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Abstract: We construct finite-energy instanton connections @/which are periodic
in two directions via an analogue of the Nahm transform for certain singular solutions
of Hitchin’s equations defined over a 2-torus.

1. Introduction

Since the appearance of the Yang—Mills equation on the mathematical scene in the late
70’s, its anti-self-dual (ASD) solutions have been intensively studied. The first major
resultin the field was the ADHM construction of instantongrj1]. Soon after that, W.
Nahm adapted the ADHM construction to obtain timae-invariant ASD solutions of the
Yang—Mills equations, the so-called monopoles [18]. It turns out that these constructions
are two examples of a much more general framework.

TheNahm transform can be defined in general for anti-self-dual connection®4n
which are invariant under some subgroup of translatioans R* (see [19]). In these
generalised situations, the Nahm transform gives rigeabinstantons on (R*)*, which
are invariant under

A* = {a € RH* |a(r) € ZVA € A}

There are plenty of examples of such constructions available in the literature, namely:

e The trivial caseA = {0} is closely related to the celebrated ADHM construction of
instantons, as described by Donaldson & Kronheimer [7]; in this cases (R*)*
and an instanton oR* corresponds to some algebraic data.

e If A = Z4 this is the Nahm transform of Braam & van Baal [5] and Donaldson &
Kronheimer [7], defining a hyperkéahler isometry of the moduli space of instantons
over two dual 4-tori.

e A = R gives rise to monopoles, extensively studied by Hitchin [10], Donaldson [6],
Hurtubise & Murray [12] and Nakajima [19], among several others; hete= RS,
and the transformed object is, for SU(2) monoples, an analytic solution of certain
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matrix-valued ODE’s (the so-called Nahm’s equations), defined over the open interval
(0, 2) and with simple poles at the end-points.

e A = Zcorrespondto the so-called calorons, studied by Nahm [18], Garland & Murray
[8] and others; the transformed object is the solution of certain nonlinear Nahm-type
equations on a circle.

The purpose of this paper fits well into this larger mathematical programme. Our
goal is to construct finite-energy instantons diémprovided with the Euclidean metric,
which are periodic in two directions\¢ = Z?2), so-calleddoubly-periodic instantons,
from solutions of Hitchin’s equations [11] defined on a 2-torus, i.e. instantonsRfver
which are invariant undek = Z? x R?2. The latter object is now very well studied, and
their existence is determined by certain holomorphic data.

One mightalso ask if all doubly-periodic instantons can be produced in this way. Inthe
sequel [14] of this paper, we will show that the construction here presented is invertible
by describing the Nahm transform for instantons dérx R?, which produce singular
solutions of Hitchin’s equations.

Indeed, Hitchin’s equations admit very few smooth solutions over elliptic curves (see
[11]). Therefore, by analogy with Hitchin’s construction of monopoles [10], we will
consider a certain class of singular solutions, for which existence is guaranteed [16, 21].
The singularity data is converted into the asymptotic behaviour of the Nahm transformed
doubly-periodic instanton; such a picture is again familiar from the construction of
monopoles.

A string-theoretical version of the Nahm transform here presented was given by
Kapustin & Sethi [15]. In fact, the other examples of Nahm transforms mentioned above
also have string-theoretical interpretations. The ADHM construction and the Fourier
transform of instantons over 4-tori were discussed in these terms by Witten [22], while
Kapustin & Sethi [15] also treated the case of calorons.

Let us now outline the contents of this paper. Section 2 is dedicated to a brief review
of Hitchin’s self-duality equations, and the precise description of the particular type of
solutions we will be interested in. The main topic of the paper is contained in Sects. 3
and 4, when we will show how to construct doubly-periodic instantons and explore some
of the properties of the instantons obtained. We conclude with a few remarks and raising
some questions for future investigation.

2. Singular Higgs Pairs

In [11] Hitchin studied the dimensional reduction of the usual Yang—Mills anti-self-dual
equations from four to two dimensions. More preciselyMet> R* be a rank vector
bundle with a connectioB which does not depend on two coordinates. Pick up a global
trivialisation of V and write downB as a 1-form:
B = Bi(x, y)dx + Ba(x, y)dy + ¢1(x, y)dz + $2(x, y)dw.

Hitchin then defined &liggs field ® = (¢1 — i¢2)dE, wheredé = dx + idy. SO ®
is a section ofAL9EndV, whereV is now seen as a bundle ovRf with a connection
B = Bidx + Bady.

