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Abstract: We construct finite-energy instanton connections overR
4 which are periodic

in two directions via an analogue of the Nahm transform for certain singular solutions
of Hitchin’s equations defined over a 2-torus.

1. Introduction

Since the appearance of the Yang–Mills equation on the mathematical scene in the late
70’s, its anti-self-dual (ASD) solutions have been intensively studied. The first major
result in the field was theADHM construction of instantons onR

4 [1]. Soon after that, W.
Nahm adapted theADHM construction to obtain thetime-invariantASD solutions of the
Yang–Mills equations, the so-called monopoles [18]. It turns out that these constructions
are two examples of a much more general framework.

TheNahm transform can be defined in general for anti-self-dual connections onR
4,

which are invariant under some subgroup of translations� ⊂ R
4 (see [19]). In these

generalised situations, the Nahm transform gives rise todual instantons on(R4)∗, which
are invariant under

�∗ = {α ∈ (R4)∗ | α(λ) ∈ Z ∀λ ∈ �}.
There are plenty of examples of such constructions available in the literature, namely:

• The trivial case� = {0} is closely related to the celebrated ADHM construction of
instantons, as described by Donaldson & Kronheimer [7]; in this case,�∗ = (R4)∗
and an instanton onR4 corresponds to some algebraic data.

• If � = Z
4, this is the Nahm transform of Braam & van Baal [5] and Donaldson &

Kronheimer [7], defining a hyperkähler isometry of the moduli space of instantons
over two dual 4-tori.

• � = R gives rise to monopoles, extensively studied by Hitchin [10], Donaldson [6],
Hurtubise & Murray [12] and Nakajima [19], among several others; here,�∗ = R

3,
and the transformed object is, for SU(2) monoples, an analytic solution of certain
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matrix-valued ODE’s (the so-called Nahm’s equations), defined over the open interval
(0,2) and with simple poles at the end-points.

• � = Z correspond to the so-called calorons, studied by Nahm [18], Garland & Murray
[8] and others; the transformed object is the solution of certain nonlinear Nahm-type
equations on a circle.

The purpose of this paper fits well into this larger mathematical programme. Our
goal is to construct finite-energy instantons overR

4 provided with the Euclidean metric,
which are periodic in two directions (�∗ = Z

2), so-calleddoubly-periodic instantons,
from solutions of Hitchin’s equations [11] defined on a 2-torus, i.e. instantons overR

4

which are invariant under� = Z
2×R

2. The latter object is now very well studied, and
their existence is determined by certain holomorphic data.

One might also ask if all doubly-periodic instantons can be produced in this way. In the
sequel [14] of this paper, we will show that the construction here presented is invertible
by describing the Nahm transform for instantons overT 2×R

2, which produce singular
solutions of Hitchin’s equations.

Indeed, Hitchin’s equations admit very few smooth solutions over elliptic curves (see
[11]). Therefore, by analogy with Hitchin’s construction of monopoles [10], we will
consider a certain class of singular solutions, for which existence is guaranteed [16,21].
The singularity data is converted into the asymptotic behaviour of the Nahm transformed
doubly-periodic instanton; such a picture is again familiar from the construction of
monopoles.

A string-theoretical version of the Nahm transform here presented was given by
Kapustin & Sethi [15]. In fact, the other examples of Nahm transforms mentioned above
also have string-theoretical interpretations. The ADHM construction and the Fourier
transform of instantons over 4-tori were discussed in these terms by Witten [22], while
Kapustin & Sethi [15] also treated the case of calorons.

Let us now outline the contents of this paper. Section 2 is dedicated to a brief review
of Hitchin’s self-duality equations, and the precise description of the particular type of
solutions we will be interested in. The main topic of the paper is contained in Sects. 3
and 4, when we will show how to construct doubly-periodic instantons and explore some
of the properties of the instantons obtained. We conclude with a few remarks and raising
some questions for future investigation.

2. Singular Higgs Pairs

In [11] Hitchin studied the dimensional reduction of the usualYang–Mills anti-self-dual
equations from four to two dimensions. More precisely, letV → R

4 be a rankk vector
bundle with a connectioñB which does not depend on two coordinates. Pick up a global
trivialisation ofV and write downB̃ as a 1-form:

B̃ = B1(x, y)dx + B2(x, y)dy + φ1(x, y)dz+ φ2(x, y)dw.

Hitchin then defined aHiggs field � = (φ1 − iφ2)dξ , wheredξ = dx + idy. So�
is a section of�1,0EndV , whereV is now seen as a bundle overR

2 with a connection
B = B1dx + B2dy.

The ASD equations for̃B over R
4 can then be rewitten as a pair of equations on

(B,�) overR2: {
FB + [�,�∗] = 0
∂B� = 0

. (1)
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These equations are also conformally invariant, so they make sense over any Riemann
surface. Solutions(B,�) are often calledHiggs pairs.

