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Abstract
At the beginning of 2020, SARS-CoV-2 spread to all continents, and many countries adopted
quarantine to flatten the COVID-19 outbreak, resulting in the containment of transmission.
However, the persistent transmission of SARS-CoV-2, an RNA virus, resulted in the appear-
ance ofmutations in the original virus. The appearance ofmore virulentmutations in different
regions of the world resulted in an increased number of severe COVID-19 cases. A math-
ematical model based on the COVID-19 natural history encompassing the mutations was
applied to evaluate the SARS-CoV-2 epidemic. The model parameters were fitted against the
observed data fromSão Paulo State (Brazil) considering quarantine, relaxation, andmutation.
The estimated data from São Paulo State showed that the original SARS-CoV-2 transmission
better explained the COVID-19 epidemic during the quarantine. However, the increased num-
ber of fatalities beyond that predicted by the relaxation indicated the occurrence of mutations.
Hence, the relaxation in association with the transmission of a more virulent SARS-CoV-2
better estimated the COVID-19 epidemic from February 26, 2020, to June 15, 2021, in São
Paulo State.
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1 Introduction

The World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a
pandemic on March 11, 2020. The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) can be transmitted by droplets that escape lungs through coughing or sneezing and
infects humans (direct transmission), or is deposited in surfaces and infects humans when in
contact with these contaminated surfaces (indirect transmission) (Liu et al. 2020; Zhu et al.
2020). SARS-CoV-2 infects susceptible individuals through the nose, mouth, or eyes and
infects cells in the respiratory tract. COVID-19 in mild form presents fever, dry cough, chills,
malaise, muscle pain, and sore throat. In moderate form presents fever, respiratory symp-
toms, and radiographic characteristics, and in severe form manifests dyspnea, low oxygen
saturation, and may evolve to multiple organ failure.

In the absence of effective treatment and vaccine, many countries adopted quarantine
to control the SARS-CoV-2 with high transmissibility and lethality at the beginning of the
epidemic. Italy (Battineni et al. 2020) and Spain (Guirao 2020) adopted rigid quarantine;
however, São Paulo State (Brazil) implemented partial quarantine. In Yang et al. (2021a),
a mathematical model based on the COVID-19 natural history encompassing the different
fatality rates in young (60 years old or less) and elder (60 years old or more) subpopulations
was developed. That model assumed that asymptomatic, pre-symptomatic, andmild COVID-
19 individuals transmit SARS-CoV-2, while severe COVID-19 cases are isolated in hospitals.
It is worth stressing that the SEIR-type (susceptible, exposed, infectious, and recovered
compartments) models estimate the transmission rate using the severe COVID-19 registered
cases as SARS-CoV-2 transmitters (Yang et al. 2020a). That model was applied to evaluate
the impacts on the COVID-19 epidemic by partial quarantine in São Paulo State and rigid
quarantine (lockdown) in Spain associated with the protective measures (washing hands with
alcohol and gel, use of face mask, and social distancing). Notwithstanding, the relaxation of
the isolated population raises the question of better release strategies to avoid the collapse of
the health care system. We applied the model presented in Yang et al. (2021a) to forecast the
epidemiological scenarios of relaxation (Yang et al. 2020b) based on the plan elaborated by
the São Paulo State authorities (Plano são paulo 2020). They assessed the impact of SARS-
CoV-2 transmission on the healthcare system’s capacity. Unfortunately, that relaxation plane
was not implemented due to the quick increase in new cases.

Ferguson et al. (2020) adapted an agent-based model describing the influenza epidemic to
investigate the impact of the isolation of susceptible individuals on the COVID-19 epidemic,
which was referred to as non-pharmaceutical interventions (mitigation and suppression).
Briefly, mitigation reduces the basic reproduction number R0 but not lower than one, while
suppression reduces the basic reproduction number lower than one. Hence, São Paulo State
is an example of mitigation, while Spain, of suppression (Yang et al. 2021a). However, the
mitigation strategy by a partial quarantine sustains the COVID-19 epidemic. Consequently,
like all RNA-based viruses, SARS-CoV-2 suffers mutations as the chain of infections is
maintained continuously (WHO 2021). “A virus with one or several new mutations (small
changes during the replication) is referred to as a variant of the original virus” (WHO 2021).
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For instance, three variants are challenging the vaccination’s control efforts—B.1.1.7 (United
Kingdom), B.1.351 (South Africa), and P.1 (Brazil) (see CDC: Sars-cov-2 variants 2021
and references therein). Many countries closed their frontiers, mostly travelers from United
Kingdom, South Africa, and Brazil, to control these variants. It is currently accepted that the
more virulent variants of SARS-CoV-2 are also more transmissible based on the increased
deaths caused by these strains (Korber et al. 2020).

Here, we adapt the model presented in Yang et al. (2021a) to describe the epidemiological
scenario of relaxation and SARS-CoV-2 mutations using the COVID-19 cases and deaths
registered from São Paulo State (Boletim completo 2020). The adapted model does not take
into account the different COVID-19 fatalities depending on age but considers relaxation
characterized by a series of pulses’ release, SARS-CoV-2mutation resulting in amore virulent
variant, and the waning of immunity. However, this model does not take into account the
vaccination. We aim to describe the epidemiological scenario of incipient vaccination found
in São Paulo State. Siddiqi and Mehra (2020) described three progressive clinical phases
of COVID-19: (1) mild (early infection), (2) moderate, subdivided into without and with
hypoxia (pulmonary involvement), and (3) severe (systemic hyper inflammation), leading
to the cytokine storm. We assess the number of fatalities taking into account the severe
COVID-19 evolution distributed into three clinical phases.

