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ON THE SEMISTABILITY OF INSTANTON SHEAVES
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We show that instanton bundles of rank r ≤ 2n− 1, defined as the cohomology of
certain linear monads, on an n-dimensional projective variety with cyclic Picard group
are semistable in the sense of Mumford–Takemoto. Furthermore, we show that rank
r ≤ n linear bundles with nonzero first Chern class over such varieties are stable. We
also show that these bounds are sharp.
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1. INTRODUCTION

Let X be a nonsingular projective variety of dimension n over an algebraically
closed field � of characteristic zero, and let � denote a very ample invertible sheaf
on X; let �−1 denote its inverse.

Given (finite-dimensional) �-vector spaces V�W , and U , a linear monad on X
is a complex of sheaves

M• � 0 → V ⊗�−1 �→ W ⊗ �X

�→ U ⊗� → 0 (1)

which is exact on the first and last terms, i.e., � ∈ Hom�V�W�⊗H0��� is injective
while � ∈ Hom�W�U�⊗H0��� is surjective. The coherent sheaf E = ker �/Im � is
called the cohomology of the monad M•; it is locally-free if and only if ��x� ∈
Hom�V�W� is injective for every x ∈ X.

A torsion-free sheaf E on X is said to be a linear sheaf on X if it can be
represented as the cohomology of a linear monad and it is said to be an instanton
sheaf on X if in addition it has c1�E� = 0.

Linear monads and instanton sheaves have been extensively studied for the
case X = �n during the past 30 years. Linear bundles on �2 and �3 have been
studied since the late 1970s (cf. Barth and Hulek, 1978; Okonek et al., 1980),
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SEMISTABILITY OF INSTANTON SHEAVES 289

motivated by the work of Atiyah, Drinfeld, Hitchin, and Manin who, using the
Penrose–Ward transform, showed that rank 2 instanton bundles on �3 satisfying
a reality condition correspond to self-dual Yang–Mills Sp�1�-connections on the
four-dimensional sphere S4 (Atiyah et al., 1978). Later, Salamon generalized this to
a correspondence between instanton bundles on �2n+1 and quaternionic instanton
connections on ��n (Mamone Capria and Salamon, 1988). Such generalization
motivated Okonek and Spindler (1986) to introduce the notion of mathematical
instanton bundles on �2n+1, which are examples of rank 2n linear bundles on �2n+1.
The existence of instanton bundles on �2n+1 was given by Okonek and Spindler
(1986) answering a question posed by Salamon in Mamone Capria and Salamon
(1988). Recently, more general instanton sheaves on �n were considered in Jardim
(2006). The existence of the moduli space MI�2n+1�k� of mathematical instanton
bundles on �2n+1 with charge k was also established by Okonek and Spindler (1986,
Theorem 2.6). Determining the irreducibility and smoothness of MI�2n+1�k� is a long
standing question far from being solved, see Coandă et al. (2003) and Jardim (2006)
for a survey on the topic.

Spindler and Trautmann (1990) asked whether every locally-free rank 2n
instanton bundle on �2n+1 is stable in the sense of Mumford–Takemoto. This is
known to be true for n = 1� 2 and other special cases (cf. Ancona and Ottaviani,
1994), but it is still an open question in general. Indeed, this question also makes
sense for instanton sheaves on other projective varieties. In a recent work, Costa
and Miró-Roig (2007) have initiated the study of linear monads and locally-free
instanton sheaves over smooth quadric hypersurfaces Qn within �n+1 (n ≥ 3) (Costa
and Miró-Roig, 2007). They have asked whether every such locally free sheaf of rank
n− 1 is stable (in the sense of Mumford–Takemoto) (Costa and Miró-Roig, 2007,
Question 5.1). Other authors have also shown interest in the study of monads over
more general varieties; for instance, Buchdahl has studied monads over arbitrary
blow-ups of �2 (Buchdahl, 2004), and the authors of Jardim and Martins (2007)
considered linear monads over arithmetically Cohen–Macaulay varieties.

The main goal of this article is to address the question of stability of linear
bundles in a more general context, showing that locally-free instanton sheaves of
rank r ≤ 2n− 1 on an n-dimensional smooth projective variety with cyclic Picard
group are semistable, while locally-free linear sheaves of rank r ≤ n and c1 �= 0 on
such varieties are stable. Furthermore, we also show that the bounds on the rank
are sharp by providing examples of rank 2n instanton sheaves and rank n+ 1 linear
sheaves on �n which are not semistable. Our technique amounts to a generalization
of the one used in Ancona and Ottaviani (1994).