As we mentioned in the introduction, we are interested in singular Higgs pairs over a
2-torusT̂ defined on anU(k)-bundleV → T̂ . Since we want to think of̂T as a quotient
of R

4 by� = Z
2 × R

2, the natural choice of metric for̂T is the flat, Euclidean metric.
Let us also fix a complex structure on̂T coming from a choice of complex structure on
R

4.
Singular Higgs bundles were widely studied by many authors ([21,17] and [16]

among others) and are closely related to the so-calledparabolic Higgs bundles.Adopting
this point of view, we will consider a holomorphic vector bundleV → T̂ of degree−2
with the following quasi-parabolic structure over two points±ξ0 ∈ T̂ (regarding now
T̂ as an elliptic curve):

V±ξ0 = F1V±ξ0 ⊃ F2V±ξ0︸ ︷︷ ︸ ⊃ F3V±ξ0 = {0}
dim = 1

order(ξ0) �= 2,

Vξ0 = F1Vξ0 ⊃ F2Vξ0︸ ︷︷ ︸ ⊃ F3Vξ0︸ ︷︷ ︸ ⊃ F4Vξ0 = {0}
dim = 2 dim= 1

order(ξ0) = 2.

To complete the parabolic structure we need to assignweights α1(±ξ0) to F1V±ξ0 and
α2(±ξ0) toF2V±ξ0 if ξ0 �= −ξ0 orα1(ξ0) toF1Vξ0, α2(ξ0) toF2Vξ0 andα3(ξ0) toF3Vξ0
if ξ0 = −ξ0. We assume thatα1 = 0 in both cases; ifξ0 is not of order two, we fix that
α2(ξ0) = 1+ α andα2(−ξ0) = 1− α; if ξ0 has order two, we fix thatα2(ξ0) = 1− α

andα3(ξ0) = 1+ α for some 0≤ α < 1
2. Note in particular thatV with this parabolic

structure has zero parabolic degree.
From the point of view of the Higgs pair(B,�), this means that the bundleV is

defined away from±ξ0, and satisfies, holomorphically:

V|
T̂ \{±ξ0} � (V , ∂B).

The Higgs field� has simple poles at the parabolic points±ξ0 ∈ T̂ such that the residues
φ0(±ξ0) of � arek × k matrices of rank 1. Ifξ0 is one of the four elements of order 2
in T̂ , then the residueφ0(ξ0) is assumed to be ak × k matrix of rank 2.

Moreover, the harmonic metrich associated with the Higgs pair(B,�) is assumed
to be compatible with the parabolic structure. This means that, in a holomorphic trivi-
alisation ofV over a sufficiently small neighbourhood around±ξ0, h is non-degenerate
along the kernel of the residues of�, andh ∼ O(r1±α) along the image of the residues
of �.

Such metric is clearly not a hermitian metric on the extended bundleV (since it
degenerates at±ξ0). Let h′ be a hermitian metric onV bounding above the harmonic
metric onV .

If (V,�) is α-stable in the sense of parabolic Higgs bundles, then the existence of a
meromorphic Higgs pair as above is guaranteed [21] for any rankk and any choice of
±ξ0.

Moreover, one usually fixes the eigenvalues of the residues of� as well. In our
situation, this amounts to choosing only one complex number that we denote byε. We
assume thatε �= 0, i.e. the residues of� are semi-simple.

However, in this paper, these parameters (the weightsαi and the eigenvalue of the
residuesε) will be allowed to vary; see [4] for a complete discussion. It is reassuring
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to know that if two sets of parameters(α, ε) and(α′, ε′) are chosen in generic position,
thenα-stability andα′-stability are in fact equivalent conditions [20].

In particular, the casek = 1 is very simple: once the parameters(α, ε) are fixed and
for any choice of±ξ0, the moduli space of meromorphic Higgs pairs is just the cotangent
bundle ofT , that is a copy ofT × C.

We will study solutions of (1) over̂T with the singularities±ξ0 removed. Due to
the non-compactness ofT̂ \ {±ξ0}, the choice of metric on the base space is a delicate
issue. From the point of view of the Nahm transform, it is important to consider the
Euclidean, incomplete metric on the punctured torus, as it is well-known from the ex-
amples mentioned above. However, such a choice of metric is not a good one from the
analytical point of view. For instance, one cannot expect, on general grounds, to have a
finite dimensional moduli space of Higgs pairs.

Fortunately, as we mentioned before, Hitchin’s equations are conformally invariant,
so that we are allowed to make conformal changes in the Euclidean metric localised
around the punctures to obtain a complete metric onT̂ \ {±ξ0}. Thus, our strategy is to
obtain results concerning the Euclidean metric from known statements about complete
metrics.