The paper is structured as follows. In Sect. 2, amodel is presented to describe the relaxation
and SARS-CoV-2 mutation. In Sect. 3, the model is applied to describe the epidemiological
scenario using data from São Paulo State. Section 4 presents discussions, and conclusion is
given in Sect. 5.

2 Materials andmethods

The appearance of the mutations occurs as the epidemic evolves. These mutations constitute
a pool that can maintain the virulence similar to the original SARS-CoV-2, or more virulent
mutations can occur, forming variants with enhanced capacity of infecting cells. A model
considering the SARS-CoV-2 mutation resulting in a more virulent variant and the waning
of immunity is formulated based on a previous model (Yang et al. 2021a).

2.1 The SQEAPMDR1,2,3 model

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects an individual and
initiates its replicates rapidly. As an RNAvirus, SARS-CoV-2 canmutate in the process of the
cells’ infection releasing and originated more virulent variants. We formulate a mathematical
model to describe the appearance of more virulent variants from the populational point of
view. We assume that all individuals harbor an original type of SARS-CoV-2 initially, and
a more virulent one appears later. Hence, we deal with two subpopulations, one harboring
original or a pool of less virulent variants and the other, a pool of more virulent variants.

The SQEAPMDR1,2,3 model divides the SARS-CoV-2 mutations into pools of a less
(original virus, hereafter) and a more (variant virus, hereafter) virulent virus. The model is
formulated based on the SARS-CoV-2 transmission flowchart shown in Fig. 1 dividing the
population into two subpopulations harboring original and variant (subscript v) SARS-CoV-
2.

We describe the subpopulation harboring less virulent according to the natural history of
COVID-19. All individuals are divided into susceptible S , susceptible individuals who are
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Fig. 1 The flowchart of the SARS-CoV-2 transmission model. The arrow representing natural mortality rate
μ is omitted in all classes

Table 1 Summary of the model variables

Symbol Meaning

S Susceptible individuals

Q Isolated individuals

E (Ev) Exposed and incubating SARS-CoV-2 individuals

A (Av) Asymptomatic individuals

P (Pv) Pre-symptomatic (pre-diseased) individuals

M (Mv) Mild (non-hospitalized) COVID-19 individuals

D (Dv) Severe (hospitalized) COVID-19 individuals

R j (R jv) Recovered (immune) individuals at stage j = 1, 2, 3

The subscript v stands for more virulent (variant) subpopulation

isolated Q, exposed and incubating E , asymptomatic A, pre-symptomatic (or pre-diseased,
before the onset of COVID-19) P , symptomatic with mild M and severe COVID-19 D, and
recovered (immune) R1, R2, and R3 compartments. For the more virulent pool, we use the
subscript v. Table 1 summarizes the model compartments (dynamic variables).

The natural history of SARS-CoV-2 infection is the same for both subpopulations. We
assume that individuals in the asymptomatic (A and Av), pre-symptomatic (P and Pv), and a
fraction z (and zv) of mild COVID-19 (M and Mv) compartments are transmitting the virus.
Other infected classes ((1 − z) M , D, (1 − zv) Mv , and Dv) are under voluntary or forced
isolation. Susceptible individuals are infected at a rate λS or λvS (known as the mass action
law Anderson and May 1992) and enter into compartment E or Ev , where λ and λv are the
per-capita incidence rates (or force of infection) of less and more virulent variants defined
by
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λ = ε

N
(β1A + β2P + β3zM) , and λv = ε

N
(β1vAv + β2vPv + β3vzvMv) , (1)

where β1, β2 and β3 (and β1v , β2v and β3v) are the transmission rates, that is, the rates at
which a virus encounters a susceptible people and infects him/her. The protection factor ε ≤ 1
decreases the transmission of infection by individual (face mask, hygiene) and collective
(social distancing) protective measures.

Susceptible individuals are infected by original SARS-CoV-2 at a rate λ and enter into
compartment E . After an average period 1/σ in the compartment E j , where σ is the incuba-
tion rate, exposed individuals enter into the asymptomatic compartment A (with probability
l) or pre-symptomatic compartment P (with probability 1− l ). Possibly asymptomatic indi-
viduals can manifest symptoms at the end of the period 1/γ , where γ is the recovery rate
of asymptomatic individuals, and a fraction 1 − χ enters into the mild COVID-19 com-
partment M . Hence, a fraction χ enters into the immune (recovered) compartment R. For
pre-symptomatic individuals, after an average period 1/γ1 in the compartment P , where γ1
is the infection rate of pre-diseased individuals, these individuals enter into the severe D
(with probability 1 − k) or mild M (with probability k) COVID-19 compartments. Severe
COVID-19 cases die under the disease-induced (additional) mortality rate α. Individuals in
compartments M and D acquire immunity after periods 1/γ2 and 1/γ3, where γ2 and γ3 are
the recovery rates of severe and mild COVID-19, and enter into the first immune compart-
ment R1. Recovered individuals stay in the compartment R1 during an average period 1/π1,
where π1 is the first waning immunity rate. A fraction y1 of these individuals loses immunity
returning to the compartment S, and 1 − y1 remains immune entering into compartment
R2. Similarly, from compartment R2 flows to R3. All individuals in compartment R3 wane
immunity at a rate π3.