The ASD equations foB over R4 can then be rewitten as a pair of equations on
(B, ®) overR?:

Fp+[®,®*]=0
{5Bc1>=0 ' @
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These equations are also conformally invariant, so they make sense over any Riemann
surface. SolutiongB, ®) are often calledHiggs pairs.

As we mentioned in the introduction, we are interested in singular Higgs pairs over a
2-torus? defined on ar/ (k)-bundleV — 7. Since we want to think of as a quotient
of R4 by A = Z2 x R2, the natural choice of metric fdt is the flat, Euclidean metric.
L(‘alt us also fix a complex structure (ihcoming from a choice of complex structure on
R*.

Singular Higgs bundles were widely studied by many authors ([21,17] and [16]
among others) and are closely related to the so-cp#ieabolic Higgs bundles. Adopting
this point of view, we will consider a holomorphic vector buntfle> 7' of degree—2
with the following quasi-parabolic structure over two poittsy € T (regarding now
T as an elliptic curve):

Vigg = FiVigy D FoVigy D F3Vigy = {0}
——

d 2,
dim=1 ordero) #

Vo = F1Vey D F2Vsy D F3Vgy D FaVs = {0}
—— ~——

orde =2.
dim=2 dm=1 "50)

To complete the parabolic structure we need to assigghts a1 (££p) to F1Vig, and
a2(F£0) 10 FaV g, if £0 # —&0 OF a1(£0) 10 F1 Vs, r2(£0) 10 F2V, andara(£0) to FaVs,
if &9 = —&p. We assume that; = 0 in both cases; ifg is not of order two, we fix that
az(&9) = 1+ a andax(—&p) = 1 — «; if & has order two, we fix thato(§p) = 1 — «
andasz(&y) = 1+ a forsome 0< o < % Note in particular thal’ with this parabolic
structure has zero parabolic degree.

From the point of view of the Higgs paiB, ®), this means that the bundié is
defined away fromt&p, and satisfies, holomorphically:

V'f\{:l:i;‘o} = (V1 8B)-

The Higgs fieldd has simple poles at the parabolic poitits) € 7 such that the residues
¢o(F&0) of @ arek x k matrices of rank 1. I€g is one of the four elements of order 2
in 7, then the residueo(&o) is assumed to befax k matrix of rank 2.

Moreover, the harmonic metric associated with the Higgs paiB, ) is assumed
to be compatible with the parabolic structure. This means that, in a holomorphic trivi-
alisation ofV over a sufficiently small neighbourhood arouhéy, / is non-degenerate
along the kernel of the residues®f andi ~ O (r*%) along the image of the residues
of ®.

Such metric is clearly not a hermitian metric on the extended buvidlsince it
degenerates at&p). Let 2’ be a hermitian metric o bounding above the harmonic
metric onV.

If (V, @) is a-stable in the sense of parabolic Higgs bundles, then the existence of a
meromorphic Higgs pair as above is guaranteed [21] for any kaarkd any choice of
+£o.

Moreover, one usually fixes the eigenvalues of the residueb aé well. In our
situation, this amounts to choosing only one complex number that we deneté\gy
assume that # 0, i.e. the residues ep are semi-simple.

However, in this paper, these parameters (the weightad the eigenvalue of the
residues) will be allowed to vary; see [4] for a complete discussion. It is reassuring
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to know that if two sets of parametefs, €) and(a’, €”) are chosen in generic position,
thena-stability anda’-stability are in fact equivalent conditions [20].

In particular, the caske = 1 is very simple: once the parametéss ) are fixed and
for any choice oft:&p, the moduli space of meromorphic Higgs pairs is just the cotangent
bundle ofT, that is a copy of" x C.

We will study solutions of (1) ovef” with the singularitiest&g removed. Due to
the non-compactness ﬁ‘f\ {+£0}, the choice of metric on the base space is a delicate
issue. From the point of view of the Nahm transform, it is important to consider the
Euclidean, incomplete metric on the punctured torus, as it is well-known from the ex-
amples mentioned above. However, such a choice of metric is not a good one from the
analytical point of view. For instance, one cannot expect, on general grounds, to have a
finite dimensional moduli space of Higgs pairs.