We conclude the article by studying the semistability of special sheaves on Qn,
as introduced by Costa and Miró-Roig. Theorem 12 provides a partial answer to
Question 5.2 in Costa and Miró-Roig (2007), showing that every rank r ≤ 2n− 1
locally-free special sheaf E on Qn with c1 = 0 is semistable, while every rank r ≤ n
locally-free special sheaf on Qn with c1 �= 0 is stable.

2. SEMISTABILITY OF INSTANTON SHEAVES

Fixed an ample invertible sheaf � with c1��� = � on a projective variety X of
dimension n, recall that the slope ��E� with respect to � of a torsion-free sheaf E
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290 JARDIM AND MIRÓ-ROIG

on X is defined as follows:

��E� �= c1�E��
n−1

rk�E�
	

We say that E is semistable with respect to � if for every coherent sheaf 0 �= F ↪→E
we have ��F� ≤ ��E�. Furthermore, if for every coherent sheaf 0 �= F ↪→ E with
0< rk�F�< rk�E� we have ��F� < ��E�, then E is said to be stable. A sheaf E is said
to be properly semistable if it is semistable but not stable. It is also important to
recall that E is (semi)stable if and only if E∗ is (semi)stable if and only if E ⊗�⊗k

is (semi)stable.
In the case at hand, note that if E is the cohomology of a linear monad as in

(1), then

rk�E� = w − v− u and c1�E� = �v− u� · ��

where w = dimW� v = dim V� u = dimU , and � = c1���.
A smooth projective variety X is said to be cyclic if Pic�X� = �. Examples

of cyclic varieties are projective spaces, Grassmannians, and complete intersection
subvarieties of dimension n ≥ 3 within PN �N ≥ 4. In this case, we can assume
without loss of generality that � � �X�l� for some l ≥ 1 and any instanton sheaf E
can be represented as the cohomology of a monad of the type

0 → �X�−l�⊕c �→ �⊕r+2c
X

�→ �X�l�
⊕c → 0� (2)

where r is the rank and c, called the charge of E, is its second Chern class.

Remark 1. For X = �n, instanton sheaves exist for r ≥ n− 1 and all c (Jardim,
2006). For X being a smooth quadric hypersurface of dimension n ≥ 3, instanton
sheaves exist for r ≥ n− 1 and all c (Costa and Miró-Roig, 2007). It would be very
interesting to obtain existence results for a wider class of varieties.

Proposition 2. Every rank 2 torsion-free instanton sheaf on a cyclic variety is
semistable.

Proof. First, take E to be the cohomology of the linear monad (2), let K = ker �;
it is a locally-free sheaf of rank r + c fitting into the sequences

0 → K�k� → �X�k�
⊕r+2c �−→ �X�k+ l�⊕c → 0 and (3)

0 → �X�k− l�⊕c
�−→ K�k� → E�k� → 0	 (4)

It follows easily from the Kodaira vanishing theorem and the associated long exact
sequences in cohomology that H0�E�k�� = H0�E∗�k�� = 0 for all k ≤ −1.

Now let us consider a rank 2 reflexive sheaf F on X with c1�F� = 0 and
H0�F�−1�� = 0; we argue that F is semistable. Indeed, if F is not semistable, then
any destabilizing sheaf L ↪→ F with torsion-free quotient F/L must be reflexive
(see Okonek et al., 1980, p. 158). But every rank 1 reflexive sheaf is locally-free,



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

e 
es

t C
am

pi
na

s]
 A

t: 
17

:2
2 

12
 F

eb
ru

ar
y 

20
08

 

SEMISTABILITY OF INSTANTON SHEAVES 291

thus L = �X�d� with d = c1�L� > 0 since Pic�X� = �. It follows that H0�F�−d�� �= 0,
hence H0�F�−1�� �= 0 as well.

Now if E is a rank 2 torsion-free sheaf with c1�E� = 0 and H0�E∗�−1�� = 0,
then F = E∗ is a rank 2 reflexive sheaf with c1F = 0 and H0�F�−1�� = 0. But we’ve
seen that such F is semistable, hence E is also semistable. Since instanton sheaves
do satisfy H0�E�−1�� = H0�E∗�−1�� = 0, the desired result follows. �

For instanton sheaves of higher rank, we have our first main result.