The more virulent SARS-CoV-2 appears by mutation. Populationally, we assume that a
fraction jE among individuals exposed with original type E suffers mutations and enters
into the compartment Ev . Similarly, fractions jA, jP , and jM mutate from compartments A,
P , and M , entering into compartments Av , Pv , and Mv . These infected individuals transmit
the variant virus at a rate λvS. Once in the compartment Ev , the flows are similar to those
described in the original SARS-CoV-2 natural history. All parameters related to the less
virulent variant are applied to the more virulent SARS-CoV-2 differentiated by the subscript
v.

In the model, we consider pulse isolation and intermittent (series of pulses) release. We
assume that there is a unique pulse in isolation at time t = τ , described by Suδ (t − τ), and
the intermittent releases are described by

∑
i Quiδ (t − ti ), where ti = τ + ∑i

w=1 τw . The
Dirac delta function δ (x) is defined by δ (x) = ∞, if x = 0, otherwise, δ (x) = 0, with∫ ∞
0 δ (x) dx = 1. The fraction of individuals in isolation is u, and ui , i = 1, 2, · · · , is the
fraction of i-th release of isolated individuals, with τw being the period between successive
releases.

Based on the above descriptions summarized in Fig. 1, the SARS-CoV-2 transmission
model is described by the system of ordinary differential equations. Equations for susceptible
and isolated individuals are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d

dt
S = φN − μS − (λ + λv) S + π1y1R1 + π1v y1vR1v + π2y2R2 + π2v y2vR2v

+π3R3 + π3vR3v − Suδ (t − τ) + ∑

i
Quiδ

(

t − τ −
i∑

w=1
τw

)

d

dt
Q = −μQ + Suδ (t − τ) − ∑

i
Quiδ

(

t − τ −
i∑

w=1
τw

)

,

(2)
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for original virus harboring individuals,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
E = λS − (σ + μ) E

d

dt
A = (1 − jE ) lσ E − (γ + μ) A

d

dt
P = (1 − jE ) (1 − l) σ E − (γ1 + μ) P

d

dt
M = (1 − jA) (1 − χ) γ A + (1 − jP ) kγ1P − (γ3 + μ) M

d

dt
D = (1 − jP ) (1 − k) γ1P − (γ2 + μ + α) D

d

dt
R1 = (1 − jA) χγ A + (1 − jM ) γ3M + γ2D − (π1 + μ) R1

d

dt
R2 = (1 − y1) π1R1 − (π2 + μ) R2

d

dt
R3 = (1 − y2) π2R2 − (π3 + μ) R3,

(3)

and variant virus harboring individuals,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
Ev = λvS − (σv + μ) Ev

d

dt
Av = jE lσ E + lvσvEv − (γv + μ) Av

d

dt
Pv = jE (1 − l) σ E + (1 − lv) σvEv − (γ1v + μ) Pv

d

dt
Mv = jA (1 − χ) γ A + jPkγ1P + (1 − χv) γvAv + kvγ1vPv − (γ3v + μ) Mv

d

dt
Dv = jP (1 − k) γ1P + (1 − kv) γ1vPv − (γ2v + μ + αv) Dv

d

dt
R1v = jAχγ A + jMγ3M + χvγvAv + γ3vMv + γ2vDv − (π1v + μ) R1v

d

dt
R2v = (1 − y1v) π1vR1v − (π2v + μ) R2v

d

dt
R3v = (1 − y2v) π2vR2v − (π3v + μ) R3v,

(4)

where No = S + Q + E + A + P + M + D + R1 + R2 + R3 and Nv = Ev + Av + Pv +
Mv + Dv + R1v + R2v + R3v , with N = No + Nv obeying

d

dt
N = (φ − μ) N − (αD + αvDv) . (5)

This community’s vital dynamic is described by the per-capita rates of birth (φ) and death
(μ).

Table 2 summarizes the model parameters and values. The subscript v stands for the
variant virus transmitting parameters.

The initial and boundary conditions for the system of Eqs. (2 ), (3), and (4) are given in
Appendix A.1. The basic reproduction number R0 is presented in Appendix A.2.
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Table 2 Summary of the model parameters and values (rates in days−1, time in days and proportions are
dimensionless)

Symbol Meaning Value

μ Natural mortality rate 1/(78.4 × 365)∗
φ Birth rate 1/(78.4 × 365)∗
σ (σv) Incubation rate 1/5 (1/4)∗
γ (γv) Recovery rate of asymptomatic individuals 1/12 (1/14)∗
γ1 (γ1v) Infection rate of pre-symptomatic individuals 1/4 (1/3)∗
γ2 (γ2v) Recovery rate of severe COVID-19 1/13 (1/15)∗
γ3 (γ3v) Infection rate of mild COVID-19 individuals 1/13 (1/15)∗
α (αv) Additional mortality rate 0.0046∗∗ (∗∗)

π1 (π1v) Loss of immunity rate at state 1 0 (0)#

π2 (π2v) Loss of immunity rate at state 2 0 (0)#

π3 (π3v) Loss of immunity rate at state 3 0 (0)#

u Proportion of isolated susceptible individuals 0.50∗∗
ui Proportion released at time ti