Fortunately, as we mentioned before, Hitchin's equations are conformally invariant,
so that we are allowed to make conformal changes in the Euclidean metric localised
around the punctures to obtain a complete metri@ on{£o}. Thus, our strategy is to
obtain results concerning the Euclidean metric from known statements about complete
metrics.

In [2], Biguard considered the so-callBdincaré metric, which is defined as follows.

We perform a conformal change on the incomplete metric over the punctured torus
localised on small punctured neighbourhodaisof +£g, so that ifs = (r, 0) is a local
coordinate orDg, we have the metric:

& 2 2
i3 = dedE _ o dr N do '
|€]210g? |€|? r2log?r = 4lod?r

)

We denote the complete metric so obtaineg: by The Euclidean metric is denoted by
ge. Whenever necessary, we will denote by andL?2 the Sobolev norms il (A*V)
with respect tqgz andgp, respectively, together with the hermitian metricvin

Model solutions of (1) in a neighbourhood of the singularities were described by
Biquard [3]:

B = bﬁ + b*ﬁ,
§ §
d

D =¢o§,

whereb, ¢ € sl(k). Every meromorphic Higgs pair with a simple pole approaches this
model close enough to the singularities.

Finally, a Higgs pailB, ®) is said to beadmissibleif V has no covariantly constant
sections.

3. Construction of Doubly-Periodic I nstantons

Our task now is to construct &U (2) vector bundle ovef x C, with an instanton
connection on it, starting from a suitable singular Higgs pair as described in the previous
section.

The key feature of Nahm transforms is to try to solve a Dirac equation, and then use
its L2-solutions to form a vector bundle over the dual lattice; see the references in the
introduction.
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SoletsT = A9@ Atlands™ = A0 @ A%1 as vector bundles ovét. The idea
is to study the following elliptic operators:

D:T(VRSH>T(VRS) D' T(VRS) > I(VeSh,
D=(@p+®) —(0p+P)* D*=(0p+P)*— (35 + P), (3)

where(B, @) is a Higgs pair. Note that the operators in (3) are just the Dirac operators
coupled to the connectioB, obtained by lifting the Higgs paitB, ®) to an invariant
ASD connection ofR*, as above.

The next step is to prove that the admissibility condition implies the vanishing of the
L?-kernel of D:

Proposition 1. The Higgs pair (B, ®) isadmissibleif and only if L%—keﬂ) = {0}.

Proof. Given a section € L%(V ® S1), the Weitzenbdck formula with respect to the
Euclidean metric on the punctured torus is given by:

(0308 + 080 g)s = ViVps + Fps = Vi Vs — [®, D*]s
= ViVps = (0305 + 0505 + PD* + O*D)s
- {(53 FO)@p + D*) + @y + D05 + cb)} s
= D*Ds,
and integrating by parts, we get:

Ds|1%, = ||Vgs||?,.
Il ”LZE [IVB IIL%
Thus, if B is admissible, then thé%-kernel of D must vanish. The converse statement
is also clear. O

In other words, the above proposition implies that ﬂ%cohomology of orders 0
and 2 of the complex:

C: 0— A0y 228 ALOy g AOLy BEP £11y g (4)
must vanish. On the other hand, since iffenorm for 1-forms is conformally invariant,
the L2-cohomologyH1(C) does not depend on the metric itself, only on its conformal
class.

Motivated by a result of Biquard (Theorem 12.1 in [2]) we will see how one can
identify H1(C) in terms of a certain hypercohomology vector space which we now
introduce.

LetV — T bethe extended holomorphic vector bundle mentioned above. Recall that
if £ is not an element of order 2 then the residue of the Higgs fietd +&¢ is ak x k
matrix of rank 1. Therefore, if is a local holomorphic section on a neighbourhood of
+&o, ®©(s) has at most a simple pole &% and its residue has the forgm, 0, ... , 0)
on some suitable trivialisation.

Similarly, if &y is an element of order Zy(s) has at most a simple pole #y and
its residue has the forrgx, *, 0, ... , 0) on some suitable trivialisation.

This local discussion motivates the definition of a sifeaf, such that, given an open

cover{U,} of T:
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o Pigy(Uy) = O;(V)(Uy), if £&0 ¢ Uy,
e Pig(Uy) = {meromorphic sections @, — U, x C* which have at most a simple

pole at+£g with residue lying either along a 2-dimensional subspadgdf £y has
order 2, or along a 1-dimensional subspac€bbtherwise, if +& € U,,.

