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Are the beginning and ending phases of epidemics
characterized by the next generation matrices? – A case
study of drug-sensitive and resistant tuberculosis model

Hyun Mo Yang∗

UNICAMP – IMECC – DMA
Praça Sérgio Buarque de Holanda, 651

CEP: 13083-859, Campinas, SP, Brazil

Abstract

In epidemiological modelling, the basic reproduction number is usually defined as be-
ing the spectral radius of the next-generation matrix evaluated at the trivial equilibrium.
The global stability of the trivial equilibrium point was determined by the left eigenvector
associated with that next-generation matrix. More recently, the fraction of susceptible
individuals was also obtained from the next generation matrix. The gross reproduction
number and the fraction of susceptible individuals were calculated by revisiting the drug-
sensitive and resistant tuberculosis model. Hence, the next-generation matrices shed light
on the evolution of the dynamics: the beginning of the epidemic via the basic reproduc-
tion number and approaching the epidemic’s steady-state via the susceptible individuals’
asymptotic fraction.

Keywords: epidemiological modeling – stability analysis – gross reproduction number
– basic reproduction number – additional reproduction number

1 Introduction

The basic reproduction number (denoted by R0) is a threshold associated with simple epidemi-
ological modelings formulated based on the bilinear incidence rate [1]. This number measures
the intensity of epidemic spreading when one case is introduced in a completely susceptible

∗E-mail: hyunyang@ime.unicamp.br; tel/fax: + 55 19 3521-6031
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population. Furthermore, the evaluation of the epidemic’s equilibrium values of the model can
result in the fraction of susceptible individuals (denoted by s∗) given by s∗ = 1/R0. In other
words, the multiplicative inverse of the basic reproduction number predicts the final size of
an epidemic. Hence, R0 is the unique threshold in this class of bilinear incidence modelings.
However, the basic reproduction number’s analytical expression is obtained from the trivial
equilibrium point’s stability analysis (denoted by P 0, which describes the absence of epidemic).
Hence, this analysis can provide both initial (R0) and final (s∗) phases of an epidemic.

One of the approaches to determine the stability of the trivial equilibrium point is evaluating
the spectral radius (denoted by ρ) of the corresponding next-generation matrix (represented
by FV −1), which is associated with the basic reproduction number [2]. For instance, in the
susceptible-exposed-infectious-recovered (SEIR) model, two distinct characteristic equations
corresponding to two different next-generation matrices are obtained, resulting in two spectral
radii ρ (FV −1) = R0 and ρ (FV −1) =

√
R0. Another approach is the adoption of the sum of

coefficients of the characteristic equation as the basic reproduction number, which was proposed
in [3] and proved in [4]. According to this approach, the SEIR model presents only one threshold
R0, although two spectral radii are obtained. The validity of s∗ = 1/R0 is a consequence of
a unique threshold from two different characteristic equations. In contrast, the SIR model
has one characteristic equation corresponding to a unique next-generation matrix with the
spectral radius ρ (FV −1) = R0, and s∗ = 1/R0 must be obtained from the calculation of
the fraction of the susceptible individuals at the steady-state. However, in more complex
models involving more than one transmission route, an additional threshold appears. In [3],
two procedures were presented aiming at the calculation of these two thresholds, which were
named the gross reproduction number (denoted by Rg, with Rg = R0 + Ra, where Ra is the
additional reproduction number) and the multiplicative inverse of the fraction of the susceptible
individuals 1/s∗. As a consequence of two different thresholds, the gross reproduction number
and the fraction of susceptible individuals at equilibrium does not satisfy s∗ = 1/Rg (notice
that s∗ = 1/Rg, only if Ra = 0 resulting in Rg = R0).

Therefore, the next-generation matrix can shed light on the beginning of the epidemic via
the basic (or gross) reproduction number and the approaching to the epidemic’s level via the
susceptible individuals’ asymptotic fraction. This paper aims to describe these two distinct
phases of an epidemic, which is possible by constructing the next-generation matrix differently.
The drug-sensitive and resistant tuberculosis transmission model is taken as a case study [5]
to show that different next-generation matrices characterize the beginning (introduction of
infection) and the asymptotic level (final size) of the epidemic. This model is revisited due
to more elaborated procedures to calculate both thresholds. More simple SEIR and dengue
encompassing transovarial transmission models are taken as further examples.

The paper is structured as follows. In section 2, a brief description of the drug-sensitive and
resistant tuberculosis model is provided to calculate the gross reproduction number and the
fraction of susceptible individuals by different next-generation matrix constructions. Discussion
is presented in section 3, and Conclusion is given in section 4.
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2 Drug-sensitive and resistant tuberculosis model – A

case study

Ineffective treatment of tuberculosis leads to the emergence of multidrug-resistant (MDR) My-
cobacterium tuberculosis to the two most potent first-line medications (isoniazid and rifampin)
[6]. Tuberculosis is responsible for many deaths worldwide, and in 2017, MDR tuberculosis
contributed to 14% of these deaths globally [7].

In [5], a tuberculosis transmission model was proposed, including drug treatment. They
assumed that failure in treatment could arise drug-resistant M. tuberculosis, resulting in the
model 




d

dτ
s = µ− β1i1s− β2i2s− µs

d

dτ
e1 = β1i1s + (1− q) ξi1 + ηk1i2 − (µ+ γ) e1

d

dτ
i1 = γe1 + pγe2 − (µ+ α + ξ) i1

d

dτ
e2 = β2i2s + ηk2i2 − (µ+ γ) e2

d

dτ
i2 = (1− p) γe2 + qξi1 − [µ+ α + η (k1 + k2)] i2,

(1)

where the fraction of susceptible individuals is s, the fractions of exposed and infectious with
drug-sensitive tuberculosis are e1 and i1, and the fractions of exposed and infectious with drug-
resistant tuberculosis are e2 and i2.

Model parameters are briefly described (see [5]). The drug-sensitive and drug-resistant
transmission rates are β1 and β2. Parameters µ and α are the natural and tuberculosis induced
mortality rates, γ is the endogenous reactivation rate, ξ and η are drug-sensitive and drug-
resistant treatment rates, p is the proportion of drug-resistant exposed tuberculosis individuals
that develop drug-sensitive infectious individuals, q is the probability that treatment failure
occurs due to the development of antibiotic resistance, and k1 and k2 are the relative treatment
efficacy of drug-sensitive and drug-resistant patients.