∗∗
τ Time of the introduction of isolation March 24, 2020

τi Times of the (i-th) releasing ∗∗∗
ε Protective factor 0.52(∗∗)

z (zv) Proportion of mild COVID-19 transmitter 0.5 (0.6)∗∗
β1 (β1v) Transmission rate due to asymptomatic individuals 0.66 (0.66)∗∗
β2 (β2) Transmission rate due to pre-symptomatic individuals 0.66 (0.66)∗∗
β3 (β3v) Transmission rate due to mild COVID-19 individuals 0.66 (0.66)∗∗
jE Proportion of high virulent mutations from class E ∗∗∗
jA Proportion of high virulent mutations from class A ∗∗∗
jP Proportion of high virulent mutations from class P ∗∗∗
jM Proportion of high virulent mutations from class M ∗∗∗

y1 (y1v) Proportion of immunity loss at stage 1 0 (0)#

y2 (y2v) Proportion of immunity loss at stage 2 0 (0)#

χ (χv) Proportion remaining as asymptomatic individuals 0.98 (0.90)∗
l (lv) Proportion of asymptomatic individuals 0.75 (0.6∗∗)

k (kv) Proportion of mild (non-hospitalized) COVID-19 0.90
(
0.7∗∗)

Some values are obtained from the literature (∗), or estimated (∗∗), or varied (∗∗∗), or not considered (#). The
subscript v stands for more virulent subpopulation

2.2 Epidemiological values

To better describe the epidemiological scenarios of partial quarantine and relaxation, we
calculate the following epidemiological values solving the system of Eqs. (2), (3), and (4).

(1) Susceptible individuals—The number of circulating plus isolated susceptible individ-
uals Stot is obtained from the numbers of non-isolated (circulating) susceptible (S) and
isolated (Q) individuals by

Stot = S + Q. (6)
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(2) New cases—We calculate the numbers of accumulated severe COVID-19 cases in sub-
populations harboring original (Ωo) and variant (Ωv) virus as

d
dt Ωo = (1 − m) γ1P and d

dt Ωv = (1 − mv) γ1vPv, (7)

which are given by the exits from P and Pv , and entering into compartments D and
Dv , with Ω = Ωo + Ωv , where Ωo(0) = Ωo0 and Ωv(0) = Ωv0. The daily severe
COVID-19 cases Ωd is, considering Δt = ti − ti−1 = 1 day,

Ωd(ti ) =
ti∫

ti−1

d
dt Ωdt = Ω (ti ) − Ω (ti−1) , (8)

where Ωd(0) = Ωd0 is the first observed COVID-19 case at t0 = 0, with i = 1, 2, · · · .
(3) Fatalities—The accumulated number of deaths due to severe COVID-19 cases is calcu-

lated by Θ = Θo + Θv , where

d
dt Θo = αD and d

dt Θv = αvDv, (9)

which account the exits from compartments D and Dv by COVID-19 induced deaths,
with Θo(0) = 0 and Θv(0) = 0. In the estimation of the additional mortality rates
α and αv , we must bear in mind that the time at which new cases and deaths were
registered does not have direct correspondence, rather they are delayed by Δ days, that
is, Θo (t + Δ) = αD(t), for instance. The daily COVID-19 deaths Θd is, considering
Δt = ti − ti−1 = 1 day,

Θd(ti ) =
ti∫

ti−1

d

dt
Θdt = Θ (ti ) − Θ (ti−1) , (10)

with Θd(0) = 0.

However, instead of calculating the number of deaths based on the severe COVID-19 cases
D (dynamic system), we can use the three stages of COVID-19 clinical evolution (Pericàs
et al. 2020; Siddiqi and Mehra 2020). From Eq. (7), we can derive the number of individuals
in viremia staying short-time in hospital (outpatient) B1 (phase 1), the number of patients
with inflammatory response needing hospital care (inpatient) B2 (phase 2), and the number
of patient with cytokine storm needing ICUs (ICUs patient) B3 (phase 3). From the numbers
B1, B2, and B3, we obtain the number of deaths due to COVID-19 and the number of cured
individuals C .

Concerning the parameters of Bj , Θ j , and C j , j = o, v, a proportion h j of pre-disease
individuals enter into phase 1 (outpatients, class B1), from which a proportion h1 j enters into
phase 2 (inpatients, class B2), and a proportion h2 j enters into phase 3 (ICUs patients, class
B3). The average periods of individuals staying in phases 1, 2, and 3 are 1/ς1 j , 1/ς2 j , and
1/ς3 j , where ς1 j and ς2 j are the disease progression rates from phase 1 to 2 and phase 2 to
3, and ς3 j is the rate of exiting from phase 3. The additional mortality (fatality) proportions
among patients in phases 1, 2, and 3 are α1 j , α2 j , and α3 j . The fraction 1 − h j is the non-
hospitalization of pre-disease COVID-19 cases P , and 1 − h1 j − α1 j , 1 − h2 j − α2 j , and
1 − α3 j are the proportions of cured patients in phases 1, 2, and 3.