In [2], Biquard considered the so-calledPoincaré metric, which is defined as follows.
We perform a conformal change on the incomplete metric over the punctured torus
localised on small punctured neighbourhoodsD0 of ±ξ0, so that ifξ = (r, θ) is a local
coordinate onD0, we have the metric:

ds2
P = dξdξ

|ξ |2 log2 |ξ |2 = dr2

r2 log2 r
+ dθ2

4 log2 r
. (2)

We denote the complete metric so obtained bygP . The Euclidean metric is denoted by
gE . Whenever necessary, we will denote byL2

E andL2
P the Sobolev norms in$(�∗V )

with respect togE andgP , respectively, together with the hermitian metric inV .
Model solutions of (1) in a neighbourhood of the singularities were described by

Biquard [3]:

B = b
dξ

ξ
+ b∗ dξ

ξ
,

� = φ0
dξ

ξ
,

whereb, φ0 ∈ sl(k). Every meromorphic Higgs pair with a simple pole approaches this
model close enough to the singularities.

Finally, a Higgs pair(B,�) is said to beadmissible if V has no covariantly constant
sections.

3. Construction of Doubly-Periodic Instantons

Our task now is to construct aSU(2) vector bundle overT × C, with an instanton
connection on it, starting from a suitable singular Higgs pair as described in the previous
section.

The key feature of Nahm transforms is to try to solve a Dirac equation, and then use
its L2-solutions to form a vector bundle over the dual lattice; see the references in the
introduction.
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So letS+ = �0 ⊕�1,1 andS− = �1,0 ⊕�0,1, as vector bundles over̂T . The idea
is to study the following elliptic operators:

D : $(V ⊗ S+)→ $(V ⊗ S−) D∗ : $(V ⊗ S−)→ $(V ⊗ S+),
D = (∂B +�)− (∂B +�)∗ D∗ = (∂B +�)∗ − (∂B +�), (3)

where(B,�) is a Higgs pair. Note that the operators in (3) are just the Dirac operators
coupled to the connectioñB, obtained by lifting the Higgs pair(B,�) to an invariant
ASD connection onR4, as above.

The next step is to prove that the admissibility condition implies the vanishing of the
L2-kernel ofD:

Proposition 1. The Higgs pair (B,�) is admissible if and only if L2
E−kerD = {0}.

Proof. Given a sections ∈ L2
2(V ⊗ S+), the Weitzenböck formula with respect to the

Euclidean metric on the punctured torus is given by:

(∂
∗
B∂B + ∂B∂

∗
B)s = ∇∗

B∇Bs + FBs = ∇∗
B∇Bs − [�,�∗]s

⇒ ∇∗
B∇Bs = (∂

∗
B∂B + ∂B∂

∗
B +��∗ +�∗�)s

=
{
(∂B +�)(∂

∗
B +�∗)+ (∂

∗
B +�∗)(∂B +�)

}
s

= D∗Ds,
and integrating by parts, we get:

||Ds||2
L2
E

= ||∇Bs||2L2
E

.

Thus, ifB is admissible, then theL2
E-kernel ofD must vanish. The converse statement

is also clear. � 
In other words, the above proposition implies that theL2

E-cohomology of orders 0
and 2 of the complex:

C : 0 → �0V
�+∂B−→ �1,0V ⊕�0,1V

∂B+�−→ �1,1V → 0 (4)

must vanish. On the other hand, since theL2-norm for 1-forms is conformally invariant,
theL2-cohomologyH 1(C) does not depend on the metric itself, only on its conformal
class.

Motivated by a result of Biquard (Theorem 12.1 in [2]) we will see how one can
identify H 1(C) in terms of a certain hypercohomology vector space which we now
introduce.

LetV → T̂ be the extended holomorphic vector bundle mentioned above. Recall that
if ξ0 is not an element of order 2 then the residue of the Higgs field� at±ξ0 is ak × k

matrix of rank 1. Therefore, ifs is a local holomorphic section on a neighbourhood of
±ξ0, �(s) has at most a simple pole at±ξ0 and its residue has the form(∗,0, . . . ,0)
on some suitable trivialisation.

Similarly, if ξ0 is an element of order 2,�(s) has at most a simple pole at±ξ0 and
its residue has the form(∗, ∗,0, . . . ,0) on some suitable trivialisation.

This local discussion motivates the definition of a sheafP±ξ0 such that, given an open
cover{Uα} of T̂ :
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• P±ξ0(Uα) = O
T̂
(V)(Uα), if ±ξ0 /∈ Uα;

• P±ξ0(Uα) = {meromorphic sections ofUα → Uα ×C
k which have at most a simple

pole at±ξ0 with residue lying either along a 2-dimensional subspace ofC
k if ξ0 has

order 2, or along a 1-dimensional subspace ofC
k otherwise}, if ±ξ0 ∈ Uα.

It is easy to see that suchP±ξ0 is a coherent sheaf. To simplify notation, we drop the
subscript±ξ0 out.

Hence,� can be regarded as the map of sheaves:

� : V → P ⊗K
T̂
. (5)

Seen as a two-term complex of sheaves, the map (5) induces an exact sequence of
hypercohomology vector spaces:

0 → H
0(T̂ ,�)→ H 0(T̂ ,V) �→ H 0(T̂ ,P ⊗K

T̂
)

→ H
1(T̂ ,�)→ H 1(T̂ ,V) �→ H 1(T̂ ,P ⊗K

T̂
)

→ H
2(T̂ ,�)→ 0.