In [5], the authors obtained a threshold applying M-matrix theory; however, neither gross
reproduction number (Rg) nor the fraction of susceptible individuals (s∗) were obtained. The
tuberculosis model considering drug-sensitive and resistant strains presents a certain difficulty
in the computation of both thresholds.

2.1 Equilibrium points

The system of equations (1) has the trivial equilibrium P 0, or disease-free equilibrium, given
by

P 0 = (s̄ = 1, ē1 = 0, ı̄1 = 0, ē2 = 0, ı̄2 = 0) .

The non-trivial equilibrium P ∗, or endemic equilibrium, is given by
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P ∗ = (s̄ = s∗, ē1 = e∗1(s
∗), ı̄1 = i∗1(s

∗), ē2 = e∗2(s
∗), ı̄2 = i∗2(s

∗)) ,

where the coordinates (they are written as a function of s∗) are





e∗1(s
∗) =

[β1s
∗ + (1− q) ξ] i∗1(s

∗) + ηk1i
∗
2(s

∗)

µ+ γ

i∗1(s
∗) =

γe∗1(s
∗) + pγe∗2(s

∗)

µ+ α + ξ

e∗2(s
∗) =

[β2s
∗ + ηk2] i

∗
2(s

∗)

µ+ γ

i∗2(s
∗) =

µ+ α + η − γ
µ+γ

[β1s
∗ + (1− q) ξ]

γ
µ+γ

[ηk1 + p (β2s∗ + ηk2)]
i1(s

∗),

(2)

with the fraction of susceptible individuals s∗ being the positive solution of Pol(s) = 0, a
second-degree polynomial given by

Pol(s) = R10R20s
2 − [R10 (1− R21) +R20 (1− R11) +R31] s+

(1− R11) (1− R21)
[
1− R32

(1−R11)(1−R21)

]
,

(3)

where the parameters Rij are given by





R10 =
γ

µ+γ
β1

µ+α+ξ
and R11 =

γ
µ+γ

ξ
µ+α+ξ

(1− q)

R20 =
γ

µ+γ
(1− p) β2

µ+α+η(k1+k2)
and R21 =

ηk2
µ+α+η(k1+k2)

γ
µ+γ

(1− p)

R31 =
γ

µ+γ
p ξ
µ+α+ξ

q β2

µ+α+η(k1+k2)
and R32 =

η(k1+pk2)
µ+α+η(k1+k2)

γ
µ+γ

ξ
µ+α+ξ

q.

(4)

The second-degree polynomial Pol(s) has two positive roots (see Appendix A): The small
root s∗s is given by

s∗ ≡ s∗s =
[R10 (1−R21) +R20 (1−R11) +R31]−

√
∆

2R10R20

, (5)

and the big one s∗b is given by

s∗b =
[R10 (1− R21) +R20 (1− R11) +R31] +

√
∆

2R10R20
. (6)

However, only one (the small solution s∗s) has biological meaning (all coordinates of the non-
trivial equilibrium point are positive). Particular solutions of the biologically feasible s∗s are
given in Appendix A. Appendix B presents the interpretations of parameters Rij provided by
equation (4).
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2.2 Thresholds – Rg and s∗

Instead of the spectral radius of the characteristic equation, the sum of the coefficients of this
equation is taken as the threshold [3] [4].

The local stability of the trivial equilibrium point P 0 is assessed by the next-generation
matrix method. In the preceding section, the fraction of the susceptible individuals at en-
demic equilibrium s∗s was evaluated. In this section, this value will be obtained from the
next-generation matrix evaluated at the trivial equilibrium point. Briefly, the next-generation
matrix is constructed based on the transmission (f) and transition (v) vectors, from which ma-
trices F and V evaluated at the trivial equilibrium are obtained, resulting in the next-generation
matrix FV −1 [2]. The vectors f and v are obtained eliminating the susceptible individuals’
equation in (1), that is, a subsystem considering variables x = (e1, i1, e2, i2)

T , where superscript
T stands for the transposition of a matrix.

In the drug-sensitive and resistant tuberculosis transmissions model, there are many com-
binations to construct the vectors f and v, resulting in different next-generation matrices. The
gross reproduction number (Rg) is obtained in all combinations of bilinear incidence terms
(β1i1s and β2i2s) associated with transition terms (γe1 and pγe2, for instance) to construct f
and v, except only one construction which yields the fraction of susceptible individuals (s∗) [3]
[8]. Here, only two next-generation matrices evaluated at the trivial equilibrium P 0 are shown.

2.2.1 The gross reproduction number Rg

To obtain the gross reproduction number, the simplest diagonal matrix V is considered. Hence,
the vectors f and v are

f =




β1i1s+ (1− q) ξi1 + ηk1i2
γe1 + pγe2
β2i2s+ ηk2i2

(1− p) γe2 + qξi1


 and v =




(µ+ γ) e1
(µ+ α + ξ) i1
(µ+ γ) e2

[µ+ α + η (k1 + k2)] i2




from which the matrices F and V are obtained as

F =




0 β1 + (1− q) ξ 0 ηk1
γ 0 pγ 0
0 0 0 β2 + ηk2
0 qξ (1− p) γ 0


 and V =




µ+ γ 0 0 0
0 µ+ α + ξ 0 0
0 0 µ+ γ 0
0 0 0 ϕ


 ,
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with ϕ = µ+ α + η (k1 + k2). The next-generation matrix FV −1 is

FV −1 =




0
β1 + (1− q) ξ

µ+ α + ξ
0

ηk1
µ+ α + η (k1 + k2)

γ
µ+γ

0
pγ

µ+ γ
0

0 0 0
β2 + ηk2

µ+ α + η (k1 + k2)

0
qξ

µ+ α + ξ

(1− p) γ

µ+ γ
0




,

and the characteristic equation corresponding to FV −1 is

(
λ2 −R1

) (
λ2 −R2

)
−R3λ = 0, (7)

where Ri, with i = 1, 2 and 3, are given by





R1 = R10 +R11

R2 = R20 +R21

R3 = R31 +R32,
(8)

with Rij being given by equation (4). According to [3], the gross reproduction number Rg is
given by

Rg = max

{
R1, R2,

R3

(1−R1) (1− R2)

}
, (9)

where max stands for the maximum value among them. Notice that the spectral radius
ρ (FV −1) can not be obtained analytically.

