ESTIMATING THE STRUCTURE OF INTERACTING COORDINATES FOR A MULTIVARIATE STOCHASTIC PROCESS

Jesús E. Garcíaa and V. A. González-Lópezb

University of Campinas, Brazil.
a jg@ime.unicamp.br, b veronica@ime.unicamp.br

ABSTRACT

In this paper we address the problem of extracting the dependence structure between the coordinates of a multivariate variable length Markov chain. In our setting we have a set of \(k \) different sources. At each time \(t \), each source produces a letter in the alphabet \(A = \{0, 1\} \). The sources interact between them depending on the past states of the set of \(k \) sources. We want to obtain (estimate) a partition of the past such that two possible pasts are in the same part of the partition if and only if, given each of this two pasts, the set of sources interacting is the same. Also we want to have for each possible past, the set of sources which interact between them. We can imagine a very simplified model of interacting neurons. Consider a set of \(k \) neurons. We could have that the structures of the set of \(k \) neurons. We could have that the structures of

\[t \geq 0, \quad X_t = (X_1^t, ..., X_k^t) \text{ and } X_{t-1}^i = (X_{t-1}^{i,1}, ..., X_{t-1}^{i,k}) \]

where \(X_t \) is the state of the set of sources at time \(t \). The past state \(X_{t-1}^i \) is the state of the source \(i \) at time \(t-1 \). The process \(\{X_t\}_{t \geq 0} \) is a Markov chain, \(M < \infty \). Denote the string \(a_m a_{m+1} \ldots a_n \) by \(a_m^n \), where \(a_i \in A, m \leq i \leq n \). \(X_t^i \) will be a size \(n \) realization of \(X_t \). For each \(s \in S = A^M, a \in A, b \in \{0, 1\} \) and \(1 \leq i \leq k \),

\[N(s) = \sum_{i=M+1}^{n-1} 1_{\{x_{i-M}^i = s\}}, \]

\[N(s, a) = \sum_{i=M+1}^{n-1} 1_{\{x_{i-1}^{i-M} = s, x_i = a\}}, \]

we denote the conditional joint probability of the process by,

\[P(a|s) = \text{Prob}(X_t = a|X_{t-M}^t = s), \]

and the conditional marginal probability of the source \(i \) by,

\[P_i(b|s) = \text{Prob}(X_i = b|X_{i-M}^i = s). \]

3. EQUIVALENCES

Definition 1. (Equivalence relationship based on the joint distribution) For each \(s, r \in S, s \sim r \) if \(P(a|s) = P(a|r) \forall a \in A \).

Definition 2. (Equivalence relationship based on the marginal distributions) For each \(i \in \{1, 2, \ldots, k\} \) and \(s, r \in S \), \(s \sim_i r \) if and only if \(P_i(b|s) = P_i(b|r) \forall b \in \{0, 1\} \).

Remark 1. For each \(s, r \in S, s \sim r \Rightarrow s \sim_i r \forall i \in \{1, 2, \ldots, k\} \).

Proposition 1. If all the sources are independent all the time then, for each \(s, r \in S \),

\[s \sim r \iff s \sim_i r \forall i \in \{1, 2, \ldots, k\}, \]

Example 1. Bi-variate case, \(k = 2 \), \(A = \{0, 1\}^2 \) and \(S = A^M \). In this case, for any \(s, r \in S, s \sim r \) if and only if \(P'(0|s) = P'(0|r), P_2(0|s) = P_2(0|r) \) and \(P'(0, 0)|s) = P'_2(0, 0)|r) \). Given \(s \in S \), the two neurons interact if and only if \(P'_1(0|s) \neq P'_2(0, 0)|s)/P'_2(0|s) \) that is, if and only if \(1 \neq P'_2(0, 0)|s) \). If the two neurons are always independent then \(P'_2(0, 0)|s) = P_2(0|s)P_2(0|s) \) and we have that if \(s \sim r \) and \(s \sim_2 r \) then \(s \sim r \). Suppose \(M = 2 \) and the following set of conditional probabilities:
In this example, for each marginal, \(\sim_i \) have two classes. The partition \(\mathcal{L} \) corresponding to \(\sim \) have four parts, the fifth column of the table indicates the part to which each \(s \in S \) belongs. In the parts \(L_2 \) and \(L_3 \) the two sources are interacting while in the parts \(L_1 \) and \(L_4 \) they are independent. We are interested in the partition \(\mathcal{M} = \{ L_1 \cup L_3, L_2 \cup L_4 \} \) which indicates exactly when the two neurons interact. Note that the partition \(\mathcal{M} \) indicate when the neurons interact but not how. If we want to see how they interact, we only need to partition \(S \) in regions where \(P(0,0|s)/(P_1(0|s)P_2(0|s)) \) is constant in the same way we did with the margins.