(6)

It is easy to see that:

H
0(T̂ ,�) = ker

{
H 0(T̂ ,V) �→ H 0(T̂ ,P ⊗K

T̂
)
}
,

H
2(T̂ ,�) = coker

{
H 1(T̂ ,V) �→ H 1(T̂ ,P ⊗K

T̂
)
}
,

and admissibility implies that the right-hand sides must vanish: restricted toT̂ \ {±ξ0},
a section there would give a section in the kernel ofD (or, equivalently, a class inH 0(C)
andH 1(C)). Therefore, the dimension ofH

1(T̂ ,�) is equal toχ(P ⊗K
T̂
) − χ(V) =

χ(P)− χ(V).
To compute this number, note that there is also a natural mapV ι→ P defined as

the local inclusion of holomorphic local sections (elements ofO
T̂
(V)(Uα)), into the

meromorphic ones (elements ofP(Uα)). It fits into the following sequence of sheaves:

0 → V ι→ P resξ0−→ Rξ0 → 0 if ξ0 has order 2, (7)

0 → V ι→ P res±ξ0−→ R±ξ0 → 0 otherwise, (8)

whereRξ0 is the skyscraper sheaf supported atξ0 and stalk isomorphic toC2 andR±ξ0
is the skyscraper sheaf supported at±ξ0 and stalks isomorphic toC. Sinceχ(R±ξ0) =
χ(Rξ0) = 2, we conclude thatH1(T̂ ,�) is a 2-dimensional complex vector space.

Proposition 2. The hypercohomology induced by the map of sheaves (5) coincides with
the L2

P -cohomology of the complex (4).

In particular, we have identifications:

H
1(T̂ ,�) ≡ L2

P−cohomologyH 1(C) ≡ L2
E−cohomologyH 1(C).

Furthermore, note also that theL2
E-cohomology of 1-forms with respect to the Euclidean

metric is a 2-dimensional complex vector space.
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Proof. The hypercohomology defined by the map (5) is given by the total cohomology
of the double complex:

�0V �→ �1,0P
∂ ↓ ↓ ∂

�0,1V �→ �1,0P

which in turn is just the cohomology of the complex:

0 → �0V �+∂→ �1,0P ⊕�0,1V ∂+�→ �1,0P → 0.

Now restricting the complex above to the punctured torusT̂ \ {±ξ0}, we get:

0 → �0V
�+∂B→ �1V

∂B+�→ �2V → 0

which is, of course, the complexC.
So, lets be a section of�1,0P⊕�0,1V defining a class inH1(T̂ ,�). Thus, restricting

s to T̂ \ {±ξ0} yields a sectionsr of L2(�1V ) defining a class inH 1(C).
Suchrestriction map is clearly a well-defined map:

R : H
1(T̂ ,�)→ H 1(C),
< s >→ < sr > .

We claim that it is also injective. Indeed, suppose thatsr represents the zero class, i.e.
there ist ∈ L2

2(�
0V ) such thatsr = (∂B + �)t . However,L2

2 ↪→ C0 is a bounded
inclusion in real dimension 2. Thus,h(t, t) must be bounded at the punctures±ξ0, and
t must be itself bounded along the kernel of the residues of�. On the other hand,
the hermitian metric degenerates along the image of the residues of�, so t might be
singular on this direction. Indeed,h ∼ O(r1±α) in a holomorphic trivialisation, so that

t ∼ O(r− 1
2 (1±α)). But then the derivatives oft will not be square integrable, contradicting

our hypothesis thatt belongs toL2
2. Sot must be bounded at±ξ0.

This implies thatt ∈ L2
2(�

0V) also with respect to theh′ metric, so thatsr is indeed
the restriction of a section representing the zero class inH

1(T̂ ,�).
Finally, to show thatR is an isomorphism, it is enough by admissibility to argue that

theL2 index of the complexC is−2.
It was shown by Biquard (Theorem 5.1 in [2]) the laplacian associated to the complex

C is Fredholm when acting betweenL2
P sections. This implies thatD is also Fredholm.

Its index can be computed via Gromov-Lawson’s relative index theorem, and it coincides
with the index of the Dirac operator onV:

index(D) = index(∂B − ∂
∗
B) = degV = −2

as desired. � 
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Constructing the transformed bundle. We are finally in a position to construct a vector
bundle with connection overT ×C out of a Higgs pair(B,�). Recall thatJ (T̂ ) = T ,
theJacobian of T̂ , is defined as the set of flat holomorphic line bundles overT̂ . Each
z ∈ T corresponds to a flat holomorphic line bundleLz → T̂ . Moreover,T andT̂ are
isomorphic as elliptic curves.

These line bundles can be given a natural constant connection compatible with the
holomorphic structure. This follows from the differential-geometric definition ofT :

T = {z ∈ (R2)∗ | z(ξ) ∈ Z,∀ξ ∈ �},
where� ⊂ R

4 is the two-dimensional lattice generatinĝT . Hence eachz ∈ T can
be regarded as a constant, real 1-form overT̂ , so thatωz = i · z is a connection on
a topologically trivial line bundleL → T̂ . Each such connection defines a different
holomorphic structure onL, which we denote byLz.