It is easy to see that sudP.¢, is a coherent sheaf. To simplify notation, we drop the
subscript:£g out.
Hence,® can be regarded as the map of sheaves:

®:V > PRKs. (5)

Seen as a two-term complex of sheaves, the map (5) induces an exact sequence of
hypercohomology vector spaces:

0— HYT, ®) - HOT,V) 3 HOT,P® K3)
— HYT, @) - HYT,V) 3 HXT, P ® K}) (6)
— HX(T,®) - 0.

Itis easy to see that:
0,7 0,7 ® 04
H (T,CD):ker{H 7, v) S BT, Po Ky }
HA(T, ®) = coker[Hl(f, W2 YT, P Kf)} :

and admissibility implies that the right-hand sides must vanish: restrictﬁdtbi:éo},
a section there would give a section in the kernéDddbr, equivalently, a class iH°(C)
and H1(C)). Therefore, the dimension &f(7", ®) is equal tox (P ® K;) — x(V) =
x(P) = x V).

To compute this number, note that there is also a naturalmalp ‘P defined as
the local inclusion of holomorphic local sections (elements Gf.(V)(Uy)), into the
meromorphic ones (elementsBfU,)). It fits into the following sequence of sheaves:

0_>V_‘>73E§R50—>0if§ohasorder2 )
0y b p o Re, — 0 otherwise 8)

whereRg, is the skyscraper sheaf supportedgand stalk isomorphic 62 andR 1g,
is the skyscraper sheaf supported:gh and stalks isomorphic t6. Sincey (R+g,) =

X (Rg,) = 2, we conclude thall'(7", ®) is a 2-dimensional complex vector space.

Proposition 2. The hypercohomol ogy induced by the map of sheaves (5) coincides with
the L% -cohomology of the complex (4).

In particular, we have identifications:
HY(T, ®) = L%—cohomologyH!(C) = L%—cohomologyH(C).

Furthermore, note also that th%—cohomology of 1-forms with respect to the Euclidean
metric is a 2-dimensional complex vector space.
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Proof. The hypercohomology defined by the map (5) is given by the total cohomology
of the double complex:

A% S ALOP
3y 1
A1y B ALO0p

which in turn is just the cohomology of the complex:

0= A% 230 ALOp g AO1) "B £LO0p

Now restricting the complex above to the punctured tdtus{=£o}, we get:

D49, Ip+®
0 A0y P2 ALy 282 A2y 0

which is, of course, the complek
So, lets be a section oA 1P @ A%1V defining a class il (7, ). Thus, restricting
sto T \ {£&o} yields a section, of L2(A1V) defining a class il 1(C).
Suchrestriction map is clearly a well-defined map:

R :HYT, ®) —» HYO),

<s§>—> <S§ >

We claim that it is also injective. Indeed, suppose thaepresents the zero class, i.e.
there ist € L3(A%V) such thats, = (35 + ®)r. However,L5 — € is a bounded
inclusion in real dimension 2. Thuk(z, r) must be bounded at the punctueegy, and
¢t must be itself bounded along the kernel of the residue$.00On the other hand,
the hermitian metric degenerates along the image of the residubssufs might be
singular on this direction. Indeed,~ O (+*%) in a holomorphic trivialisation, so that
t ~ 0(r— 21+ Butthenthe derivatives ofvill not be square integrable, contradicting
our hypothesis thatbelongs toL%. Sot must be bounded at&p.

This implies that € L3(A%V) also with respect to the’ metric, so thas, is indeed
the restriction of a section representing the zero clagEliff", ®).

Finally, to show thaR is an isomorphism, it is enough by admissibility to argue that
the L2 index of the complex is —2.

Itwas shown by Biquard (Theorem 5.1 in [2]) the laplacian associated to the complex
C is Fredholm when acting betweé@, sections. This implies th&? is also Fredholm.
Its index can be computed via Gromov-Lawson'’s relative index theorem, and it coincides
with the index of the Dirac operator dn

indexD) = indexdp — 93) = deg) = —2

as desired. O
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Constructing the transformed bundle. We are finally in a position to construct a vector
bundle with connection oveff x C out of a Higgs pai(B, ®). Recall that7(T) = T,
the Jacobian of 7', is defined as the set of flat holomorphic line bundles dveEach
z € T corresponds to a flat holomorphic line bundle — 7. Moreover,T and7 are
isomorphic as elliptic curves.