The condition for the trivial equilibrium point P 0 to be locally asymptotically stable (LAS)
is Rg < 1. If Rg > 1, P 0 is unstable, and the unique non-trivial equilibrium point P ∗ appears.
Therefore, Rg is a threshold parameter.

Let two special cases be considered for Rg. Firstly, consider R32 = 0, that is, there is no
failure in treatment or R31 = 0, that is, there is no passage from i1 to i2. In this case, Rg is

Rg = max
{
R1, R2,

R31

(1−R1)(1−R2)

}
or Rg = max

{
R1, R2,

R32

(1−R1)(1−R2)

}
,

showing that drug-sensitive and drug-resistant strains of tuberculosis can reach an endemic level
even when R1 < 1 and R2 < 1, but if R31/ [(1−R1) (1− R2)] > 1 or R32/ [(1− R1) (1−R2)] >
1 is satisfied. The joint propagation of drug-sensitive and drug-resistant strains facilitates the
persistence of the epidemic.

However, if R32 = 0 and R31 = 0, Rg is

Rg = max {R1, R2} ,

6

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JBS

J.
 B

io
l. 

Sy
st

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 0

6/
18

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



and both strains propagate independently. Notice that if R1 > 1 and R2 < 1, drug-sensitive
tuberculosis is at the endemic level, but drug-resistant tuberculosis goes to extinction, and
vice-versa if R1 < 1 and R2 > 1. Additionally, if R11 = 0 and R21 = 0, the basic reproduction
number R0 is

R0 = max {R10, R20} . (10)

Hence, the additional reproduction number (R11 or R21) is why name Rg as the gross repro-
duction number.

Let a different choice of vectors f and v be exemplified. If the vectors f and v are

f =




β1i1s+ (1− q) ξi1
γe1 + pγe2
β2i2s+ ηk2i2

(1− p) γe2 + qξi1


 and v =




−ηk1i2 + (µ+ γ) e1
(µ+ α+ ξ) i1
(µ+ γ) e2

[µ+ α + η (k1 + k2)] i2


 ,

the matrices F and V are

F =




0 β1 + (1− q) ξ 0 0
γ 0 pγ 0
0 0 0 β2 + ηk2
0 qξ (1− p) γ 0


 and V =




µ+ γ 0 0 −ηk1
0 µ+ α + ξ 0 0
0 0 µ+ γ 0
0 0 0 ϕ


 ,

with ϕ = µ+ α + η (k1 + k2). The next-generation matrix FV −1 is

FV −1 =




0
β1 + (1− q) ξ

µ+ α + ξ
0 0

γ
µ+γ

0
pγ

µ+ γ

γ

µ+ γ

ηk1
µ+ α+ η (k1 + k2)

0 0 0
β2 + ηk2

µ+ α + η (k1 + k2)

0
qξ

µ+ α + ξ

(1− p) γ

µ+ γ
0




,

and the characteristic equation corresponding to FV −1 is

(
λ2 − R1

) (
λ2 − R2

)
−

[
R2

32λ
2 +

(
R31 +R1

32

)
λ
]
= 0,

where
R1

32 =
ηk1

µ+α+η(k1+k2)
γ

µ+γ
ξ

µ+α+ξ
q and R2

32 =
ηpk2

µ+α+η(k1+k2)
γ

µ+γ
ξ

µ+α+ξ
q,

with R32 = R1
32 + R2

32. The sum of the coefficients of R2
32λ

2 + (R31 +R1
32) λ is exactly R3, and

the gross reproduction number is given by equation (9).
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2.2.2 The fraction of susceptible individuals s∗

There is a unique way to obtain the fraction of susceptible individuals – The infection matrix F
must be the most straightforward (matrix with the least number of non-zeros). In other words,
the vector f must carry only the bilinear incidence terms. Hence, the vectors f and v are

f =




β1i1s
0

β2i2s
0


 and v =




− (1− q) ξi1 − ηk1i2 + (µ+ γ) e1
−γe1 − pγe2 + (µ+ α + ξ) i1

−ηk2i2 + (µ+ γ) e2
− (1− p) γe2 − qξi1 + [µ+ α+ η (k1 + k2)] i2




from which the matrices F and V are obtained as

F =




0 β1 0 0
0 0 0 0
0 0 0 β2

0 0 0 0


 and V =




µ+ γ − (1− q) ξ 0 −ηk1
−γ µ+ α+ ξ −pγ 0
0 0 µ+ γ −ηk2
0 −qξ − (1− p) γ µ+ α + η (k1 + k2)


 .

The next-generation matrix FV −1 is

FV −1 =




β1n11 β1n12 β1n13 β1n14

0 0 0 0
β2n31 β2n32 β2n33 β2n34

0 0 0 0


 ,

(nij are omitted) and the characteristic equation corresponding to FV −1 is

λ2 [(λ− β1n11) (λ− β2n33)− β1n13β2n31] = 0,

or, letting χ1 = β1n11, χ2 = β2n33, χ3 = β1n13, and χ4 = β2n31,

λ2 [(λ− χ1) (λ− χ2)− χ3χ4] = 0, (11)

where χi are given by (p 6= 0)





χ1 =
R10

1− R11

[
1− R32

(1− R11) (1− R21)

]−1

χ2 =
R20 (1−R11) +R31

(1− R11) (1− R21)

[
1− R32

(1−R11) (1−R21)

]−1

χ3 = p
R10

1− R11

1 + 1
p
R33

1− R21

[
1− R32

(1− R11) (1− R21)

]−1

χ4 =
1

p

R20 (1− R11) +R31

(1− R11) (1− R21)

[
1− R32

(1−R11) (1−R21)

]−1

,

8
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with Rij being given by equation (4), and the additional R33 being given by

R33 =
ηk1

µ+ α + η (k1 + k2)

γ

µ+ γ
(1− p) .

Notice that the parameter R33 does not appear in the calculation of the fraction of susceptible
individuals s∗s nor in the gross reproduction number Rg.

The characteristic equation (11) has two equal eigenvalues λ = 0, and the other two are
given by solutions of

λ2 − (χ1 + χ2) λ+ χ1χ2 − χ3χ4 = 0, (12)

which has two positive eigenvalues. (It is easy to show that χ1χ2 − χ3χ4 > 0 and (χ1 + χ2)
2 −

4 (χ1χ2 − χ3χ4) > 0.) Hence, the spectral radius ρ (FV −1) is the big solution, that is,

ρ
(
FV −1

)
=

(χ1 + χ2) +
√

(χ1 + χ2)
2 − 4 (χ1χ2 − χ3χ4)

2
. (13)

The trivial equilibrium point P 0 is LAS if ρ (FV −1) < 1, and unstable if ρ (FV −1) > 1,
and the unique non-trivial equilibrium point P ∗ appears. Hence, P ∗ is biologically feasible if
ρ (FV −1) > 1, that is, s∗s < 1, and ρ (FV −1) = 1/s∗s is another threshold parameter.