Conversely,T̂ parametrises the set of holomorphic flat line bundles with connection
overT . Each pointξ ∈ T̂ corresponds to the line bundleLξ → T with a connectionωξ .

Now consider the restrictionsLz → T̂ \ {±ξ0}, with its natural connectionωz, and
form the tensor productV (z) = V ⊗ Lz. The connectionB can be tensored withωz to
obtain another connection that we denote byBz.

Let i : V (z)→ V (z)be the identity bundle automorphism and define�w = �−w·i,
wherew is a complex number. It is easy to see that(Bz,�w) is still an admissible Higgs
pair, for all(z, w) ∈ T × C.

Therefore, we get the following continuous family of Dirac-type operators:

D(z,w) = (∂Bz +�w)− (∂Bz +�w)
∗. (9)

From Proposition 1, we have thatL2
E−kerD(z,w) vanishes for all(z, w) ∈ T × C.

Since its index remains invariant under this continuous deformation, we conclude that
L2
E−kerD∗

(z,w) has constant dimension equal to 2.

Define a trivial Hilbert bundleH → T × C with fibres given byL2(V (z) ⊗ S−).
It follows that E(z,w) = kerD∗

(z,w) forms a vector sub-bundleE
i
↪→ H of rank 2.

Furthermore [7],E is also equipped with an hermitian metric, induced from theL2

metric onH , and an unitary connectionA, defined as follows:

∇A = P ◦ d ◦ i, (10)

whered means differentiation with respect to(z, w) on the trivial Hilbert bundle (i.e. the
trivial product connection) andP is the fibrewise orthogonal projectionP : L2(V (z)⊗
S−)→ kerD∗

(z,w). Clearly,A defined on (10) is unitary.
Note also that the hermitian metric inH is actually conformally invariant with respect

to the choice of metric inT̂ \ {±ξ0}, since the inner product inL2(V (z) ⊗ S−) is.
Therefore, the induced hermitian metric inE is also conformally invariant.

Monad description. The transformed bundleE also admits a monad-type description.
More precisely, once a metric is chosen, the family of Dirac operators kerD∗

(z,w) can be
unfolded into the following family of elliptic complexesC(z, w):

0 → L2
2,E(�

0V (z))
�w+∂Bz−→ L2

1,E(�
1,0V (z)⊕�0,1V (z))

∂Bz+�w−→ L2
E(�

1,1V (z))→ 0. (11)
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Admissibility implies that H 0(C(z, w)) and H 2(C(z, w)) must vanish, and
H 1(C(z, w)) coincides withL2

E−kerD∗
(z,w). As (z, w) sweeps outT ×C,H 1(C(z, w))

forms a rank 2 holomorphic vector bundle with a natural hermitian metric and a com-
patible unitary connectionA, equivalent to the ones defined as above; see [7].

3.1. Anti-self-duality and curvature decay. The next proposition fulfills the first goal
of this paper, i.e. to show that the connectionA defined above is in fact a finite-energy
anti-self-dual instanton on the rank 2 bundleE → T × C. We sayf ∼ O(|w|n) if the
complex functionf : C → C satisfies:

lim|w|→∞
|f (w)|
|w|n <∞. (12)

Theorem 3. The transformed connectionA is anti-self-dual with respect to the Euclidean
metric. Furthermore, its curvature satisfies |FA| ∼ O(|w|−2).

Proof. SinceA is an unitary connection, we only have to verify that the component of
FA along the Kähler classκ of T × C vanishes.

Let {ψ1, ψ2} be a local holomorphic frame forE, orthonormal with respect to the
hermitian metric induced fromH . Fix some(z, w) ∈ T × C so that, as a section of
V(z)⊗ S− → T̂ , we haveψi = ψi(ξ ; z,w) ∈ kerD∗

(z,w).
In this trivialisation, the matrix elements of the curvatureFA can then be written as

follows:

(FA)ij = 〈ψj ,∇A∇Aψi〉 = 〈ψj , d ◦ P ◦ dψi〉
= 〈D∗

(z,w)(dψj ),G(z,w)D∗
(z,w)(dψj )〉, (13)

where the inner product is taken inL2(V (z) ⊗ S−), integrating out theξ coordinate;
the finiteness of the integral is guaranteed by the fact thatψj ∈ L2

1(V (z) ⊗ S−). Note
also that the inner product is conformally invariant with respect to the choice of metric
on T̂ \ {±ξ0}. Hence, the expression for the curvature above is the same for both the
Euclidean and Poincaré metrics.