These line bundles can be given a natural constant connection compatible with the
holomorphic structure. This follows from the differential-geometric definitiof of

T ={z e (R?"|z(§) € Z,VE € A},

where A C R* is the two-dimensional lattice generatifig Hence each € T can
be regarded as a constant, real 1-form dieso thatw, = i - z is a connection on
a topologically trivial line bundle. — 7. Each such connection defines a different
holomorphic structure of, which we denote by...

Conversely] parametrises the set of holomorphic flat line bundles with connection
overT. Each poin€ € T corresponds to the line bundle — T with a connectior.

Now consider the restrictions, — T \ {£&o}, with its natural connectiow,, and
form the tensor produdt (z) = V ® L,. The connectiorB can be tensored with, to
obtain another connection that we denoteyy

Leti : V(z) — V(z) be theidentity bundle automorphism and defing= ®—w-i,
wherew is a complex number. It is easy to see tft, ®,,) is still an admissible Higgs
pair, for all(z, w) € T x C.

Therefore, we get the following continuous family of Dirac-type operators:

Diwy = (g, + Py) — (35, + Pu)*. 9)

From Proposition 1, we have thm%—keﬂ)(zqw) vanishes for alliz, w) € T x C.

Since its index remains invariant under this continuous deformation, we conclude that
5 —kerD, ) has constant dimension equal to 2.

Deflne a trivial Hilbert bundlg? — T x C with fibres given byL?(V(z) ® S7).

It follows that E (..., = kerD{, ) forms a vector sub-bundl& <> H of rank 2.

Furthermore [7],E is also equipped with an hermitian metric, induced from ife
metric onH, and an unitary connectiofl, defined as follows:

Vi=Podoli, (10)

whered means differentiation with respecttq w) on the trivial Hilbert bundle (i.e. the
trivial product connection) an# is the fibrewise orthogonal projectiah: L2(V (z) ®
S7) — kerD* CIearIy,A defined on (10) is unitary.
Note also that the hermitian metricthis actually conformally invariant with respect
to the choice of metric irf’ \ {#£&o}, since the inner product iR?(V(z) ® S7) is.
Therefore, the induced hermitian metricknis also conformally invariant.

Monad description. The transformed bundIg also admits a monad-type description.
More precisely, once a metric is chosen, the family of Dirac operatofzsgg% can be
unfolded into the following family of elliptic complexe¥(z, w):

&, +3p,
0— L3 p(AV(@) =" L] p(A™V(@) @ A%V (2)

g, +®y
M 12 (AMY(2) > 0. (11)
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Admissibility implies that H°(C(z, w)) and H?(C(z, w)) must vanish, and
H(C(z, w)) coincides withL2 — —kerDy, . As (z, w) sweeps oul’ x C, HY(C(z, w))
forms a rank 2 hoIomorph|c vector bundle with a natural hermitian metric and a com-
patible unitary connectioA, equivalent to the ones defined as above; see [7].

3.1. Anti-self-duality and curvature decay. The next proposition fulfills the first goal
of this paper, i.e. to show that the connectidrlefined above is in fact a finite-energy
anti-self-dual instanton on the rank 2 bundle> T x C. We sayf ~ O(Jw|") if the
complex functionf : C — C satisfies:

OIS

lwl—oo |w|?

(12)

Theorem 3. Thetransformed connection A isanti-self-dual with respect tothe Euclidean
metric. Furthermore, its curvature satisfies | F4| ~ O (|lw|~2).

Proof. SinceA is an unitary connection, we only have to verify that the component of
F4 along the Kéhler class of T x C vanishes.

Let {vr1, Y2} be a local holomorphic frame fat, orthonormal with respect to the
hermitian metric induced fron#/. Fix some(z, w) € T x C so that, as a section of
V() ® S~ — T, we havey; = ¥;(&; z, w) € kerD},

In this trivialisation, the matrix elements of the curvatw,e can then be written as
follows:

(Fa)ij = (Wj, VaVayi) = (¥, d o P odyy)
= (DG (@V)), Geow) DLy (¥ )), (13)

where the inner product is taken Irf(V (z) ® S™), integrating out thé& coordinate;

the finiteness of the integral is guaranteed by the factyhat L%(V(z) ® S7). Note

also that the inner product is conformally invariant with respect to the choice of metric
onT \ {££&0}. Hence, the expression for the curvature above is the same for both the
Euclidean and Poincaré metrics.