It is clear that this new threshold parameter ρ (FV −1), given by equation (13), can not be
associated with the gross reproduction number Rg, given by equation (9), through ρ−1 (FV −1) =
1/Rg. To clarify a second threshold parameter’s appearance, let two particular cases of ρ (FV −1)
be considered.

Firstly, when β2 = 0 (χ2 = χ4 = 0), the spectral radius of equation (11) is ρ1 (FV −1), and
equation (13) becomes

ρ−1
1

(
FV −1

)
=

1− R11

R10

[
1− R32

(1− R11) (1− R21)

]
. (14)

Comparing ρ1 (FV −1) with equation (A.1) in Appendix A, it is clear that ρ1 (FV −1) = 1/s∗s.
When β1 = 0 (χ1 = χ3 = 0), the spectral radius of equation (11) is ρ2 (FV −1), and equation
(13) becomes

ρ−1
2

(
FV −1

)
=

(1− R11) (1− R21)

R20 (1− R11) +R31

[
1− R32

(1− R11) (1− R21)

]
. (15)

Comparing ρ2 (FV −1) with equation (A.3) in Appendix A, it is clear that ρ2 (FV −1) = 1/s∗s.
Secondly, letting R32 = 0 besides β2 = 0, the spectral radius (14) becomes

ρ−1
1

(
FV −1

)
=

1− R11

R10

, (16)

which is equal to the fraction of susceptible individuals given by equation (A.2) in Appendix
A. For this reason, R10 is the basic reproduction number of drug-sensitive strain, and R11 is
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the additional reproduction number. Now, letting R32 = 0 and R31 = 0 besides β1 = 0, the
spectral radius (15) becomes

ρ−1
2

(
FV −1

)
=

1− R21

R20
,

which is equal to the fraction of susceptible individuals given by equation (A.4) in Appendix
A, and R20 is the basic reproduction number of drug-resistant strain, and R21 is the additional
reproduction number. Notice that when the additional reproduction numbers R11 = 0 and
R21 = 0, then s∗ = 1/R0, where R0 is given by equation (10), having a unique threshold.

When β1 > 0 and β2 > 0, it is not an easy task to prove that ρ (FV −1) = 1/s∗s, where
ρ (FV −1) and s∗ are given by equations (13) and (5). The main reason is the parameter
R33 appearing in ρ (FV −1) but not in s∗, but numerically ρ (FV −1) = 1/s∗s can be verified
(see below). Hence, the spectral radius is exactly the multiplicative inverse of the fraction of
susceptible individuals.

3 Discussion

Drug-sensitive and resistant M. tuberculosis transmission model was taken as an example of the
next-generation matrix’s application to describe both the beginning and ending phases of the
epidemic. Depending on the construction of vectors f and v, two thresholds were obtained from
the characteristic equations corresponding to the next-generation matrix FV −1. Traditionally,
the spectral radius was taken as the basic reproduction number [9] [10]. However, a different
approach was proposed in [3], consisting of summing the characteristic equation’s coefficients
instead of evaluating the spectral radius. This approach has a substantial advantage: A recipe
to construct vectors f and v is not necessary [11].

However, depending on the model’s complexity, the sum of the coefficients is insufficient
to determine the gross reproduction number. The model of tuberculosis dealt with here is an
example. The method used to obtain two thresholds Rg and ρ (FV −1) = 1/s∗ is summarized:
Let the characteristic equation corresponding to next-generation matrix FV −1 be written as

Λ(λ) = Λn(λ)Λm(λ)− Λp(λ), (17)

where Λn(λ) = Λn(λ) = λn−an−1λ
n−1−· · ·−a1λ−a0, Λm(λ) = λm−bm−1λ

m−1−· · ·−b1λ−b0,
and Λp(λ) = cpλ

p + · · · + c1λ + c0, with Ωn =
∑n−1

i=0 ai, Ωm =
∑m−1

i=0 bi and Ωp =
∑p

i=0 ci (all
coefficients are non-negative).

(A) If vector f carries only bilinear terms regarding infection, and all terms are left to vector
v (the number of non-zero elements is the least in the matrix F and the most in the
matrix V ), then the spectral radius ρ (FV −1) of the characteristic equation Λ(λ) = 0 is
the multiplicative inverse of the fraction of susceptible individuals s∗, that is, ρ (FV −1) =
1/s∗.
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(B) In all constructions of vectors f and v except case (A), the sum of the coefficients of each
equation Λn(λ), Λm(λ) and Λp(λ) forming the characteristic equation Λ(λ) corresponding
to the next-generation matrix FV −1 enters in the calculation of the gross reproduction
number Rg, that is,

Rg = max

{
Ωn,Ωm,

Ωp

(1− Ωn) (1− Ωm)

}
, (18)

where max stands for the maximum value among Ωn, Ωm and Ωp/ [(1− Ωn) (1− Ωm)].
Hence, the best choice to calculate Rg is the construction of vectors f and v such that
the matrix V is diagonal.

Observe that equation (17) has at least two positive solutions (excluding the possibility of
the absence of a positive solution). For this reason, the threshold in (A) must be the spectral
radius. However, suppose there are no interactions between pathogens or strains, that is,
Λp(λ) = 0. In this case, there is a unique positive solution for each equation Λn(λ) = 0 and
Λm(λ) = 0, from which s∗ = 1/Ωn or s∗ = 1/Ωm (instead of calculating the spectral radius). In
the absence of the additional reproduction number, that is, Rg = R0, resulting in s∗ = 1/Rg.
This is called a simplified version of (A).

The cases (A) and (B) were cited in [3], but only (B) was briefly exemplified. Here, more
details regarding the application of (B) in tuberculosis modeling encompassing drug-sensitive
and drug-resistant strains were presented. The fraction of susceptible individuals in (A) deserves
some comments. The steady-state fraction of the susceptible individuals was obtained from the
roots of the second-degree polynomial (5), which has two positive solutions. It was shown that
only the small one has biological meaning (the big solution generates negative coordinates for
the non-trivial equilibrium). The stability of the trivial equilibrium point was assessed also by
the roots of the second-degree polynomial, given by the characteristic equation (12), presenting
two positive solutions. Hence, two reasons are behind the relationship between the spectral
radius and the fraction of susceptible individuals.

