coercive in IRn, that is, lim
‖xk‖→∞

‖F (xk)‖ = +∞;

2. J(x) is nonsingular and ‖J(x)−1‖ ≤ M, ∀x ∈ IRn.

Then there exists x∗ ∈ IRn such that lim
k→∞

xk = x∗ and F (x∗) = 0.

Proof. By Lemma 2.5.3 we have that F (xk) is bounded. Then, by the coercivity of F, xk is

bounded. Thus {xk} admits a limit point, x∗. Also {sk} is bounded, since

‖sk‖ = ‖J(xk)−1J(xk)sk‖ ≤ ‖J(xk)−1‖‖J(xk)sk + F (xk)‖+ ‖J(xk)−1‖‖F (xk)‖

≤ (1 + η)‖J(xk)−1‖‖F (xk)‖. (15)

Then all the hypotheses of Theorem 2.5.1 are verified and so, lim
k→∞

‖F (xk)‖ = 0.

By Assumption 3 and (15), lim
k→0

‖sk‖ = 0. Thus, since xk+1 = xk + ξksk,

lim
k→∞

‖xk+1 − xk‖ ≤ lim
k→∞

‖sk‖ = 0.

Then, by Lemma 2.5.2, lim
k→∞

xk = x∗.

By the continuity of F , lim
k→∞

F (xk) = F (x∗) = 0.

Finally we have the superlinear convergence result stated and proved in the next theorem.
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Theorem 2.5.3. Under the assumptions of Theorem 2.5.2, and assuming also that lim
k→∞

ηk = 0, then

the convergence of {xk} to x∗ is superlinear.

Proof. By Theorem 2.5.2, lim
k→∞

{xk} = x∗. Due to (15) {sk} is bounded, and by the uniform

continuity of J(x) on bounded sets of IRn, we have that

‖F (xk + sk)− [F (xk) + J(xk)sk]‖ ≤ o(‖sk‖), ∀ k = 0, 1, 2, . . . .

Hence ‖F (xk + sk)‖ − ‖F (xk) + J(xk)sk‖ ≤ o(‖sk‖), that is,

‖F (xk + sk)‖ ≤ ‖F (xk) + J(xk)sk‖+ o(‖sk‖) ≤ ηk‖F (xk)‖+ o(‖F (xk)‖,

which implies
‖F (xk + sk)‖
‖F (xk)‖ ≤ ηk +

o(‖F (xk)‖)
‖F (xk)‖ .

Since ‖F (xk)‖ → 0, and by assumption lim
k→∞

{ηk} = 0,

lim
k→∞

‖F (xk + sk)‖
‖F (xk)‖ = 0. (16)

Therefore, for k large enough,

‖F (xk + sk)‖ ≤ (1− σ)‖F (xk)‖.

Then, (14) holds with ξk = 1. Thus, for k large enough xk+1 = xk + sk. Hence, by (16),

lim
k→∞

‖F (xk+1)‖
‖F (xk)‖ = 0. (17)

Since J(x∗) is nonsingular, there exist constants c > 0 and C > 0 such that

c‖x− x∗‖ ≤ ‖F (x)‖ ≤ C‖x− x∗‖,

for all x close enough to x∗. Then, by (17)

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

proving the general superlinear convergence.

It is not difficult to see, by (11), that for the GLT choice, the assumption lim
k→∞

{ηk} = 0

of Theorem 2.5.3 is satisfied. So, the superlinear convergence is attained with the GLT choice in

Algorithm 1.
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2 Numerical Experiments

2.1 Introduction

In order to test the new algorithm proposed in this work, we implemented the inexact Newton

algorithm, Algorithm 1, with four choices for ηk: the choice (11) proposed in this work, GLT; the

constant choice, C, with ηk = 0.01; and the two choices proposed by Eisenstat and Walker in [13],

EW1, (6) and EW2, (8).

All the tests were performed on a Pentium III - 1.0GHz computer, using the software Matlab

6.1. The linear systems were solved by the Matlab 6.1 GMRES(m) package with m = 30, allowing a

maximum of 100 cycles (3000 iterations). In what follows, we comment on some implementation

aspects of the methods:

• Line search procedure: For the parameter σ used in the criterion (12), we took σ = 10−4, and in

Step 4.1 of Algorithm 1 we computed the new step size as ξnew = 0.5ξk.