(1) Clinical evolution—The number of outpatients is B1 = B1o + B1v , where

d
dt B1o = ho

d
dt Ωo − (μ + ς1o) B1o and d

dt B1v = hv
d
dt Ωv − (μ + ς1v) B1v, (11)
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with B1o(0) = B1o0 and B1v(0) = 0, and dΩ j/dt , j = o, v, is given by Eq. (7). The
number of inpatients is B2 = B2o + B2v , where

d
dt B2o = h1oς1oB1o − (μ + ς2o) B2o and d

dt B2v = h1vς1vB1v − (μ + ς2v) B2v,(12)

with B2o(0) = 0 and B2v(0) = 0. The number of ICUs patients is B3 = B3o + B3v ,
where

d
dt B3o = h2oς2oB2o − (μ + ς3o) B3o and d

dt B3v = h2vς2vB2v − (μ + ς3v) B3v,(13)

with B3o(0) = 0 and B3v(0) = 0. The total number of severe COVID-19 cases is
B = B1 + B2 + B3.

(2) Fatalities—The number of accumulated deaths caused by severe COVID-19 cases can
be calculated from the fatality associated with the clinical evolution divided into B1, B2,
and B3. The number of deaths of outpatients is Θ1 = Θ1o + Θ1v , where

d
dt Θ1o = α1oς1oB1o and d

dt Θ1v = α1vς1vB1v, (14)

withΘ1o(0) = 0 andΘ1v(0) = 0. The number of deaths of inpatients isΘ2 = Θ2o+Θ2v ,
where

d
dt Θ2o = α2oς2oB2o and d

dt Θ2v = α2vς2vB2v, (15)

with Θ2o(0) = 0 and Θ2v(0) = 0. The number of deaths of ICUs patients is Θ3 =
Θ3o + Θ3v , where

d
dt Θ3o = α3oς3oB3o and d

dt Θ3v = α3vς3vB3v, (16)

with Θ3o(0) = 0 and Θ3v(0) = 0. The total number of deaths is Θ = Θ1 + Θ2 + Θ3.
The daily COVID-19 deaths Θd can be obtained using Eq. (10).

(3) Cures—The total number of individuals being cured is C = Co + Cv , where

{ d
dt Co = (1 − h1o − α1o) ς1oB1o + (1 − h2o − α2o) ς2oB2o + (1 − α3o) ς3oB3o − μCo
d
dt Cv = (1 − h1v − α1v) ς1vB1v + (1 − h2v − α2v) ς2vB2v + (1 − α3v) ς3vB3v − μCv,

(17)

with Co(0) = Cv(0) = 0.

Table 3 summarizes the parameters related to the clinical evolution of the original virus
and values (for the variant virus, the values are given between parentheses). See Appendix B
for the assessment of the parameters’ values.

3 Results

At the beginning of the COVID-19 epidemic, we have the transmission of the original SARS-
CoV-2, and we assume that only the less virulent viruses are circulating while the quarantine
lasts, and the more virulent viruses’ transmission initiates with relaxation. In other words,
the accumulated mutations occurring during the quarantine manifests populationally in its
enhanced virulence when relaxation begins.

We follow the procedure presented in Yang et al. (2021a) to estimate themodel parameters
using data from February 26, 2020 to June 15, 2021 (Boletim completo 2020) to describe
the COVID-19 epidemic in São Paulo State. The model parameters are estimated using Eq.
(34) in Appendix B.
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Table 3 Summary of the parameters related to hospitalization and values (rates in days−1 and proportions are
dimensionless)

Symbol Meaning Value

α1o (α1v) Fatality proportion of inpatients in phase 1 0.0005 (∗∗)

α2o (α2v) Fatality proportion of inpatients in phase 2 0.04 (∗∗)

α3o (α3v) Fatality proportion of inpatients in phase 3 0.55 (∗∗)

ς1o (ς1v) Progression rate from phase 1 to 2 1/3 (1/4)∗
ς2o (ς2v) Progression rate from phase 2 to 3 1/7 (1/9)∗
ς3o (ς3v) Rate of exit from phase 3 1/15 (1/20)∗
ho (hv) Proportion of intense viremia 1.0 (1.0)∗
h1o (h1v) Proportion of progression from phase 1 to 2 0.21∗ (∗∗)

h2o (h2v) Proportion of progression from phase 2 to 3 0.45∗ (∗∗)

Some values are calculated (∗) or estimated (∗∗). The subscript v stands for more virulent subpopulation

3.1 The epidemiological scenario of quarantine

The observed data, from February 26, 2020, to June 15, 2021 (Boletim completo 2020),
are partitioned into two sets—the first set is used to estimate the model parameters (input
data set), and the estimated model is then confronted with the second set (test data set) to
assess its prediction ability (Alvarenga et al. 1999). Hence, we estimate the model parameters
using severe COVID-19 cases (Ωob) and deaths (Θob) recorded from February 26 to May 7,
2020 (input data set). Then, we use the estimated parameters to predict the epidemic under
interventions (quarantine and relaxation) from May 8, 2020, to June 15, 2021 (test data set)
and compare the model predictions with the observed data.

Using the input data set of registered COVID-19 cases and deaths from São Paulo State
(Boletim completo 2020), we estimate the model parameters considering only the original
SARS-CoV-2 infection—the partial quarantine (isolation) followed by the protective mea-
sures adopted by the population. We split the data set into four periods to estimate the model
parameters following those procedures used in Yang et al. (2021a).

(1) Transmission rates (from February 26 to April 3, 2020)—Estimated values are β =
β1 = β2 = β3 = 0.66 days−1, resulting in the basic reproduction number R0 = 7.63.
(Letting βv = β1v = β2v = β3v = 0.66 days−1, we should have R0v = 8.35). We used
the initial conditions and R0 given by Eqs. (18) and (31) in Appendix A.