1. When a characteristic equation has more than one positive eigenvalue, the spectral radius
ρ (FV −1) must be chosen as the threshold.

2. The trivial equilibrium is LAS if the spectral radius is lower than one (ρ (FV −1) < 1) and
unstable otherwise. Hence, the epidemic is settled at the community if ρ (FV −1) > 1,
that is, s∗ < 1.

Hence, at the endemic level, the spectral radius guarantees value higher than one, and,
consequently, its inverse is lower than one. In particular cases, the relationship ρ (FV −1) = 1/s∗s
was demonstrated analytically. However, as pointed out, it is not an easy task to showing
analytically that the small solution of equation (3) is equal to the inverse of the spectral radius
of the characteristic equation (12), s∗s = 1/ρ (FV −1), but it can be verified numerically.
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For instance, letting µ = 0.0154, α = 0.33, γ = 0.025, ξ = 0.1, η = 0.5, β1 = 4, 55 and
β2 = 6.25 (all in years−1); and p = 0.05, q = 0.4, k1 = 0.87 and k2 = 0.53 (dimensionless),
the reproduction numbers are, from equation (8), R1 = 6.4, R2 = 3.7 and R3 = 0.04, and
Rin = 0.003, where Rin = R32/ [(1− R1) (1−R2)]. Hence, the gross reproduction number is
Rg = R1 = 6.4 according to equation (9), particular application of equation (18). The small
and large fraction of susceptible individuals are, from (5) and (6), s∗s = 0.1341 and s∗g = 0.2537.
From equation (13), the inverse of the spectral radius is 1/ρ (FV −1) = 0.1314, while the inverse
of the small eigenvalue of equation (12) is 0.2537. Hence, the inverse of the spectral radius is
equal to the small fraction of susceptible individuals, which is in accordance with the asymptotic
value obtained by Runge-Kutta method.

It is worth stressing the fact that the characteristic equations (7) and (11) have similar
structure. However, the gross reproduction number is given by equation (9), while the inverse
of the fraction of susceptible individuals is given by the spectral radius of equation (12).

The particular case β2 = 0 and R32 = 0 considered in the previous section is quite similar to
that model considered by Driessche and Watmough [9]. In their analysis, they did not account
for the existence of two thresholds; for this reason, they considered that the basic reproduction
number is given by equation (16), not by equation (8).

The calculations of one or two thresholds are exemplified considering two simple models. In
the SEIR and dengue with the transovarial transmission models, there is only one pathogen,
hence Λp(λ) = 0 and Λm(λ) = 1 in equation (17), resulting in Λ(λ) = Λn(λ), with Ω = Ωn =∑n−1

i=0 ai, and Λ(λ) = 0 has only one positive solution. Instead of the spectral radius of Λ(λ) = 0,
the sum of the coefficients Ω of Λ(λ) is taken as the threshold.

Let the well-known SEIR model be considered (see, for instance, [1]). The model describes
a pathogen being transmitted directly from infectious to susceptible individuals, which is given
by 




d

dt
s = µ− βsi− µs

d

dt
e = βsi− (µ+ γ) e

d

dt
i = γe− (µ+ σ) i

d

dt
r = σi− µr,

(19)

where s, e, i and r are the fractions of, respectively, susceptible, exposed, infectious and re-
covered individuals. The model parameters are the mortality rate µ, the contact rate β, the
infectious γ and recovery σ rates.

The system of equations (19) has two equilibrium points: the trivial P 0 = (1, 0, 0, 0) and
the non-trivial P ∗ = (s∗, e∗, i∗, r∗), where the fraction of susceptible individuals is s∗ = 1/R0,
with the basic reproduction number R0 being given by

R0 =
γ

µ+ γ
× β

µ+ σ
. (20)
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The next-generation matrix is obtained considering the vector of variables x = (e, i)T . In
this model, there are only two next-generation matrices evaluated at the trivial equilibrium P 0.

The basic reproduction number R0 is obtained according to (B), that is, the vectors are
f = (βis, γe)T and v = ((µ+ γ) e, (µ+ σ) i)T . The characteristic equation corresponding to
the next-generation matrix obtained from the diagonal matrix V is

λ2 − R0 = 0, (21)

where the basic reproduction number R0 is given by equation (20).
Let the procedure stated in the simplified version of (A) be applied to obtain the fraction of

susceptible individuals s∗. In this case, the vectors are f = (βis, 0)T and v = ((µ+ γ) e,−γe+ (µ+ σ) i)T

The characteristic equation corresponding to the next-generation matrix obtained from the non-
diagonal matrix V is

λ2 − R0λ = 0, (22)

where R0 is given by equation (20). According to the simplified version of (A), this full matrix
V must originate the second threshold 1/s∗ as the sum of coefficients. However, the sum (in
this case, the spectral radius) is equal to that obtained in equation (21). Hence, the inverse of
R0 is the fraction of susceptible individuals, that is, s∗ = 1/R0, which is one of the coordinates
of P ∗.

Notice that in the SEIR model, the spectral radius ρ (FV −1) of equation (21) is ρ (FV −1) =√
R0, while the spectral radius of equation (22) is ρ (FV −1) = R0. For this reason, some

authors claim that the construction of vectors f and v according to the simplified version
of (A) is correct [9]. However, the sum of the coefficients of equations (21) and (22) is the
same, establishing that there is a unique threshold, hence R0 = ρ (FV −1) = 1/s∗. Notice that
the non-trivial equilibrium point P ∗ has one of the coordinates s∗ = 1/R0. However, in the
SIR model, there is only one characteristic equation (the next-generation matrix is a unitary
matrix), and the spectral radius is indeed the basic reproduction number, and there is not a
second threshold. For this reason, the fraction of susceptible individuals being the inverse of
the basic reproduction number can be obtained only from the equilibrium value of s∗.

Let a dengue encompassing the transovarial transmission model [8] be considered. In the
SEIR model, there is one pathogen, one population, and one route of transmission. In contrast,
there are two populations in dengue with the transovarial transmission model, one common
pathogen, but two transmission routes.