Moreover,G . ., is the Green’s operator fap7, D .. Note that

(z,w)
[ (Z w)’d]wl _Q 1//l7

where Q' = (idz1 + dwi) A d&1 + (idzo + dw) A d&ép and “” denotes Clifford
multiplication. So,

KL(FA)l] = (1//], K'—(Q /\Q) G(7 w)d/l> =0, (14)
=0

and this proves the first statement.

It is easy to see from (14) that the asymptotic behavioy¢®f);;| depends only on
the behaviour of the operator notind ; || for large|w|.

We can estimat@lG ;.|| by looking for a lower bound for the eigenvalues of the
associated laplacian acting #h® S~

Diewny Dy = DD} — wop* —we + [w|?, (15)
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whereD, = D(; =0 and® = ¢d&, with ¢ € EndV; ¢* denotes the adjoint (conjugate
transpose) endomorphism.
In other words, we want to find a lower bound for the following expression:

(DD} + [wP)s, s) — (we™* + We)s, s)|
> | (D:Df + |wP)s, s) — ((we™ +We)s, 5)| (16)

fors € L2(V ® §™) of unit norm.
For the first term in the second line, it is easy to see that

(D, DF + [wl?)s, s)| = IDEsl1? + [w]? - |Is]1? = c1 + [w/? 17)

for some non-zero constant = ||D;“||2 depending onlyon € T.
The second term in (16) is more problematic; first note that

((wo™ +@p)s, s)| < [w]- (), )| + [ (5), 5)1) -

In a small neighbourhoof) of each singularityt-£y, we have

(). 9)12(0p) = /D 0<¢0;s),s)rdrd9 + (rfe%‘;']‘g

lpol 2 regular
~ /DOT - |s|“rdrd6 + terms |

Let1 < p < 2; using Holder inequality, we obtain:

p 1/p 1/q
/ 190l 112 < {f <@> rdrd@} {/ |s|2q}
Do s Do r Do

2
<c-|Isllzz.

whereg = ﬁ, and for some real constantdepending only oo and on the choice
of p.

Since 2 > 4, the Sobolev embedding theorem tells us fét—> L% is a bounded
inclusion (in real dimension 2). In other words, there is a constadepending only
ong such that|s||;2, < C - ||s||L§. Thus, arguing similarly for thé&p*(s), s) term, we
conclude that

(o™ +we)s, s)| < c2-|wl,
wherec; is a real constant depending neitherzamor onw, but only on the Higgs field
itself and on the choice qgf.

Putting everything together, we have:

(DD} = w* =+ [wDs, )| = [lwl? = colw| + 1

so that
lim |w? [|Gewll <1

|w|— 00

and the statement follows.oO

Remark 1. Note in particular thaF, € L?(A%® E) with respect to the Euclidean metric
onT x C, coming from the quotientR*)*/A*. This concludes our first task.
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Remark 2. It is also not difficult to see that gauge equivalent Higgs péits®) and
(B’, @) will produce gauge equivalent instantoAsand A’. The dependence o

on the Higgs pailB, ®) is contained on thé 2-projection operato, that is on the
two linearly independent solutions @f;;,w)w = 0. Gauge equivalence 0B, ®) and

(B’, @) gives an automorphism of the transformed bun@ljen other words, a gauge
equivalence betweef andA’.

Remark 3. The instanton connectioA induces a holomorphic structug on the the
transformed bundl& — T x C.

In order to further understand the asymptotic behaviour of the transformed connec-
tion, we must now pass to an equivalent holomorphic description of the above transform.

4. Holomor phic Version and Extensibility

Motivated by curvature decay established above, one can expect to find a holomorphic
vector bundle€ — T x P! which extends(E, 34). The idea is to find a suitable
perturbation of the Higgs field for which w = co makes sense.

As above, the torus parametge T simply twists the holomorphic bundi¢ — T.
We denote:

V@) =V®L, P& =P&L.. (18)

Since® € HY(T, Hom(V, P) ® K;), tensoring both sides of (5) by the line bundle
does not alter the sheaf homomorphigmso we have the family of maps:

®: V() - Px) ® K;

parametrised by € T.