(2) Proportion in isolation (fromMarch 24 toApril 12, 2020)—Estimated value is k = 0.50.
The onset of severe COVID-19 symptoms appear 9 days after the isolation’s introduc-
tion (see Yang et al. 2021a). We used the boundary conditions given by Eq. (20) in
Appendix A.1.

(3) Protective measures (from April 4 to May 7, 2020)—Estimated value is ε = 0.52. The
transmission rate β = 0.66 days−1 is reduced to β ′ = εβ = 0.34 days−1, reducing the
basic reproduction number R0 to Rred = 3.97 .

(4) Additional mortality rate (from March 16 to May 7, 2020)—Fixing Δ = 15 days, the
estimated value is α = 0.0046 days−1. The death occurs 15 days after the onset of severe
COVID-19 symptoms (see Yang et al. 2021a).

The period from February 26 to May 7, 2020, characterizes the beginning of the epidemic
under partial quarantine and protective measures adopted by individuals. Considering a pool
of less virulent (original) SARS-CoV-2, we estimated parameters considering the input data
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(a) (b)

Fig. 2 The curve of estimated Ω and observed data (a), and the calculated Ωd , the observed data, and the
7-day moving average (b)

(a) (b)

Fig. 3 The estimated curve Θ and the observed data (a), and the calculated curve Θd , the observed data, and
the 7-day moving average (b)

set. The estimated parameters given in Table 2 are summarized in the following epidemi-
ological scenarios. We compare these curves with the test data set aiming: (1) to study the
epidemic’s prediction ability, and (2) to include other factors (relaxation and mutation) when
data and estimated curves diverge.

Figure 2 shows the estimated curve Ω and the observed data (a), and the calculated curve
Ωd and the observed data (b). The 7-day moving average of the daily observed data is also
shown in Fig. 3b. The curves Ω and Ωd are given by Eqs. (7) and (8).

The model parameters were estimated against the severe COVID-19 observed data Ωob.
In Fig. 2a, the first observed point detached from the estimated curve Ω on June 23, 2020,
and all subsequent data situate above the curve. Hence, the original virus parameters’ values
fit the test data set from May 8 to June 22, 2020.

Using the set of estimated parameters, we simulate the system of Eqs. ( 2), (3), and (4) to
yield the severe COVID-19 epidemic curve D. From this curve, using Eq. (9), we estimate
the fatality rate α to obtain the accumulated number of deaths Θ . From this estimated curve,
we calculate the daily curve Θd using Eq. (10). Figure 3 shows the estimated curve Θ (a)
and the calculated curve Θd (b) with the corresponding observed data. The 7-day moving
average of the daily observed data is also shown in Fig. 3b.
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(a) (b)

Fig. 4 The estimated curves Θ1, Θ2, Θ3, and Θ = Θ1 + Θ2 + Θ3 (a) and the calculated daily curve of
Θd = Θ(ti ) − Θ(ti−1), the observed data, and the 7-day moving average (b)

In Fig. 3a, the first observed point detached from the estimated curve Θ on July 21,
2020, and all subsequent data situate above the curve. Hence, the original virus parameters’
values fit the test data set from May 8 to July 20, 2020. Notice that the first observed point
detaching from the estimated curve Θ occurred on July 21, while the severe COVID-19
curve Ω separated on June 23, 28 days earlier. In the estimation of mortality rate α, we used
Δ = 15 days in Θ (t + Δ) = αD(t) and, consequently, it was expected that the curve of
Ω should be detached from the observed data on July 6. Somehow, the unexpectedly early
separation demonstrates that the observed COVID-19 cases also bring mild cases, and we
cannot assure that the observed data constitute only the severe COVID-19 cases anymore
since after. Therefore, the fatality data are more reliable in characterizing the severe COVID-
19 cases than the observedCOVID-19 data containingmild and possibly asymptomatic cases.
In other words, we cannot match the registered data with the severe COVID-19 curve D.

Let us assess the model’s prediction ability by comparing the observed data with the
original SARS-CoV-2 epidemiological quarantine scenario. Since July 21, 2020, the observed
COVID-19 fatalities situate systematically above the estimated curve Θ , showing that the
epidemiological scenario of quarantinewasperturbed. (FromFigs. 2a, 3a, the epidemiological
scenario under quarantine using input data set adjusted the test data set from May 8 to June
22 (Ω) or July 20 (Θ), showing that quarantine lasted until that date.) Indeed, São Paulo
State initiated the relaxation by the end-June 2020. Hence, since July 6, 2020, the test data
set must be described by incorporating intermittent pulses of release in the model (Yang and
Greenhalgh 2015).

Besides evaluating the deaths from non-specified severe COVID-19 cases D , we use the
clinical evolution since the onset of symptoms to assess the number of fatalities. The number
of deaths is estimated taking into account the three clinical phases of COVID-19. Figure 4
shows the estimated curves Θ1, Θ2, Θ3, and Θ = Θ1 +Θ2 +Θ3 (a) and the calculated daily
curve of Θd = Θ(ti )−Θ(ti−1) and the observed data (b). The curve corresponding to Θ1 is
close to the horizontal axis. We used the values given in Table 3, and Eqs. (14), (15) and (16)
for Θ1, Θ2, and Θ3. In the estimation of the fatality rate αio, i = 1, 2, 3, we used Δ = 18
days.