The model presented in [8] considered both horizontal and transovarial transmission routes
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transmitting the dengue virus. The system of differential equations describing this model is





d

dt
l1 = qfφ [m1 + (1− α)m2]

(
1− l1+l2

C

)
− (σa + µa) l1

d

dt
l2 = qfφαm2

(
1− l1+l2

C

)
− (σa + µa) l2

d

dt
m1 = σal1 − (βmφi+ µf)m1

d

dt
m2 = σal2 + βmφim1 − µfm2

d

dt
s = µh −

(
βhφ
N

m2 + µh

)
s

d

dt
i = βhφ

N
m2s− (σh + µh) i,

(23)

where the decoupled fraction of immune humans is given by r = 1−s−i, s and i are the fractions
of susceptible and infectious humans, and N is the constant total number of the humans. The
susceptible and infectious female adult mosquitoes are m1 and m2, with m = m1 +m2, and l1
and l2 represent the uninfected and infected immatures, with l = l1 + l2.

Concerning the model parameters, α is the proportion of transovarial transmission, µh is
the birth and mortality rates of humans, and σh is the recovery rate. The per-capita oviposition
rate is φ, q and f are the fractions of eggs that are hatching to larva, and that will yield female
mosquitoes, respectively, C is the carrying capacity of the breeding sites, σa is the rate at
which larva become adults, and µa and µf are the mortality rates of, respectively, immatures
and adults. Finally, βh is the transmission coefficient from mosquito to human, and βm is the
transmission coefficient from human to mosquito.

The system of equations (23) has two equilibrium points, assuming that Q0 > 1, where
Q0 = σaqfφ/ [(σa + µa)µf ] is the basic offspring number. The trivial equilibrium P 0, or disease-
free equilibrium, is given by

P 0 =

(
l̄1 = l∗ = C

(
1− 1

Q0

)
, l̄2 = 0, m̄1 = m∗ =

σa

µf
C

(
1− 1

Q0

)
, m̄2 = 0, s̄ = 1, ı̄ = 0

)
,

(24)
and the non-trivial equilibrium P ∗, or endemic equilibrium, is given by

P ∗ =
(
l̄1 = l∗1, l̄2 = l∗2, m̄1 = m∗

1, m̄2 = m∗
2, s̄ = s∗, ı̄ = i∗

)
,

where the product of the fractions of susceptible humans s∗ and mosquitoes m∗
1/m

∗ is

s∗ × m∗
1

m∗ =
1− Ra

R0
=

1

R0
− α

R0
. (25)

(see [8] for detailed calculations.) The gross reproduction number Rg is defined by

Rg = R0 +Ra, (26)
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which is the sum of the basic reproduction number R0 = Rh
0R

m
0 due to the horizontal trans-

mission with the partial contributions Rh
0 = βhφ/µf and Rm

0 = βmφm
∗/ [(σh + µh)N ], and the

additional reproduction number Ra = α due to the transovarial transmission.
Only two next-generation matrices evaluated at the trivial equilibrium P 0 are presented,

with the matrices being obtained from the vector of variables x = (m2, i, l2)
T , where superscript

T stands for the transposition of a matrix. (See [8] for other constructions of the vectors f and
v.)

To obtain the gross reproduction number, diagonal matrix V is considered, according to
(B). In this case, the vectors f and v are

f =




βmφim1 + σal2
βhφ
N

m2s
qfφαm2

(
1− l1+l2

C

)


 and v =




µfm2

(σh + µh) i
(σa + µa) l2


 ,

and the next-generation matrix FV −1 is

FV −1 =




0 NRm
0

σa

σa+µa
1
N
Rh

0 0 0
ασa+µa

σa
0 0


 ,

and the corresponding characteristic equation is

λ3 − Rgλ = 0, (27)

with Rg being given by equation (26), which is the gross reproduction number (the sum of
the coefficients of the characteristic equation). In the transovarial dengue transmission model,
other next-generation matrices are resulting in the same gross reproduction number (see [8]).

To obtain the fraction of susceptible individuals, infection matrix F must be the most
straightforward (matrix with the least number of non-zeros); thus, matrix V is the most full
with non-zero elements. In this case, the vectors f and v are

f =




βmφim1
βhφ
N

m2s
0


 and v =




−σal2 + µfm2

(σh + µh) i
−qfφαm2

(
1− l1+l2

C

)
+ (σa + µa) l2


 ,

and the next-generation matrix FV −1 is

FV −1 =




0 NRm
0 0

1

1− α

1

N
Rh

0 0
1

1− α

σa

σa + µa

1

N
Rh

0

0 0 0


 .

and the characteristic equation corresponding to FV −1 is

λ3 − R0

1−Ra

λ = 0. (28)
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According to the simplified version of (A), the sum of the coefficients is a threshold, that is,
1/Ω = (1 − Ra)/R0. Comparing, however, with equation (25), the product of the fractions
of susceptible humans and mosquitoes is indeed the threshold, that is, s∗ × m∗

1/m
∗ = (1 −

Ra)/R0. This threshold must be the product of susceptible populations since two populations
are involved in the transmission.

Comparing equations (22) and (22) in the SEIR model, the relationship s∗ = 1/R0 is obeyed,
while, from equations (27) and (28), the product s∗ ×m∗

1/m
∗ is not the inverse of Rg. Hence,

two routes of transmission resulted in two different thresholds. However, if only one route of
transmission is considered, letting α = 0, then s∗ × m∗

1/m
∗ = 1/R0, implying that there is a

unique threshold R0.

4 Conclusion

The basic reproduction number has a well-accepted interpretation: The secondary cases pro-
duced by one infectious individual when introduced in a completely susceptible population.
This concept portrays the beginning of an epidemic. Nevertheless, suppose the next-generation
matrix provides the initial strength of an epidemics. In this case, it is expected that it may
also predict an epidemic’s final size, which is indeed measured by the remaining fraction of
susceptible individuals. This fraction portrays the ending phase of an epidemic, that is, those
individuals who have not been infected at the steady-state. For instance, if there is only one
threshold, the basic reproduction number R0 and the final size of epidemics s∗ obey s∗ = 1/R0.
In other words, how intense is an epidemic (higher R0), more individuals are infected, and a
low number of individuals are left uninfected; hence the fraction of susceptible individuals is
low (1/R0).