Moreover,G(z,w) is the Green’s operator forD∗
(z,w)D(z,w). Note that

[D∗
(z,w), d]ψi = 9′ · ψi,

where9′ = (idz1 + dw1) ∧ dξ1 + (idz2 + dw2) ∧ dξ2 and “·” denotes Clifford
multiplication. So,

κ�(FA)ij = 〈ψj , κ�(9′ ∧9′)︸ ︷︷ ︸ ·G(z,w)ψi〉 = 0, (14)

= 0

and this proves the first statement.
It is easy to see from (14) that the asymptotic behaviour of|(FA)ij | depends only on

the behaviour of the operator norm||G(z,w)|| for large|w|.
We can estimate||G(z,w)|| by looking for a lower bound for the eigenvalues of the

associated laplacian acting onV ⊗ S−:

D(z,w)D∗
(z,w) = DzD∗

z − wφ∗ − wφ + |w|2, (15)
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whereDz = D(z,w=0) and� = φdξ , with φ ∈ EndV ; φ∗ denotes the adjoint (conjugate
transpose) endomorphism.

In other words, we want to find a lower bound for the following expression:∣∣〈(DzD∗
z + |w|2)s, s〉 − 〈(wφ∗ + wφ)s, s〉∣∣

≥ ∣∣ 〈(DzD∗
z + |w|2)s, s〉 − |〈(wφ∗ + wφ)s, s〉|∣∣ (16)

for s ∈ L2(V ⊗ S−) of unit norm.
For the first term in the second line, it is easy to see that

|〈(DzD∗
z + |w|2)s, s〉| = ||D∗

z s||2 + |w|2 · ||s||2 = c1 + |w|2 (17)

for some non-zero constantc1 = ||D∗
z ||2 depending only onz ∈ T .

The second term in (16) is more problematic; first note that

|〈(wφ∗ + wφ)s, s〉| ≤ |w| · (|〈φ(s), s〉| + |〈φ∗(s), s〉|) .
In a small neighbourhoodD0 of each singularity±ξ0, we have

〈φ(s), s〉L2(D0)
=

∫
D0

〈φ0(s)

ξ
, s〉rdrdθ +

(
regular
terms

)

∼
∫
D0

|φ0|
r

· |s|2rdrdθ +
(

regular
terms

)
.

Let 1< p < 2; using Hölder inequality, we obtain:∫
D0

|φ0|
ξ

· |s|2 ≤
{∫

D0

( |φ0|
r

)p
rdrdθ

}1/p {∫
D0

|s|2q
}1/q

≤ c · ||s||2
L2q ,

whereq = p
p−1, and for some real constantc depending only onφ0 and on the choice

of p.
Since 2q > 4, the Sobolev embedding theorem tells us thatL2

1 ↪→ L2q is a bounded
inclusion (in real dimension 2). In other words, there is a constantC depending only
onq such that||s||L2q ≤ C · ||s||L2

1
. Thus, arguing similarly for the〈φ∗(s), s〉 term, we

conclude that
|〈(wφ∗ + wφ)s, s〉| ≤ c2 · |w|,

wherec2 is a real constant depending neither onz nor onw, but only on the Higgs field
itself and on the choice ofp.

Putting everything together, we have:∣∣∣〈(DzD∗
z − wφ∗ − wφ + |w|2)s, s〉

∣∣∣ ≥ ∣∣∣|w|2 − c2|w| + c1

∣∣∣
so that

lim|w|→∞ |w|2 · ||G(z,w)|| < 1

and the statement follows.� 
Remark 1. Note in particular thatFA ∈ L2(�2⊗E)with respect to the Euclidean metric
onT × C, coming from the quotient(R4)∗/�∗. This concludes our first task.
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Remark 2. It is also not difficult to see that gauge equivalent Higgs pairs(B,�) and
(B ′,�′) will produce gauge equivalent instantonsA andA′. The dependence ofA
on the Higgs pair(B,�) is contained on theL2-projection operatorP , that is on the
two linearly independent solutions ofD∗

(z,w)ψ = 0. Gauge equivalence of(B,�) and
(B ′,�′) gives an automorphism of the transformed bundleE, in other words, a gauge
equivalence betweenA andA′.

Remark 3. The instanton connectionA induces a holomorphic structure∂A on the the
transformed bundleE → T × C.

In order to further understand the asymptotic behaviour of the transformed connec-
tion, we must now pass to an equivalent holomorphic description of the above transform.

4. Holomorphic Version and Extensibility

Motivated by curvature decay established above, one can expect to find a holomorphic
vector bundleE → T × P

1 which extends(E, ∂A). The idea is to find a suitable
perturbation of the Higgs field� for whichw = ∞ makes sense.

As above, the torus parameterz ∈ T simply twists the holomorphic bundleV → T̂ .
We denote:

V(z) = V ⊗ Lz, P(z) = P ⊗ Lz. (18)

Since� ∈ H 0(T̂ ,Hom(V,P)⊗K
T̂
), tensoring both sides of (5) by the line bundleLz

does not alter the sheaf homomorphism�, so we have the family of maps:

� : V(z)→ P(z)⊗K
T̂

parametrised byz ∈ T .
To define the perturbation�w, recall that, regardingP1 = C ∪ {∞}, we can fix two

holomorphic sectionss0, s∞ ∈ H 0(P1,OP1(1)) such thats0 vanishes at 0∈ C and
s∞ vanishes at the point added at infinity. In homogeneous coordinates{(w1, w2) ∈
C

2|w2 �= 0} and{(w1, w2) ∈ C
2|w1 �= 0}, we have that, respectively (w = w1/w2):

s0(w) = w, s0(w) = 1,

s∞(w) = 1, s∞(w) = 1

w
.