In the next section we will see how to estimate the partition \(\mathcal{L} \) corresponding to \(\sim \) in a way that is consistent.

4. PARTITION MARKOV MODELS

In this section we give a summarized introduction to the PMM, see [3] and [4] for a more complete explanation. Let \((X_i) \) be a discrete time, Markov chain with memory \(M \) on a finite alphabet \(A \), with state space \(S = A^M \).

Definition 3. We will say that \((X_i)\) is a Markov chain with partition \(\mathcal{L} \) if this partition is the one defined by the equivalence relationship \(\sim \) introduced by definition 1.

The set of parameters for a Markov chain over the alphabet \(A \) with partition \(\mathcal{L} \) can be denoted by, \(\{ P(a|L) : a \in A, L \in \mathcal{L} \} \). If we know the equivalence relationship for a given Markov chain, then we need \((|A| - 1)\) transition probabilities for each class to specify the model. The total number of parameters for the model is \(|\mathcal{L}|(|A| - 1) \). To choose a model in the family in a consistent way (see [3]), we can use the following distance in the dataset, \(s \sim_r r \iff N(s,a)/N(s) \sim N(r,a)/N(r) \forall a \in A, n \) is the size of the dataset.

Definition 4. Let \(n \) be the size of the dataset. For any \(s, r \in S, N(s,r,a) = N(s,a) + N(r,a), \)

\[
\begin{align*}
d_n(s,r) &= \frac{2}{(|A|-1)n} \sum_{a \in A} \left\{ N(s,a) \ln \left(\frac{N(s,a)}{N(s)} \right) \right. \\
&\quad \left. + N(r,a) \ln \left(\frac{N(r,a)}{N(r)} \right) - (N(s,r,a) \ln \left(\frac{N(s,r,a)}{N(s) + N(r)} \right) \right\},
\end{align*}
\]

\(d_n \) can be generalized to sub sets of \(S \) and it have the very nice property of being equivalent to the BIC criterion to decide if \(s \sim r \) for any \(s, r \in S \) (see [3]).

Theorem 1. (Consistency in the case of a Markov source) Let \((X_i)\) be a discrete time, order \(M \) Markov chain on a finite alphabet \(A \). Let \(x_1^n \) be a sample of the process, then for \(n \) large enough, for each \(s, r \in S, d(r,s) < 1 \) iff \(s \) and \(r \) belong to the same class.

Algorithm 1. (Partition selection algorithm)

Input: \(d(s,r) \forall s, r \in S \)

Output: \(\hat{\mathcal{L}}_n \).

Let \(B = S \)

\[\hat{\mathcal{L}}_n = \emptyset \]

while \(B \neq \emptyset \)

select \(s \in B \)

define \(L_s = \{ s \} \)

\(B = B \setminus \{ s \} \)

for each \(r \in B, r \neq s \)

if \(d(s,r) < 1 \)

\[L_s = L_s \cup \{ r \} \]

\(B = B \setminus \{ r \} \)

\[\hat{\mathcal{L}}_n = \hat{\mathcal{L}}_n \cup \{ L_s \} \]

Return: \(\hat{\mathcal{L}}_n = \{ L_1, L_2, \ldots, L_R \} \)

If the source is Markovian, for \(n \) large enough, the algorithm returns the true partition for the source.

Corollary 1. Under the assumptions of Theorem 3, \(\hat{\mathcal{L}}_n \),

given by the algorithm 1 converges almost surely eventually to \(\mathcal{L}^* \), where \(\mathcal{L}^* \) is the partition of \(S \) defined by the equivalence relationship.

5. ESTIMATION OF THE INTERACTION STRUCTURE ON A MULTIVARIATE PMM

To simplify the notation, we will assume that a partition Markov model has already been estimated and we have a partition \(\mathcal{L} \) corresponding to \(\sim \). Our objective is to obtain for each part of the estimated partition a new partition of the set of coordinates on independent sets. After that, we will put together all the parts of \(\mathcal{L} \) with the same partition of the coordinate space.