Theorem 3. Let E be a rank r instanton sheaf on a cyclic variety X of dimension n.
If E is locally-free and r ≤ 2n− 1, then E is semistable.

The proof of Theorem 3 is based on a very useful criterion to decide whether
a locally-free sheaf on cyclic variety is (semi)stable. First, recall that for any rank r
locally-free sheaf E on a cyclic variety X, there is a uniquely determined integer kE
such that −r + 1 ≤ c1�E�kE�� ≤ 0. We set Enorm �= E�kE� and we call E normalized
if E = Enorm. We then have the following criterion (Hoppe, 1984, Lemma 2.6).

Proposition 4. Let E be a rank r locally-free sheaf on a cyclic variety X. If
H0��∧qE�norm� = 0 for 1 ≤ q ≤ r − 1, then E is stable. If H0��∧qE�norm�−1�� = 0 for
1 ≤ q ≤ r − 1, then E is semistable.

Remark 5. Note that if E is a locally-free linear sheaf on X represented as the
cohomology of the linear monad

M• � 0 → ��−1�⊕a �→ �⊕b
X

�→ �⊕c → 0�

its dual E∗ is also a linear sheaf, being represented as the cohomology of the dual
monad

M∗
• � 0 → ��−1�⊕c �→ �⊕b

X

�→ �⊕a → 0	

In particular, if E is a locally-free instanton sheaf on X, then its dual E∗ is also an
instanton. In general, however, there are non-locally-free instanton sheaves whose
duals are not instantons; the simplest example of this situation is a non-locally-free
nullcorrelation bundle on �3.

Proof of Theorem 3. We argue that every instanton sheaf on an n-dimensional
cyclic variety X satisfying the conditions of the theorem fulfills Hoppe’s criterion.
Indeed, let E be a rank r locally-free instanton sheaf on X. Assume that E can be
represented as the cohomology of the linear monad as in (2). Considering the long
exact sequence of symmetric powers associated to the sheaf sequence (3), we have

0 → ∧qK�k� → ∧q
(
�⊕r+2c
X

)
�k� → · · ·

· · · → �⊕r+2c
X �k�⊗ Sq−1

(
�X�l�

⊕c
) → Sq��X�l�

⊕c� → 0	
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292 JARDIM AND MIRÓ-ROIG

Cutting into short exact sequences, passing to cohomology, and using the fact that
Hp��X�k�� = 0 for p ≤ n− 1 and k ≤ −1 (Kodaira vanishing theorem), we conclude
that

Hp�∧qK�k�� = 0 for 1 ≤ q ≤ r + c = rk�K�� p ≤ n− 1 and k ≤ −pl− 1	

Now consider the long exact sequence of exterior powers associated to the
sheaf sequence (4) with k = −1:

0 → �X�−ql− 1�⊕�
c+q−1

q � → K��−q + 1�l− 1�⊕�
c+q−2
q−1 � → · · ·

· · · → ∧q−1K�−1− l�⊕c → ∧qK�−1� → ∧qE�−1� → 0	
(5)

Cutting into short exact sequences and passing to cohomology, we obtain that

H0�∧pE�−1�� = 0 for 1 ≤ p ≤ n− 1	 (6)

If rk�E� ≤ n, this proves that E is semistable by Proposition 4. If rk�E� = n+ 1, we
have, since c1�E� = 0 and E is locally-free,

H0�∧nE�−1�� � H0�E∗�−1�� = 0� (7)

thus E is also semistable.
Assume rk�E� > n+ 1. The dual E∗ is also a locally-free instanton sheaf

on X, so

H0�∧q�E∗��−1�� = 0 for 1 ≤ q ≤ n− 1	 (8)

But ∧p�E� � ∧r−p�E∗�, since det�E� = �X; it follows that:

H0�∧pE�−1�� = H0�∧r−p�E∗��−1�� = 0

for 1 ≤ r − p ≤ n− 1 �⇒ r − n+ 1 ≤ p ≤ r − 1	
(9)

Together, (8) and (9) imply that if E is a rank r ≤ 2n− 1 locally-free instanton
sheaf, then

H0�∧pE�−1�� = 0 for 1 ≤ p ≤ 2n− 2�

hence E is semistable by Proposition 4. �

On the other hand, we have the following proposition.