The procedures presented in [3] can be easily applied when the characteristic equation
corresponding to the next-generation matrix is given by equation (17), with Λp(λ) = 0. In this
case, the sum of the coefficients of this equation is the basic (or gross) reproduction number or
the fraction of susceptible individuals, as SEIR and dengue with transovarial models showed.
However, when the characteristic equation corresponding to the next-generation matrix is given
by equation (17), then the gross reproduction number is given by equation (18), and the spectral
radius is the inverse of the fraction of susceptible individuals. This case was shown revisiting
the drug-sensitive and resistant tuberculosis transmission model.

It is worth stressing that the sum of the coefficients in the characteristic equation of the
next-generation matrix provides the fraction of the susceptible individuals because this equation
has a unique positive eigenvalue. However, when there is not a unique positive eigenvalue, it
is natural to choose the spectral radius for two reasons: (1) it is the greatest value higher than
one to maintain epidemic, and, consequently, (2) the multiplicative inverse of this number is
the lowest and small than one. (The fraction of susceptible individuals must be consistently
lower than one.)

It is well-accepted that the basic (or gross) reproduction number obtained from the next-
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generation matrix is linked to the initial phase of an epidemic. The global stability of the trivial
equilibrium point can be determined by the left eigenvector associated with this next-generation
matrix [10]. Besides these two significant results, the next-generation matrix can predict an
epidemic’s final size by allowing the calculation of the fraction of susceptible individuals at the
steady-state. Therefore, depending on how the next-generation matrix is constructed, both the
initial and final phases of an epidemic can be estimated.

Acknowledgments

Thanks to anonymous reviewers for providing comments and suggestions, which contributed to
improving this paper.

References

[1] R.M. Anderson, R.M. May, Infectious Diseases of Human. Dynamics and Control, Oxford
University Press, Oxford, New York, Tokyo (1991).

[2] O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, The construction of next-generation
matrices for compartmental epidemic models, J. R. Soc. Interface 7 (2010) 873-885.

[3] H.M. Yang, The basic reproduction number obtained from Jacobian and next generation
matrices – A case study of dengue transmission modelling, BioSystems 126 (2014) 52-75.

[4] H.M. Yang, D. Greenhalgh, Proof of conjecture in: The basic reproduction number ob-
tained from Jacobian and next generation matrices – A case study of dengue transmission
modelling, Appl. Math. Comput. 265 (2015) 103-107.

[5] S.M. Raimundo, H.M. Yang, E. Venturino, Theoretical assessment of the relative incidence
of sensitive and resistant tuberculosis epidemic in presence of drug treatment, Math. Biosc.
Eng. 11(4) (2014) 971-993.

[6] T.R. Frieden, P.I. Fujiwara, R.M. Washko, M.A. Hamburg, Tuberculosis in New York City
– turning the tide, N. Engl. J. Med. 333 (1995) 229-233.

[7] G.M. Knight, C.F. McQuaid, P.J. Dodd, R.M.G.J. Houben, Global burden of latent
multifrug-resistant tuberculosis: trends and estimates based on mathematical modelling,
Lancet Infect. Dis. 19 (2019) 903-912.

[8] H.M. Yang, The transovarial transmission in the dynamics of dengue infection: Epidemi-
ological implications and thresholds, Math. Biosc. 286 (2017) 1-15.

17

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JBS

J.
 B

io
l. 

Sy
st

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 0

6/
18

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



[9] P. van den Driessche, J. Watmough, Reproduction number and sub-threshold endemic
equilibria for compartimental models of disease transmission, Math. Biosc. 180(1-2) (2002)
29-48.

[10] Shuai Z., van den Driessche P., Global stability of infectious disease model using Lyapunov
functions, SIAM J. App. Math. 73(4) (2013) 1513-1532.

[11] M.G. Roberts, J.P.A. Heesterbeek, A new method to estimate the effort required to control
an infectious disease. Proc. Royal Soc. London Series B 270 (2003) 1359-1364.

A The non-trivial equilibrium point

The second degree polynomial given by (11) has the coefficients given by combination of the
parameters Rij given by equation (4). By observing these parameters, it is obvious that R11 < 1,
R21 < 1, and R32 < 1. The difference (1− R11) (1− R21)− R32 is written as

(1− R11) (1− R21)−R32 =
(µ+ γ)2 (µ+ α) (µ+ α + ηk1) + d1 + d2

(µ+ γ)2 (µ+ α + ξ) [µ+ α + η (k1 + k2)]
> 0,

where {
d1 = ξ (µ+ γ) [µ (µ+ α + ηk1) + qγ (µ+ α)]
d2 = ηk2 {[(µ+ γ) (µ+ α) + µξ] (µ+ pγ) + q (1− p)µγξ} ,

showing that R32/ [(1− R11) (1− R21)] < 1. Therefore, we have

{
[R10 (1− R21) +R20 (1− R11) +R31] > 0

(1− R11) (1− R21)
[
1− R32

(1−R11)(1−R21)

]
> 0

and Pol(s) has 0 or 2 positive roots according to the Descartes’ rule of signs.
However, the discriminant of the second-degree polynomial Pol(s) is

∆ = [R10 (1− R21) +R20 (1− R11) +R31]
2 − 4R10R20 [(1− R11) (1− R21)− R32]

= [R10 (1− R11)−R20 (1−R21) +R31]
2 + 4R20 [R10R32 +R31 (1− R11)] > 0,

hence, it has two positive solutions given by equations (5) and (6) in the main text. However,
only the small solution s∗s has biological meaning, and the big solution s∗b does not have. This
fact can be seen from equation (2), the coordinate of individuals with drug-sensitive tuberculosis
i∗1 is always positive, but i∗2 is not. Rewriting the coordinate of individuals with drug-resistant
tuberculosis i∗2 as

i∗2 =
(µ+ α + ξ) (µ+ γ)

γ [η (k1 + pk2) + pβ2s∗]
R10 (s

m − s∗) i∗1,
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i∗2 > 0 if sm > s∗, and i∗2 < 0 if sm < s∗, where sm = (1− R11) /R10. The second-degree
polynomial Pol(s) with upward concavity evaluated at this value is

Pol (sm) = −
[
R31

R10

(1− R11) +R32

]
< 0,

which implies that sm situates between small and big roots of Pol(s), or, s∗s < sm < s∗b .
Therefore, i∗2 > 0 only for the small solution s∗s, and all coordinates of P ∗ are positive, implying
that there is a unique non-trivial equilibrium point. Summarizing, s∗s has biological meaning
(i∗2(s

∗
s) > 0), but s∗b does not have (i∗2(s

∗
b) < 0).