Consider now the map of sheaves parametrised by pairs(z, w) ∈ T × P
1:

�w : V(z)→ P(z)⊗K
T̂
,

�w = s∞(w) ·�− s0(w) · ι · dξ. (19)

Clearly, onP
1 \ {∞} = C this is just�w = �−w · ι, the same perturbation we defined

before. Moreover, ifw = ∞, then�∞ = ι · dξ .
The hypercohomology vector spacesH

0(T̂ ,�w) andH
2(T̂ ,�w) of the two-term

complex (19) must vanish by admissibility. On the other hand,H
1(T̂ ,�w) also makes

sense for∞ ∈ P
1, and we can define aSU(2) holomorphic vector bundleE → T ×
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P
1 with fibres given byE(z,w) = H

1(T̂ ,�w). Moreover,E is actually aholomorphic
extension of (E, ∂A), in the sense that, holomorphically:

E |T×(P1\{∞}) � (E, ∂A). (20)

Equivalently,E can be seen as the hermitian holomorphic vector bundle induced by
the monad

0 → �0V �+∂→ �1,0P ⊕�0,1V ∂+�→ �1,0P → 0. (21)

Consider the metricH ′ induced from the monad (21) above, whileH is induced from
the monad (11). Now,H is bounded above byH ′ because the hermitian metrich on the
bundleV in (11) is bounded above by the metrich′ on the bundleV in (21).

We now show that the position of the singularities of the Higgs pair determines the
holomorphic type of the restriction of the extended transformed bundle over the added
divisor at infinity. First, recall that there is an unique line bundleP → T × T̂ , the
so-calledPoincaré line bundle, satisfying:

P|T×{ξ} � Lξ P|{z}×T̂ � L−z.

It can be constructed as follows. IdentifyingT andT̂ as before, let= be the diagonal
insideT × T̂ , and consider the divisorD = =− T × ê− e× T̂ . ThenP = O

T×T̂ (D);
it is easy to see that the sheaf so defined restricts as wanted.

Note that although the two restrictions above are flat line bundles overT and T̂
respectively, the Poincaré bundle itself is not topologically trivial; in fact,c1(P) ∈
H 1(T )⊗ H 1(T̂ ) ⊂ H 2(T × T̂ ). More precisely, the unitary connection and its corre-
sponding curvature are given by:

ω(z, ξ) = iπ ·
2∑

µ=1

(
ξµdzµ − zµdξµ

)
and 9(z, ξ) = 2iπ ·

2∑
µ=1

dξµ ∧ dzµ.

Restricting to eachT × {ξ}, the line bundlesLξ → T are given flat connections
ωξ = iπ ·∑2

µ=1 ξµdzµ, with constant coefficients. Similarly, the line bundlesLz → T̂

are given the flat connectionsωz = −iπ · ∑2
µ=1 zµdξµ as described in the previous

section. Finally, note that:

c1(P) = i

2π
9 ⇒ c1(P)2 = −2 · t ∧ t̂ ,

wheret andt̂ are the generators ofH 2(T ) andH 2(T̂ ), respectively.

Lemma 4. E |T∞ ≡ Lξ0 ⊕ L−ξ0

Proof. Substitutingw = ∞ ∈ P
1, we get from (19) that�∞ = ι · dξ . Therefore,

the induced hypercohomology sequence (23) coincides with the long exact sequence of
cohomology induced by the sheaf sequences (7) and (8), which is given by:

0 → H 0(T̂ ,V(z)) �∞→ H 0(T̂ ,P(z)⊗K
T̂
)→ H 0(T̂ ,R±ξ0(z))

→ H 1(T̂ ,V(z)) �∞→ H 1(T̂ ,P(z)⊗K
T̂
)→ 0.

(22)
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Hence,H1(T̂ , (z,∞)) = H 0(T̂ ,R±ξ0(z)). The right hand side is canonically identified
with (Lz)ξ0 ⊕ (Lz)−ξ0, where by(Lz)ξ0 we mean the fibre ofLz → T̂ over the point
ξ0 ∈ T̂ .

On the other hand,(Lz)ξ0 = P(z,ξ0) = (Lξ0)z, whereP → T × T̂ is the Poincaré line
bundle. Thus, the bundle overT∞ with fibres given byH 0(T̂ ,R±ξ0(z)) is isomorphic
toLξ0 ⊕ L−ξ0, as we wished to prove.� 

The topological type ofE is also fixed from the initial data: the rank of the bundleV
is translated into the second Chern class of the extended transformed bundleE . In the
next lemma, we denote the generator ofH 2(P1,Z) by p.

Lemma 5. ch(E) = 2− k · t ∧ p.