Proposition 6. Let H = h0��X�l��. For r > �H − 2�c, there are no stable rank r
instanton sheaves of charge c on X.

In particular, for X = �n and l = 1, it follows that every locally-free instanton
sheaf on �n of charge 1 and rank r with n ≤ r ≤ 2n− 1 must be properly semistable;
for X = Qn and l = 1, every locally-free instanton sheaf on Qn of charge 1 and rank
r with n+ 1 ≤ r ≤ 2n− 1 must be properly semistable.
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SEMISTABILITY OF INSTANTON SHEAVES 293

Proof. Note that if E is a stable torsion-free sheaf over a cyclic variety with
c1�E� = 0, then H0�E� = 0. Indeed, if H0�E� �= 0, then there is a map �X → E, which
contradicts stability.

It follows from the sequences (3) and (4) for k = 0 that

H0�E� � H0�K� � ker�H0� � H0��⊕r+2c
X � → H0��X�l�

⊕c��	

If r > �H − 2�c, then the map H0� cannot be injective, H0�E� �= 0, and E cannot be
stable. �

Now dropping the c1�E� = 0 condition, we obtain the following theorem.

Theorem 7. Let E be a rank r ≤ n linear locally-free sheaf on a cyclic variety X of
dimension n. If c1�E� �= 0, then E is stable.

Proof. Since E is a linear sheaf, it is represented as the cohomology of a linear
monad

0 → �X�−l�⊕a �→ �⊕b
X

�→ �X�l�
⊕c → 0�

so that c1�E� = �a− c�l. Assuming a− c > 0, we have ��∧qE� = ql�a− c�/�b − a−
c� > 0, hence �∧qE�norm = �∧qE��t� for some t ≤ −1. Arguing as in the proof of
Theorem 3, we get

H0��∧qE��−1�� = 0 for all q ≤ n− 1	 (10)

Therefore, if E is a rank r ≤ n locally-free sheaf represented as the cohomology of
a linear monad and c1�E� > 0, then

H0��∧pE�norm� = 0 for 1 ≤ p ≤ r − 1	

Hence E is stable by Proposition 4.
Now if E is a locally-free linear sheaf with c1�E� < 0, then E∗ is a locally-free

linear sheaf with c1�E
∗� > 0. By the argument above, E∗ is stable; hence E is stable

whenever c1�E� �= 0, as desired. �

We will end this section with two examples illustrating that the upper bounds
in rank given by Theorems 3 and 7 are sharp. To establish them, we first need to
provide the following useful cohomological characterization of linear sheaves on
projective spaces (Jardim, 2006, Proposition 2 and Theorem 3).

Proposition 8. Let F be a torsion-free sheaf on �n. F is the cohomology of a linear
monad

0 → ��n �−1�⊕a �−→ �⊕b
�n

�−→ ��n �1�⊕c → 0
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294 JARDIM AND MIRÓ-ROIG

if and only if the following cohomological conditions hold:

(i) For n ≥ 2, H0�F�−1�� = 0 and Hn�F�−n�� = 0;
(ii) For n ≥ 3, H1�F�k�� = 0 for k ≤ −2 and Hn−1�F�k�� = 0 for k ≥ −n+ 1;
(iii) For n ≥ 4, Hp�F�k�� = 0 for 2 ≤ p ≤ n− 2 and all k.

We are finally ready to construct rank 2n locally-free instanton sheaves on �n

which are not semistable; in other words, the bound r ≤ 2n− 1 in the second part
of Theorem 3 is sharp.

Example 9. Let X = �n� n ≥ 4. By Fløystad’s (2000) theorem, there is a linear
monad

0 → ��n �−1�⊕2 �→ �⊕n+3
�n

�→ ��n �1� → 0 (11)

whose cohomology F is a locally-free sheaf of rank n on �n and c1�F� = 1.
Dualizing, we get a linear monad

0 → ��n �−1�
�∗→ �⊕n+3

�n

�∗→ ��n �1�⊕2 → 0

whose cohomology is F ∗, hence it is a locally-free linear sheaf of rank n on �n and
c1�F

∗� = −1.
Take an extension E of F ∗ by F

0 → F → E → F ∗ → 0	

Using the cohomological criterion given in Proposition 8, it is easy to see that the
extension of linear sheaves is also a linear sheaf. Moreover, c1�E� = 0, i.e., E is a
rank 2n locally-free instanton sheaf of charge 3 which is not semistable.