The epidemiological scenario of partial quarantine in São Paulo State was described by the
model parameters’ values given in Table 2 and the values for the COVID-19 in hospitals’ care
given in Table 3. Figures 2 and 3 describe the quarantine considering only the original SARS-
CoV-2 transmission. In Yang et al. (2020b), the epidemiological scenarios of relaxation’s
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Table 4 The i-th date and proportion of release (ui ), the protective measure (ε), the proportion transferring
from original to variant viruses j ik , with k = E, A, P, M , and the fatality rate αv

Date ui ε jE jA jP jM αv

During quarantine 0 0.52 − − − − −
July 5, 2020 0.1 0.52 0.01 0.01 0.02 0.03 0.0052

July 20, 2020 0.1 0.55 0.01 0.01 0.02 0.03 0.0052

August 4, 2020 0.1 0.56 0.01 0.01 0.02 0.03 0.0052

August 19, 2020 0.1 0.6 0.01 0.01 0.02 0.03 0.0052

November 2, 2020 0.48 0.65 0.05 0.2 0.4 0.6 0.0052

February 25, 2021 0.6 0.75 0.15 0.3 0.6 0.9 0.0064

description were assessed based on the plan elaborated by the S ão Paulo State authorities
(Plano são paulo 2020). There, the COVID-19 deaths were under-estimated (see Fig. 16 in
Yang et al. (2020b) for severe COVID-19 cases), showing that more virulent viruses must be
considered besides the relaxation. The epidemiological scenario in Amazonas State (Brazil)
can shed more light on the virulent variants’ role in association with relaxation. In Amazonas
State, deaths in January–February 2021 are higher than those that occurred during all 2020
(Informações covid-19 2021). This increased number cannot be explained only by the partial
relaxation once a significant number of deaths caused by the P.1 variant was found.

3.2 The epidemiological scenario of relaxation

In the preceding section, we estimated the model parameters against the severe COVID-
19 observed data. In the first months after the outbreak of the COVID-19 epidemic, the
scarcity of the tests (serology and PCR) due to the novelty of the pandemic did not allow
to test those individuals with COVID-19 symptoms. Hence, the test to confirm infection by
SARS-CoV-2 was performed basically in the hospitalized and dead individuals presenting
COVID-19 symptoms. Thus, almost all recorded data in São Paulo State were composed
of severe COVID-19 cases. However, the widespread test to catch SARS-CoV-2 infection
included those presenting mild COVID-19 and asymptomatic individuals. For this reason, in
this section, we estimate the registered COVID-19 deaths instead of the severe cases.

The parameters related to the natural history of the original COVID-19 and the estimated
transmission parameters are given in Table 2, which aremaintained constant. The parameters’
values for the variant COVID-19 are changed based on the original virus’s values, given in
Table 2. As we pointed out, the mutations occur as the epidemic evolves, and individuals
infected with a pool of less virulent viruses may harbor more virulent viruses by mutation.
The variant virus may coexist or even displaces the original virus by competition, and the
severe COVID-19 cases increase. Hence, we estimate the fraction of individuals infected
with the original virus being transferred to the compartment of individuals harboring variant
viruses by mutations. Table 4 shows the date of the i-th transfer and the corresponding value
for j ik , with k = E, A, P, M , and the fatality rate αv . The fatality rate increased by 14%
compared to the mortality induced by the original virus, which increased by 39% only in the
last release on February 25, 2021.

In Table 4, we assumed small jE , and the relations jP = 2 jA and jM = 3 jA. The reason
behind these assumptions is the increased mutations occurring along with the progression
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(a) (b)

Fig. 5 The estimated curve Θ and the observed data (a), and the calculated curve Θd , the observed data, and
the 7-day moving average (b)

(a) (b)

Fig. 6 The curve of estimated Ω and observed data (a), and the calculated Ωd , observed data, and the 7-day
moving average (b)

of the infection. For instance, the exposed individuals are just infected and harboring a
negligible amount of virus; hence, jE assumes small value. Suppose that a small amount of
virus characterizes asymptomatic status; thus, jA must be lower than jP and jM . Finally,
individuals in mild disease conditions spend more time in this stage than pre-symptomatic
individuals besides harboring a large amount of virus; hence jM > jP . Notice that the
transfer from compartments of individuals infected with the original virus to variant virus
compartments increased on November 2, 2020, with an additional increase on February 25,
2021.

Figure 5 shows the estimated curves Θo, Θv , and Θ and the observed data (a), and the
calculated curve Θd and the observed data (b). The 7-day moving average of the daily
observed data is also shown in Fig. 5b. The curves Θ and Θd are given by Eqs. (9) and (10).
The estimated curves Θo, Θv , and Θ approach asymptotically 38270, 93000, and 131300.

Figure 6 shows the estimated curves Ωo, Ωv , and Ω and the observed data (a), and
the calculated curve Ωd and the observed data (b). The 7-day moving average of the daily
observed data is also shown in Fig. 6b. The curves Ω and Ωd are given by Eqs. (7) and (8).
The estimated curves Ωo, Ωv , and Ω approach asymptotically 735800, 1.408 million, and
1.783 million.
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(a) (b)

Fig. 7 The estimated curves of D, Dv , and Dtot = D+ Dv (a) and the proportions D/Dtot and Dv/Dtot (b)

Figure 6a shows the recorded COVID-19 data above the estimated severe cases Ω , con-
firming that these observed data carry on the mild and perhaps asymptomatic individuals
caught by mass tests. However, Fig. 6b shows roughly a similar trend between the lower-
valued estimated daily curve Ωd and the observed data Ωob. Notice that at mid-May 2021,
there is an increasing trend not captured by the estimation, which was also seen smoothly in
Fig. 5b.