Notice that R10 and R20 are the basic reproduction numbers of drug-sensitive and resistant
strains of M. tuberculosis, and R11 and R21 are the additional reproduction numbers of drug-
sensitive and resistant strains of M. tuberculosis. Finally, R31 and R32 are the additional
reproduction numbers of a resistant strain of M. tuberculosis passing through a sensitive strain.
(The interpretations of Rij are given in Appendix B.)

Particular solutions of s∗s given by equation (5) is obtained having didactical purpose. Let
only drug-sensitive or resistant strain of M. tuberculosis transmission be considered in the
solution of Pol(s) = 0.

Firstly, letting β2 = 0 (hence R20 = 0 and R31 = 0), tuberculosis transmission among
individuals is due only by those infected by drug-sensitive strain (i∗1), due to the assumption that
individuals infected by drug-resistant strain (i∗2) originated from failure of drug administration
are not transmitting. In this case, the fraction of susceptible individuals is

s∗s =
1−R11

R10

[
1− R32

(1−R11) (1−R21)

]
, (A.1)

showing that the additional decrease in susceptibles, given by R32/ [(1−R11) (1−R21)], is due
to the failure of treatment, resulting in non-transmissible (by assumption) infected individuals
with a drug-resistant strain. If a failure in the treatment does not occur, that is, R32 = 0, then
the fraction of susceptibles become

s∗s =
1− R11

R10

=
1

R10

− R11

R10

, (A.2)

and drug-resistant M. tuberculosis is not circulating.
Now, letting β1 = 0 (hence R10 = 0), tuberculosis transmission among individuals is due only

by those infected by drug-resistant strain (i∗2), due to the assumption that individuals infected
by drug-sensitive strain (i∗1) are not transmitting. In this case, the fraction of susceptibles is

s∗s =
1−R21

R20

[
1− R32

(1−R11) (1−R21)

]
1

1 + R31

R20(1−R11)

, (A.3)

it is showing again that the additional decrease in susceptibles, given by R32/ [(1− R11) (1− R21)],
is due to the failure of treatment, resulting in non-transmissible (by assumption) infected in-
dividuals with drug-sensitive strain. In this case, however, a second additional decrease in
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susceptibles appears, given by 1/ {1 +R31/ [R20 (1− R11)]}, due to the passage from i1 to i2.
If a failure in treatment and the passage from i1 to i2 do not occur, that is R32 = R31 = 0, the
fraction of susceptibles becomes

s∗s =
1− R21

R20
=

1

R20
− R21

R20
, (A.4)

similar to equation (A.2), and drug-sensitive M. tuberculosis is not circulating.
Notice that when R31 = R32 = 0, the dynamics of drug-sensitive and resistant strains of

tuberculosis transmissions are decoupled, and each one can be dealt with separately.

B Interpretations of Rij

In [5] neither the gross reproduction number nor the fraction of susceptible individuals were
obtained. Hence, the interpretations of Rij given by equation (4) are done.

A. Drug-sensitive tuberculosis transmission R1 = R10 +R11.

1. R10 =
γ

µ+ γ
× β1

µ+ α + ξ
. A primary drug-sensitive infectious individual survives the ex-

posed class e1 (γ/ (µ+ γ)), and during the infectious period in i1 generates drug-sensitive
secondary cases (β1/ (µ+ α + ξ)).

2. R11 =
ξ

µ+ α + ξ
(1− q)

γ

µ+ γ
. A secondary drug-sensitive infectious individual survives

the infectious class i1 (ξ/ (µ+ α + ξ)), and a fraction 1− q goes back to exposed class e1,
surviving this class (γ/ (µ+ γ)) returns to infectious class i1 and generates new cases of
sensitive tuberculosis.

B. Drug-resistant tuberculosis transmission R2 = R20 +R21.

1. R20 =
γ

µ+ γ
(1− p)

β2

µ+ α + η (k1 + k2)
. A primary drug-resistant infectious individual

survives the exposed class e2 (γ/ (µ+ γ)), and a proportion 1−p enters to i2, and during
the infectious period generates drug-resistant secondary cases (β2/ [µ+ α + η (k1 + k2)]).

2. R21 =
ηk2

µ+ α + η (k1 + k2)

γ

µ+ γ
(1− p). A secondary drug-resistant infectious individual

survives the infectious class i2 (ηk2/ [µ+ α + η (k1 + k2)]), goes back to exposed class e2
and survives this class (γ/ (µ+ γ)), and a fraction 1− p returns to infectious class i2 and
generates new cases of resistant tuberculosis.

C. Drug-resistant tuberculosis transmission through drug-sensitive transmission R3 = R31 +
R32.
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1. R31 =
γ

µ+ γ
p

ξ

µ+ α + ξ
q

β2

µ+ α + η (k1 + k2)
. A primary drug-resistant infectious indi-

vidual survives the exposed class e2 (γ/ (µ+ γ)), a proportion p enters to i1, surviving
this class (ξ/ (µ+ α + ξ)) a fraction q goes direct to infectious class i2, and during the
infectious period generates drug-resistant secondary cases (β2/ [µ+ α + η (k1 + k2)]).

2. R32 =
η (k1 + pk2) k2

µ+ α + η (k1 + k2)

γ

µ+ γ

ξ

µ+ α + ξ
q. This is split in R321 and R322.

2.1. R321 =
ηk1

µ+ α + η (k1 + k2)

γ

µ+ γ

ξ

µ+ α + ξ
q. A secondary drug-resistant infectious indi-

vidual survives the infectious class i2 (ηk1/ [µ+ α + η (k1 + k2)]), goes back to exposed
class e1 and survives this class (γ/ (µ+ γ)), and enters to infectious class i1 and surviving
this class (ξ/ (µ+ α + ξ)) a fraction q returns to infectious class i2 and generates resistant
tuberculosis.

2.2. R322 =
ηk2

µ+ α + η (k1 + k2)

γ

µ+ γ
p

ξ

µ+ α + ξ
q. A secondary drug-resistant infectious indi-

vidual survives the infectious class i2 (ηk2/ [µ+ α + η (k1 + k2)]), goes back to exposed
class e2 and survives this class (γ/ (µ+ γ)), and a fraction p enters to infectious class i1,
surviving this class (ξ/ (µ+ α + ξ)) a fraction q returns to infectious class i2 and generates
resistant tuberculosis.
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