Such extensions are classified by Ext1�F ∗� F� = H1�F ⊗ F�. We claim that there
are nontrivial extensions of F ∗ by F . Indeed, we consider the exact sequences

0 → K = ker��� → �⊕n+3
�n

�→ ��n �1� → 0� (12)

0 → ��n �−1�⊕2 → K → F → 0 (13)

associated to the linear monad (11). We apply the exact covariant functor · ⊗ F to
the exact sequences (12) and (13) and we obtain the exact sequences

0 → K ⊗ F → F⊕n+3 → F�1� → 0�

0 → F�−1�⊕2 → K ⊗ F → F ⊗ F → 0	

Passing to cohomology, we obtain Hi�K ⊗ F� = Hi�F ⊗ F� = 0 for all i ≥ 3. Hence,
�F ⊗ F� = h0��F ⊗ F��− h1��F ⊗ F��+ h2��F ⊗ F��. On the other hand,

�F ⊗ F� = �K ⊗ F�− 2�F�−1��

= �n+ 3��F�− �F�1��− 2�F�−1�� = 8− n2

2
− n

2
< 0� if n ≥ 4	
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SEMISTABILITY OF INSTANTON SHEAVES 295

Thus if n ≥ 4, we must have h1��F ⊗ F�� > 0, hence there are nontrivial extensions
of F ∗ by F .

For X = �n� 2 ≤ n ≤ 3, arguing as above, we can construct a rank 2n locally-
free instanton which is not semistable as a nontrivial extension E of F ∗ by F , where
F is a linear sheaf represented as the cohomology of the linear monad

0 → ��n �−1�⊕4 �→ �⊕n+7
�n

�→ ��n �1�⊕3 → 0	

To conclude this section, we show that the upper bound in the rank given in
Theorem 7 is also sharp.

Example 10. Now let X = �n� n ≥ 2. By Fløystad’s (2000) theorem, there is a
linear monad

0 → ��n �−1�⊕4 �→ �⊕n+9
�n

�→ ��n �1�⊕5 → 0� (14)

whose cohomology G is a locally-free sheaf of rank n on �n and c1�G� = −1.
Now G∗ is the cohomology of the dual monad

0 → ��n �−1�⊕5 �∗→ �⊕n+9
�n

�∗→ ��n �1�⊕4 → 0	

It follows that

H1�G∗� = H1�ker �∗� = coker
{
H0�∗ � H0

(
�⊕n+9
�n

) → H0
(
��n �1�⊕4

)}
	

Since n ≥ 2 forces 4n+ 4 > n+ 9, the generic map � will have coker�H0�∗� �= 0. In
other words, there exists a rank n locally-free linear sheaf G on �n with c1�G� = −1
and H1�G∗� �= 0.

Take an extension E of such a linear sheaf G by ��n :

0 → ��n → E → G → 0	 (15)

Using the cohomological criterion given in Proposition 8, it is easy to see that E is
a rank n+ 1 locally-free linear sheaf with c1�E� = c1�G� = −1. It is not stable, since
H0�E� �= 0.

Note also that there are nontrivial extensions of G by ��n since H1�G∗� �= 0.
Furthermore, the dual E∗ is an example of a rank n+ 1 locally-free linear sheaf with
c1�E� > 0 which is not stable.

We do not know how to establish the semistability of non-locally-free
instanton sheaves of rank higher than 3. However, for each n ≥ 2, it is easy to
show, using the same technique as in the examples above, that there are unstable
torsion-free instanton sheaves of rank n+ 1 in �n, see Jardim (2006, Example 3).
The natural, sharp conjecture would be that every torsion-free instanton sheaf of
rank r ≤ n on a cyclic variety X of dimension n is semistable; this statement is true
for n = 2, see Proposition 2 above.
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296 JARDIM AND MIRÓ-ROIG

For reflexive linear sheaves, one can construct rank n+ 2 reflexive instanton
sheaves which are not semistable; in this case, one can expect that every reflexive
instanton sheaf of rank r ≤ n+ 1 on a cyclic variety X of dimension n is semistable;
this statement is also true for n = 2, since every reflexive sheaf on surface is
locally-free.

Even more generally, a natural conjecture would be that a rank r instanton
sheaf which is a kth locally syzygy sheaf will be semistable provided r ≤ k+ n− 1
and that this bound is sharp.