• The sequence µk: we define ftip(0) = ‖F (x0)‖;
ftip(k) = min{‖F (xk)‖, ftip(k − 1)}, if k is a multiple of 3 and

ftip(k) = ftip(k − 1), otherwise. Then, we set: µk = ftip(k)/(k + 1)1.1.

• Important values and safeguards for the forcing term: for all the choices for ηk we set the initial

value: η0 = 0.1. We also took ηk = 0.1 when θk > 0. For the choices EW1, EW2 and GLT,

ηk = min{ηk, 0.1} if k ≤ 3, and ηk = min{ηk, 0.01} if k > 3. We also adopted the safeguard

introduced in [23]: if ηk ≤ 2ε then we set ηk = 0.8ε‖F (xk)‖, where ε is the precision required for

the nonlinear system. For the parameter ρ used in the GLT choice we took ρ = 1.1. In EW2, we

followed one of the suggestions of the authors in [13]: γ = 1 and α = (1 +
√

5)/2.

• Stopping criterion: the process is finished successfully if ‖F (xk)‖ ≤ 10−6 and k < 100.

2.2 The Boundary Value Problems

The performance of these four forcing strategies was tested numerically on a set of boundary

value problems with Dirichlet boundary conditions of the same general form: finding a function

u : Ω = [0, 1]× [0, 1] → IR such that, for λ ∈ IR,

−∆u + h(λ , u) = f(s, t), in Ω, u(s, t) = 0 on ∂Ω (18)

The real valued function h(λ, u), the different values of the parameter λ, and the function

f define the different problems. In all the tests we used a grid with 63 inner points in each axis.

All the derivatives were approximated using central differences. After discretization, the nonlinear
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system of equations had 3969 variables. We now make a brief description of the particular problems

solved:

• Bratu problem, [1]: the function h is given by h(λ, u) = −λ exp(u) and the function f(s, t)

is computed such as u∗(s, t) = 10st(1 − s)(1 − t)es4.5
[17] is the exact solution of the prob-

lem. The values of λ ≤ 0 have a physical meaning in this formulation and are consid-

ered as easy problems, [16]. Positive values for λ results in a source of academic diffi-

cult nonlinear systems, [5], [16]. We generated 22 instances of this problem by choosing:

λ = −1000, −500, −250, −100, −50, −10, 1, 3, 5, 7 and 10. The initial approximations

were: x0 = (0, 0, . . . , 0)T and a vector whose components were randomly generated in the

interval: [−5, 5];

• Convection–diffusion problem, [17]: in this problem, h(x, λ) = λu(us + ut), where us and

ut denote the partial derivatives of the function u with respect to s and t and again the

function f(s, t) is defined such that u∗(s, t) = 10st(1 − s)(1 − t)es4.5
. This problem is

considered difficult in [16], in particular for values of λ greater than 50. We solved a set of 9

problems, generated by choosing λ = 5, 10, 25, 50, 75, 100, 110, 125 and 150 with initial

approximation x0 = (0, 0, . . . , 0)T ;

• Briggs problem: a problem proposed by Briggs, Henson and McCormick, [4]. In this case

h(λ, u) = λu exp(u) and f(s, t) = ((9π2 +γe(s2−s3)sin(3πt))(s2−s3)+6s−2)sin(3πt). For the

Briggs problem we took λ = 10, 100 and 1000. As initial approximations we chose constant

vectors with value −2, −1, 0, 1, 2 and 10, and a random vector with entries uniformly

distributed in [−2, 2]. We solved 21 instances for the Briggs problem.

All in all, 52 problems were considered.

It could be interesting to present the numerical results analyzing the behavior of Algorithm

1 with the four choices for ηk, problem by problem. For lack of space we shall not present the

detailed numerical data obtained. These are available in [22]. Here we present just one table to

illustrate the reduction in oversolving offered by the GLT choice. Table 1 presents some results

obtained for the Bratu problem with λ = 1, the convection-diffusion problem with λ = 150, and the

Briggs problem with λ = 100. These are considered hard problems. In this table, column iterex

represents the total number of external iterations performed and column iterin, the number of

inner iterations, that is, the number of iterations performed by the linear solver.

The best overall performance was displayed by the GLT choice, with the single exception of

the number of outer iterations for the Bratu problem. These are good examples to show the GLT

choice avoiding oversolving, by analyzing the number of inner iterations. Obviously, the GLT choice
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was not the best one for all the 52 problems. Nevertheless, Table 1 is typical for most of the hard

problems examined.