Let \((X_i)\) be a Markov chain on \(A = \{ 0, 1 \}^k \), with partition \(\mathcal{L} \). For \(U = \{ u_1, \ldots, u_l \} \subset \{ 1, 2, \ldots, k \} \) and \(a = (a_1, \ldots, a_k) \in A \), define:
i) \(a^u = (a_{u1}, \ldots, a_{uL})\),

ii) for any \(L \in \mathcal{L}\),

\[
P(a^U|L) = \text{Prob}(X_i^U = a^U|X_{i-M}^{i-1} = s) \forall s \in L,
\]

iii) for \(s \in S\)

\[
N_n(s, a^U) = |\{t : M < t \leq n, x_{t-M}^{i-1} = s, x_t^U = a^U\}|,
\]

iv) for \(L \in \mathcal{L}\)

\[
N_n^L(L, a^U) = \sum_{s \in L} N_n(s, a^U),
\]

v) for \(i \in \{1, 2, \ldots, k\}, b \in \{0, 1\}\) and \(c \in \{0, 1\}\)

\[
N_n(s, i(b)) = \sum_{t=M}^n 1_{\{x_{t-1}^{i-1} = s, x_t^i = b\}},
\]

\[
N_n(s, u(c)) = \sum_{t=M}^n 1_{\{x_{t-1}^{i-1} = s, x_t^i = c, 1 \leq j \leq t\}}.
\]

In general, for \(A = \{0, 1\}^k\), fix \(L \in \mathcal{L}\) and a partition \(\mathcal{I}_L\) of \(\{1, 2, \ldots, k\}\) in independent coordinates, we have that

\[
P(a|L) = \prod_{C \in \mathcal{I}_L} P(a^C|L) \forall a \in A,
\]

and the number of parameters needed for the part \(L\) will be

\[
\sum_{C \in \mathcal{I}_L} (2^{|C|} - 1).
\]

5.1. Dependence structure

Viola in [6] defines the dependence structure for Context Tree models and shows that this dependence structure can be estimated using the Bayesian information criterion (BIC) in the following way. First is fitted a Context Tree Model (using the BIC criterion) and then, for each context, the BIC criterion is used on the transition probabilities corresponding to that context to find a partition of the coordinates on dependent sets. The results in [6] are valid for any family of Markovian models as they only depend on the individual transition probabilities and not on the model structure.

In this paper we will simultaneously estimate the partition of our PMM and the interaction structure using the BIC criterion.

Definition 5. Let \((X_t)\) For each \(L \in \mathcal{L}\), define \(\mathcal{D}_L\) as the biggest partition of \(\{1, 2, \ldots, k\}\) such that

\[
P(a|L) = \prod_{C \in \mathcal{D}_L} P(a^C|L) \forall a \in A.
\]

We will say that \(\mathcal{D}_L = \{\mathcal{D}_L\}_{L \in \mathcal{L}}\) is the structure of dependence for the process.

\[
P(x_1^n) = P(x_1^M) \prod_{L \in \mathcal{L}, a \in A} \prod_{C \in \mathcal{D}_L} P(a^C|L)^{N_n^C(L, a)}.
\]

The maxima for \(\prod_{L \in \mathcal{L}, a \in A} \prod_{C \in \mathcal{D}_L} P(a^C|L)^{N_n^C(L, a)}\) is

\[
\text{ML}(\mathcal{L}, \mathcal{D}_L, x_1^n) = \prod_{L \in \mathcal{L}, a \in A} \prod_{C \in \mathcal{D}_L} \left(\frac{N_n^C(L, a^C)}{N_n^C(L, a)}\right)^{N_n^C(L, a)},
\]

and the BIC criterion for our class of models,

\[
\text{BIC}(\mathcal{L}, \mathcal{D}_L, x_1^n) = \ln(\text{ML}(\mathcal{L}, \mathcal{D}_L, x_1^n)) - \sum_{L \in \mathcal{L}, a \in A} \sum_{C \in \mathcal{D}_L} (|B|\cdot|C| - 1) \frac{\ln(n)}{2}.
\]

For a Markovian source the BIC model selection methodology is consistent.

Theorem 2. Let \((X_t)\) be a Markov chain of order \(M\) over a finite alphabet \(A\), with partition \(\mathcal{L}*\) and structure of conditional dependence \(\mathcal{D}_L^*\).

Define,

\[
\mathcal{D}_L = \arg \max_{D \in \mathcal{D}} \{\text{BIC}(\mathcal{L}_n, D, x_1^n)\},
\]

Where \(D\) is the set of all possible structures of dependences for \(A\) and \(\mathcal{L}_n\), \(\mathcal{L}_n\) obtained using algorithm 1, then, eventually almost surely as \(n \rightarrow \infty\),

\[
\mathcal{D}_L^* = \mathcal{D}_L\text{.}
\]

6. SIMULTANEOUS ESTIMATION OF THE PARTITION AND THE INTERACTION STRUCTURE

We will introduce the following measure of dependence between pairs of coordinates conditioned to a past \(t \in S\),

Definition 6. For any \(t \in S\), and \(i, j \in \{1, 2, \ldots, k\}\)

\[
d_{1n}^{(i, j)} = \frac{2}{\ln(n)} \sum_{b \in B} \left\{ N(t, i(b)) \ln \left(\frac{N(t, i(b))}{N(t)} \right) + N(t, j(b)) \ln \left(\frac{N(t, j(b))}{N(t)} \right) \right\} - \sum_{c \in B^2} \left\{ (N(t, \{i, j\}(c))) \ln \left(\frac{N(t, \{i, j\}(c))}{N(t)} \right) \right\},
\]

This measure of dependence can be also used with parts of the partition defining a PMM, substituting \(t\) by \(L\).