To define the perturbatiod,,, recall that, regarding* = C U {co}, we can fix two
holomorphic sectionsg, s, € HO(PY, Op1(1)) such thatsg vanishes at 0= C and
S0 Vanishes at the point added at infinity. In homogeneous coordifiateswy) €
C2|wy # 0} and{(w1, wo) € C2lw1 # 0}, we have that, respectively(= w1/w»):

so(w) =w, so(w) =1,

1
Soo(w) =1, soo(w) = o

Consider now the map of sheaves parametrised by faits) € T x PL:

by V(@) — Pi) K4,
Dy = Soo(w) - ® — so(w) - ¢ - dE. (29)

Clearly, onP!\ {oo} = C this is just®,, = ® — w - ¢, the same perturbation we defined
before. Moreover, ifv = oo, then®,, = ¢ - d&.
The hypercohomology vector spaddS(7', ®,,) andH%(T', ®,,) of the two-term

complex (19) must vanish by admissibility. On the other hatt(7, ®,,) also makes
sense foro € P!, and we can define &U (2) holomorphic vector bundlé — T x
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P! with fibres given by€; ., = HX(T, ®,,). Moreover, is actually aholomorphic
extension of (E, 34), in the sense that, holomorphically:

Elr @i joop = (E, 94). (20)

Equivalently,£ can be seen as the hermitian holomorphic vector bundle induced by
the monad

o439 I+

0— A% 20 AL0P g A0y 57 ALOP 0, (21)

Consider the metrié/’ induced from the monad (21) above, whifeis induced from
the monad (11). Now# is bounded above by’ because the hermitian metfion the
bundleV in (11) is bounded above by the metticon the bundl@’ in (21).

We now show that the position of the singularities of the Higgs pair determines the
holomorphic type of the restriction of the extended transformed bundle over the added

divisor at infinity. First, recall that there is an unique line bunBlle> T x T, the
so-calledPoincaré line bundle, satisfying:

Plrxig) = Le P|{z}xf" ~L_,.

It can be constructed as follows. Identifyiﬁgandf as before, letA be the diagonal
insideT x T, and consider the divisdd = A — T x é —e x T. ThenP = O, _;(D);
it is easy to see that the sheaf so defined restricts as wanted.

Note that although the two restrictions above are flat line bundles Bvand 7
respectively, the Poincaré bundle itself is not topologically trivial; in fagtP) e
HYT) ® HYT) c H3(T x T). More precisely, the unitary connection and its corre-
sponding curvature are given by:

2 2
0. &) =im -y (§udzy — 2udE,) and Q(z.§) = 2im - Y dE, Adz,.

n=1 n=1
Restricting to eacll’ x {&}, the line bundlesL — T are given flat connections
wg =i - Zi 1 £,4dz,,, with constant coefficients. Similarly, the line bundles— 7

are given the flat connections, = —ix - ZM 12,d&;, as described in the previous
section. Finally, note that:

c1(P) = —sz = (P’ =-2-1Af,

wherer and? are the generators #12(T) and H2(T'), respectively.
Lemmad. €1, = Lgy @ L_g

Proof. Substitutingw = oo € P, we get from (19) thatb,, = ¢ - d&. Therefore,
the induced hypercohomology sequence (23) coincides with the long exact sequence of
cohomology induced by the sheaf sequences (7) and (8), which is given by:

0— HYT, V(z» = HUT,P(2) ® K;) — HOT, Rugy(2))

) (22)
— HYXT. V() 25 BT, P)®K;) — 0.
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HenceH (T, (z, 00)) = HY(T', Rz,(2)). The right hand side is canonically identified
with (L,)g, @ (L;)—g,, Where by(L.)s, we mean the fibre of., — T over the point

EeT.
On the other hand [, )g, = P(, ¢ = (Lg,):, WhereP — T x T is the Poincaré line

bundle. Thus, the bundle ov@k, with fibres given byH%(7, R+g,(2)) is isomorphic
to Lg, ® L_g,, as we wished to prove.o

The topological type of is also fixed from the initial data: the rank of the bun#fle
is translated into the second Chern class of the extended transformed Buidkhe
next lemma, we denote the generatott#(PL, Z) by p.