ηk Bratu problem Conv-diff problem Briggs problem

iterex iterin iterex iterin iterex iterin

Cte 6 818 47 37973 19 271

EW1 7 556 48 27786 18 245

EW2 4 567 47 28314 18 244

GLT 5 502 46 23482 17 237

Table 1: Numerical performance for the four choices.

A concise and informative comparison of the overall behavior of the 4 choices against all the

52 problems considered is given in Figure 2, using performance profiles. Proposed by Dolan and

Moré in 2002, see [11], the performance profile is an extremely useful methodology for standardizing

the comparison of algorithms. It considers solvers s, tested problems p, and tested measures m.

Several measures can be taken, such as number of iterations and cpu time. Let ms,p denote the

performance measurement required to solve problem p by solver s. For each problem p and solver

s the performance ratio rs,p is computed as rs,p = ms,p/min
s∈S

{ms,p} if the problem p is solved by

the solver s; otherwise, rs,p = rM , where rM is a large enough fixed parameter. Then, for each

s ∈ S, the cumulative distribution function ρs : IR → [0, 1], for performance ratio rs,t, is built:

ρs(t) = 1
np

size{p ∈ P | rs,p ≤ t}. This function represents the performance of the solver s, it is

nondecreasing and piecewise constant. At the analysis of solver s two values give us important

information: the efficiency of a solver s which is indicated by the percentage of problems solved

more quickly (ρs(1)) and its robustness which is represented by the value of t ∈ [0, rM ] for which

ρs(t) = 1, with default value t = rM . Let s be the solver s which maximizes the function ρs(1).

This solver, s, solves the largest number of problems at the lowest possible value of m. Similarly,

the best solver in terms of robustness will be the solver ŝ for which tŝ = min{ts, ∀s ∈ S}.

In this work we considered the following four performance measures: the total number of inner

iterations, the total number of outer iterations, the total number of number of function evaluations,

and the total cpu time. Figure 2 shows the performance profile when Algorithm 1 was applied for

solving the set of 52 problems with the four choices for the forcing term ηk. At the four diagrams in

Figure 2, the constant choice (ηk = 0.01) is represented by a line (. . .); the choices EW1 and EW2 by

lines (−−−) and (.− .− .) respectively. Finally the GLT choice proposed in this work is represented

by a continuous line.
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Considering the number of inner iterations we can observe that choices EW1, EW2 and GLT

had a similar behavior: EW1 solved almost 40% of the problems more quickly. Nevertheless the GLT

choice was the most robust, attaining t ' 1.3. Observe that the GLT choice solved almost 90% of

the problems with the minimum value of number of outer iterations. Even though EW1 was the best

solver in terms of inner iterations, it had a poor performance in terms of outer iterations, solving

only about 50% of the problems with minimum value. Note also that the number of function

evaluations follows the same pattern as the one of outer iterations. In terms of cpu time GLT and

EW2 had a similar behavior. Actually the GLT choice was the most robust and efficient for almost

all the measures used.
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Figure 2: Performance profile using the inner and outer iterations, number of function evaluations

and cpu time as measures.
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3 Conclusions

In this work we proposed a new inexact Newton method with a different choice for the forcing

term ηk and with a robust line search strategy, which resulted in an algorithm with a global

convergence result. We attribute the robustness of our algorithm to both the GLT choice of the

forcing term and the inclusion of a good backtracking strategy. However, it is the GLT choice for

ηk which had the decisive influence on the performance, since, for comparing the different choices,

the same backtracking strategy was introduced in the different solvers. The numerical experiments

showed that this new algorithm is competitive in terms of the numbers of inner and outer iterations

performed, allowing us to conclude that our objectives were obtained: to build an inexact Newton

algorithm avoiding the high number of inner iterations without performing a very large number of

outer iterations. Moreover, it is important to observe that these objectives were achieved without

an increase in the number of function evaluations.

The constant choice has the only advantage of being easy to implement and EW1 and EW2 had

a very similar and efficient performance. However, GLT seems to be superior to the other choices

because it is faster in terms of number of outer iterations, number of function evaluations and CPU

time. This choice can also solve the whole set of problems with the minimum value of t for almost

all the measures.
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