The next Theorem shows that this distance between coordinates can be used to find the structure of interactions for a given past \(t \in S\) in a consistent way.

Theorem 3. (Consistence in the case of a Markov source)
For \(n\) large enough, for \(t \in S\), and \(i, j \in \{1, 2, \ldots, k\}\),

\[
d_{1n}^{(i, j)} < 1\quad \text{iff} \quad i\text{ and } j\text{ are dependent.}
\]

Using the distances in definition 4 and definition 6, we can define the following algorithm to estimate \(\mathcal{D}_L\).
Algorithm 2. (Coordinate partition selection algorithm)
Input: for a fixed \(t \in S \), \(d_t(i,j) \forall 1 \leq i,j \leq k \)
Output: \(\hat{D}^n_i \);
\[B = \{1,2,...,k\} \]
\[D^n_i = \emptyset \]
while \(B \neq \emptyset \)
select \(i \in B \)
define \(D_i = \{i\} \)
\[B = B \setminus \{i\} \]
for each \(j \in B, j \neq i \)
if \(d^n_t(i,j) < 1 \)
\[D_i = D_i \cup \{j\} \]
\[B = B \setminus \{j\} \]
\[\hat{D}^n_i = \hat{D}^n_i \cup \{D_i\} \]
Return: \(\hat{D}^n_i \)

The following modification of the distance 4, which will account with the possible, change on the degree of freedom caused by the dependence structure, will be used to find a PMM and dependence structure for a multivariate dataset.

Definition 7. Let \(n \) be the size of the dataset. For any \(s,r \in S \),
\[d'_n(s,r) = \]
\[= \frac{2}{M(s,r) \ln(n)} \sum_{a \in A} \left\{ \sum_{C \in \hat{D}^s_r} N(s,a) \ln \left(\frac{N(s,a^C)}{N(s)} \right) \right\} \]
\[+ \sum_{C \in \hat{D}^r_r} N(r,a) \ln \left(\frac{N(r,a^C)}{N(r)} \right) \]
\[- \sum_{C \in \hat{D}^{(s,r)}} (N(\{s\},a)) \ln \left(\frac{N(s,a^C) + N(r,a^C)}{N(s) + N(r)} \right) \]
where \(M(s,r) = \sum_{C \in \hat{D}^s_r} (|B|^{|D|} - 1) + \sum_{C \in \hat{D}^r_r} (|B|^{|D|} - 1) - \sum_{C \in \hat{D}^{(s,r)}} (|B|^{|D|} - 1) \).

Now, substituting the input \(d_n(s,r) \) by \(d'_n(s,r) \) for each \(s,r \in S \) in algorithm 1. We will obtain simultaneously the PMM and dependence structure estimators, where the estimator of the dependence structure for part \(I \) will be the partition obtained using \(d_L(i,j), \ i,j \in \{1,2,...k\} \).

6.1. Interaction structure of the coordinates

Consider now
\[I = \bigcup_{\{L \in \mathcal{L} : \mathcal{D}_L = K\}} L \]
\(\mathcal{M} \) is a partition of \(S \) such that two sequences \(s,r \in S \) are in the same part of \(\mathcal{M} \) if and only if, given each of these two pasts, the set of sources interacting is the same. The partition \(\mathcal{M} \) tells us for each possible past, which of the different sources interact.

7. CONCLUSION

Fix \(M_K \in \mathcal{M} \). Conditioned to the part \(M_K \), each marginal \(X^C, C \in K \), being independent from the others coordinates, can be analyzed by itself, which in general require less data than the simultaneous analysis of all \(k \) coordinates. The same for \(\mathcal{D}_L \), once it is estimated, we can identify the specific kind of iteration using standard statistical methods on each interacting set. For example fixed a part \(L \in \mathcal{L} \) if \(\mathcal{D}_L = \{C_1,...C_{m_L}\} \), we only need to work with the marginals \(X^{C_i}, i \in \{1,...,m_L\} \) to determine the kind of dependence between the coordinates of \(A \).

8. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support for this research provided by USP project “Mathematics, computation, language and the brain” and FAPESP’s projects (a)“Portuguese in time and space: linguistic contact, grammars in competition and parametric change” 2012/06078-9 and (b)“Research, Innovation and Dissemination Center for Neuromathematics - NeuroMat” 2013/07699-0.

9. REFERENCES