Lemmab. ch(&) =2—k -t A p.
Proof. The exact sequence:

0— HUT, V() & HOT, P(z) ® K;) — HYT, (z, w))

10f Qv 1 (23)
— HYT, V() 2 HXT, P ® K4) — 0

induces a sequence of coherent sheavesbwe, with stalks ovelz, w) given by the
above cohomology groups:

0 — HAT, V(@) & HAT, P(2) ® Kj) — &

q> w

1,7 1,7 (24)
— HYT, V(@) B HAT, P@) @ k) — 0.

In this way, the Chern character fwill then be given by the alternating sum of the
Chern characters of these sheaves, which can be computed via the usual Grothendieck-
Riemann—Roch for families.

Consider the bundi&; — T x P! x T given byG; = p3V ® pigP. Clearly,
Gl|(z,w)xf = V(2), so that:

ch(HY(T, V(2))) — ch(HXT, V(2))) = ch(Gtd(T)/IT]. (25)
Now consider the sheaG; = p3P ® pisP ® p30p1(1). The twisting byOpa (1)

accounts for the multiplication by the sectione HO(P, Op1(1)) contained ind,,.
As above,Gl|(Z wyxT = P(z), and we have:

ch(HUT, P(2) ® K3)) — ch(HY T, P(2) ® K;)) = ch(G)td(T)/[T].  (26)
Therefore:
ch(€) = (26) — (25) =
= (c1<7>) —aaWV) +caP)Ap+ ’gcl(P)Z A p) /IT] =
=xP)—degd+ xP)-p—k-tAp=2—k-tAp

as desired. O
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Finally, we argue that the determinant bundle€oik trivial, so thatA is indeed a
SU (2) instanton. Note that détis a line bundle with vanishing first Chern class, so it
must be the pull back of a flat line bundle — 7. Butde€|r,, = C, hence def must
be holomorphically trivial, as desired.

We callég € J(T) theasymptotic state associated to the doubly-periodic instanton
connectionA, and the integet its instanton number. The Nahm transform constructed
above guarantees the existence of doubly-periodic instantons of any given charge and
asymptotic state.

4.1. Extensible doubly-periodic instanton connections. Motivated by the properties es-
tablished above, we say that a doubly-periodic instanton connedtion a bundle
E — T x Cis extensibleif the following hypothesis holds:

1. |Fal ~ O(lw|™?);

2. there is a holomorphic vector bundle— T x P! with trivial determinant such that
ElT @\ (oop = (E, 04), whered 4 is the holomorphic structure aninduced by the
instanton connectiod;

This definition will be our starting point in [14], where we shall present the Nahm
transform of doubly-periodic instantons, i.e. the inverse of the construction shown here.

5. Conclusion

In this paper we have shown how finite energy, doubly-periodic instantons can be pro-
duced by performing a Nahm transform on certain singular Higgs pairs. The rank of the
Higgs bundle is translated into the instanton number; the number of singularities of the
Higgs field (i.e. the degree of the holomorphic Higgs bundjegives the rank of the
transformed instanton, and its positions determine how the instanton connection “splits
at infinity”. Indeed, it is easy to generalise the above construction by allowing more
than two singularities on the original Higgs field, so that higher rank doubly-periodic
instantons are obtained; see [14].

Moreover, one would also like to understand how the parabolic parametesrs
are translated into the doubly-periodic instantons produced via the Nahm transform
as above. On general grounds, we expect these parameters to be translated into more
detailed information on the asymptotic behaviourof

From the more analytical point of view, it is also interesting to ask if the curvature
decay (Proposition 3) is enough to ensure extensibility. More precisely, one can expect
to be able to prove the following result:

Conjecture 6. If A is anti-self-dual andF4| ~ O(Jw|~2), then there is a holomorphic
vector bundle€ — T x P! such that

ngx(Pl\{oo}) ~ (E, 5,4)
In other words A is extensible.

Such conjecture motivates other questions:

e Do all anti-self-dual connections afi — T x C with finite energy with respect to
the Euclidean metric satisfy"4| ~ O (|lw|~2)?
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Does the converse hold, i.e.Af is extensible themF4| ~ O(|lw|~2)? If not, what

are the necessary and sufficient analytical conditions for extensibility (in terms of the
Euclidean metric)?

Given a holomorphic bundlé — T x P2, is there a connection ON El7 « (P11 (o0}

such thatA is anti-self-dual andF4| ~ O(Jw|~2) with respect to the Euclidean
metric?

We hope to address these issues in a future paper [4].
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