Proof. The exact sequence:

0 → H 0(T̂ ,V(z)) �w→ H 0(T̂ ,P(z)⊗K
T̂
)→ H

1(T̂ , (z, w))

→ H 1(T̂ ,V(z)) �w→ H 1(T̂ ,P(z)⊗K
T̂
)→ 0

(23)

induces a sequence of coherent sheaves overT ×C, with stalks over(z, w) given by the
above cohomology groups:

0 → H0(T̂ ,V(z)) �w→ H0(T̂ ,P(z)⊗K
T̂
)→ Ě

→ H1(T̂ ,V(z)) �w→ H1(T̂ ,P(z)⊗K
T̂
)→ 0.

(24)

In this way, the Chern character ofĚ will then be given by the alternating sum of the
Chern characters of these sheaves, which can be computed via the usual Grothendieck–
Riemann–Roch for families.

Consider the bundleG1 → T × P
1 × T̂ given by G1 = p∗3V ⊗ p∗13P. Clearly,

G1|(z,w)×T̂ = V(z), so that:

ch(H0(T̂ ,V(z)))− ch(H1(T̂ ,V(z))) = ch(G1)td(T̂ )/[T̂ ]. (25)

Now consider the sheaf:G2 = p∗3P ⊗ p∗13P ⊗ p∗2OP1(1). The twisting byOP1(1)
accounts for the multiplication by the sections0 ∈ H 0(P1,OP1(1)) contained in�w.
As above,G1|(z,w)×T̂ = P(z), and we have:

ch(H0(T̂ ,P(z)⊗K
T̂
))− ch(H1(T̂ ,P(z)⊗K

T̂
)) = ch(G2)td(T̂ )/[T̂ ]. (26)

Therefore:

ch(E) = (26)− (25) =
=

(
c1(P)− c1(V)+ c1(P) ∧ p + k

2
c1(P)2 ∧ p

)
/[T̂ ] =

= χ(P)− degV + χ(P) · p − k · t ∧ p = 2− k · t ∧ p
as desired. � 
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Finally, we argue that the determinant bundle ofE is trivial, so thatA is indeed a
SU(2) instanton. Note that detE is a line bundle with vanishing first Chern class, so it
must be the pull back of a flat line bundleLξ → T . But detE |T∞ = C, hence detE must
be holomorphically trivial, as desired.

We callξ0 ∈ J (T ) theasymptotic state associated to the doubly-periodic instanton
connectionA, and the integerk its instanton number. The Nahm transform constructed
above guarantees the existence of doubly-periodic instantons of any given charge and
asymptotic state.

4.1. Extensible doubly-periodic instanton connections. Motivated by the properties es-
tablished above, we say that a doubly-periodic instanton connectionA on a bundle
E → T × C is extensible if the following hypothesis holds:

1. |FA| ∼ O(|w|−2);
2. there is a holomorphic vector bundleE → T × P

1 with trivial determinant such that
E |T×(P1\{∞}) � (E, ∂A), where∂A is the holomorphic structure onE induced by the
instanton connectionA;

This definition will be our starting point in [14], where we shall present the Nahm
transform of doubly-periodic instantons, i.e. the inverse of the construction shown here.

5. Conclusion

In this paper we have shown how finite energy, doubly-periodic instantons can be pro-
duced by performing a Nahm transform on certain singular Higgs pairs. The rank of the
Higgs bundle is translated into the instanton number; the number of singularities of the
Higgs field (i.e. the degree of the holomorphic Higgs bundleV) gives the rank of the
transformed instanton, and its positions determine how the instanton connection “splits
at infinity”. Indeed, it is easy to generalise the above construction by allowing more
than two singularities on the original Higgs field, so that higher rank doubly-periodic
instantons are obtained; see [14].

Moreover, one would also like to understand how the parabolic parameters(α, ε)

are translated into the doubly-periodic instantons produced via the Nahm transform
as above. On general grounds, we expect these parameters to be translated into more
detailed information on the asymptotic behaviour ofA.

From the more analytical point of view, it is also interesting to ask if the curvature
decay (Proposition 3) is enough to ensure extensibility. More precisely, one can expect
to be able to prove the following result:

Conjecture 6. If A is anti-self-dual and|FA| ∼ O(|w|−2), then there is a holomorphic
vector bundleE → T × P

1 such that

E |T×(P1\{∞}) � (E, ∂A).

In other words,A is extensible.

Such conjecture motivates other questions:

• Do all anti-self-dual connections onE → T × C with finite energy with respect to
the Euclidean metric satisfy|FA| ∼ O(|w|−2)?
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• Does the converse hold, i.e. ifA is extensible then|FA| ∼ O(|w|−2)? If not, what
are the necessary and sufficient analytical conditions for extensibility (in terms of the
Euclidean metric)?

• Given a holomorphic bundleE → T × P
1, is there a connectionA on E |T×(P1\{∞})

such thatA is anti-self-dual and|FA| ∼ O(|w|−2) with respect to the Euclidean
metric?

We hope to address these issues in a future paper [4].
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