3. SPECIAL SHEAVES ON SMOOTH QUADRIC HYPERSURFACES

Now we restrict ourselves to the set-up in Costa and Miró-Roig (2007), and
assume that Qn is a smooth quadric hypersurface within �n+1� n ≥ 3; such varieties
are cyclic.

Recall that a special sheaf E on Qn is defined in Costa and Miró-Roig (2007,
Definition 3.4) as either the cohomology of a linear monad

0 → �Qn
�−1�⊕a → �⊕b

Qn
→ �Qn

�1�⊕c → 0� (M1)

or the cohomology of a monad of the type

0 → ��−1�⊕a → �⊕b
Qn

→ �Qn
�1�⊕c → 0� if n is odd, (M2.1)

0 → �1�−1�⊕a1 ⊕ �2�−1�⊕a2 → �⊕b
Qn

→ �Qn
�1�⊕c → 0� if n is even, (M2.2)

where � is the spinor bundle for n odd, and �1� �2 are the spinor bundles for n even.
Clearly, instanton sheaves on Qn are special sheaves of the first kind with zero degree.

Proposition 11. Every rank 2 torsion-free special sheaf E on Qn with c1�E� = 0
is semistable.

Proof. Since every torsion-free special sheaf E on Qn satisfies H0�E�k�� =
H0�E∗�k�� = 0, simply use the argument in the proof of Proposition 2. �

Finally, for higher rank locally-free special sheaves on Qn, we have the
following theorem.

Theorem 12. Let E be a rank r locally-free special sheaf on Qn.

a) If r ≤ 2n− 1 and c1�E� = 0, then E is semistable.
b) If r ≤ n and c1�E� �= 0, then E is stable.

Proof. For locally-free special sheaves which are represented as cohomologies of
the monad (M1), the statement follows from Theorems 3 and 7 and for locally-free
special sheaves which are represented as cohomologies of the monad (M2.1) and
(M2.2) an analogous argument works. �

Note that using the Fløystad type existence theorem for linear sheaves on Qn

established in Costa and Miró-Roig (2007, Proposition 4.7), and the cohomological
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characterization of linear bundles on quadric hypersurfaces proved in Jardim and
Martins (2007, Theorem 4.4), one can produce examples of rank 2n locally-free
instanton sheaves on Qn as well as rank n+ 1 locally-free linear sheaves on Qn

which are not semistable, following the ideas in Examples 9 and 10, showing that
the bounds in Theorem 12 are sharp for locally-free special sheaves which are
represented as cohomologies of the monad (M1). However, we do not know whether
the bounds in the rank are sharp for locally-free sheaves on Qn which are the
cohomology of monads of type (M2.1) and (M2.2). For instance, is there an unstable
rank 2n locally-free sheaf on Qn which can be represented as the cohomology of a
nonlinear special monad?

4. CONCLUSION

In this article we have studied the semistability of torsion-free sheaves on
nonsingular projective varieties with cyclic Picard group that arise as cohomologies
of a particular type of monad. Many interesting questions regarding linear monads
and instanton sheaves remain unanswered.

First of all, one would like to have a generalizations of Fløystad’s (resp. Costa
and Miró-Roig’s) existence result (Fløystad, 2000 resp. Costa and Miró-Roig, 2007)
and of Proposition 8, establishing the existence of instanton sheaves over varieties
other than �n (resp. Qn) and their intrinsic cohomological characterization.

The semistability of instanton sheaves of low rank indicate the existence of a
well-behaved moduli space of instanton sheaves on cyclic varieties. One approach to
study the moduli space of instanton sheaves would be the construction of the moduli
space of linear monads, using methods from geometric invariant theory. This task is
probably deeply linked with the theory of representation of quivers, since a monad
can be regarded as the representation of a quiver, the one whose underlying graph
is the Dynkyn diagram for A3, into the category of sheaves, see King (1994).

This also brings up the question of a reasonable stability condition for
monads, meaning compatible with geometric invariant theory, and how does it
compare with the slope stability of its cohomology sheaf. Notice that a monad can
also be regarded as an element in the derived category Db�X� of bounded complexes
of coherent sheaves on X; the concept of stability on triangulated categories has
been recently introduced by Bridgeland (2007), but it is still unclear what it has to
do with moduli spaces. We hope that the study of the moduli space of instanton
sheaves will shed some light on this topic.
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