Figure 7a shows theCOVID-19 epidemic curves D, Dv , and Dtot = D+Dv corresponding
to the estimated curves presented in Figs. 5a and 6a. Figure 7b shows the proportions D/Dtot

and Dv/Dtot (b). The ascending phase of the D curve is roughly characterized by the effective
reproduction number given by Eq. (33) greater than one (Ref > 1), while the descending
phase, by Ref < 1 (see Yang et al. 2021a). The epidemic peak (62080) with the original virus
in the quarantine occurred on July 1, 2020, and the epidemic peak (109800) with the majority
of variant virus in the relaxation occurred on May 5, 2021. The more virulent SARS-CoV-2
transmission increased the severe COVID-19 cases by 77%.

Figure 7a shows a severe variant epidemic increasing rapidly at the end of 2020, reaching
the peak on May 5, 2021. This more intense epidemic in comparison with the original one
is due to the relaxation allied with the widespread of the variant SARS-CoV-2 having higher
R0v (9.4% higher than R0). In Fig. 7b, we observe the displacement of the original SARS-
CoV-2 by the variant virus, which corresponds to around 80% of infections at the beginning
of 2021.

When susceptible individuals are infected, they pass through the natural history ofCOVID-
19 stages and become immunes. Figure 8 shows the curves S , Q, and Stot = S + Q (a) and
the curves R, Rv , and Rtot = R + Rv (b). The susceptible individuals Stot decrease from
44.6 million to 6.8 million, while the recovered individuals increase from 0 to 36.7 million.
At the end of the epidemic, the susceptible and recovered individuals are 15.25% and 82.3%
of the population.

We estimatedΘ , fromwhich we retrievedΩ . Now, using thisΩ , we estimate the COVID-
19 fatalities curves Θ1, Θ2, and Θ3 considering the clinical evolution of the disease. Table 5
shows the estimated parameters related to the clinical evolution of the variant virus. In the
estimation of the fatality rates αio, i = 1, 2, 3, we used Δ = 15 days.

Notice that during the quarantine, we used Δ = 18 days to estimate the curves Θ1, Θ2,
and Θ3. However, the appearance of variant SARS-CoV-2 after the relaxation reduced the
appearance of the COVID-19 symptoms to Δ = 15 days. The fatality rates αio, i = 1, 2, 3,
were not changed in comparison with the deaths induced by the original virus but increased
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(a) (b)

Fig. 8 The estimated curves of S,Q, and Stot = S+Q (a) and the estimated curves of R, Rv , and Rtot = R+Rv

(b)

Table 5 The estimated parameters related to the clinical evolution of the variant virus and Δ

Date h1v h2v α1v α2v α3v Δ (days)

During quarantine − − − − − 18

July 5, 2020 0.25 0.5 0.0005 0.04 0.55 15

November 2, 2020 0.27 0.52 0.0005 0.04 0.55 15

February 25, 2021 0.27 0.52 0.0006 0.055 0.57 15

(a) (b)

Fig. 9 The estimated curves Θ1, Θ2, Θ3, and Θ = Θ1 + Θ2 + Θ3 (a) and the calculated daily curve of
Θd = Θ(ti ) − Θ(ti−1), the observed data, and the 7-day moving average (b)

only in the last release on February 25, 2021. However, the proportions h1v and h2v increased
since the beginning of the relaxation on July 6, 2020.

Figure 9 shows the estimated curves Θ1, Θ2, Θ3, and Θ = Θ1 + Θ2 + Θ3 (a) and the
calculated daily curve Θd = Θ(ti ) − Θ(ti−1) and the observed data (b). The 7-day moving
average of the daily observed data is also shown in Fig. 9b. We used the values given in
Table 5, and Eqs. (14), (15) and (16) for Θ1 , Θ2, and Θ3. For daily curve Θd , we used Eq.
(10). The estimated curvesΘ1,Θ2,Θ3, andΘ approach asymptotically 973, 20830, 120800,
and 142600.
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The clinical evolution, using Eqs. (14), (15) and ( 16), estimated 11300 (8.6%) more
fatalities than that provided by the dynamic system, using Eq. (9). Figure 5b shows the
estimated curveΘ following the trend of the 7-day moving average of the observed dataΘob

except in March and April 2021. In March, the data are situated above the curve, but in April,
below the data. However, Fig. 9b shows this behavior from March to May.

4 Discussion

In the first months of the COVID-19 outbreak, the absence of a mass test against SARS-CoV-
2 infection and clinical follow-up of infected individuals did not permit the discrimination
between asymptomatic and pre-symptomatic individuals. Considering this initial period,
we explained the COVID-19 data from São Paulo State considering less virulent (original)
SARS-CoV-2 transmission. The estimated model parameters yielded R0 = 7.63 for the basic
reproduction number corresponding to the original virus. A more complex model incorpo-
rating different fatalities among individuals aged up to 60 years and above 60 years resulted
in R0 = R0y + R0o = 9.24 (partials R0y = 7.73 for subpopulation below 60 years, and for
above 60 years old, R0o = 1.51) (Yang et al. 2021a).

The partial quarantine and protective measures flattened the epidemic curve in São Paulo
State. Still, the transmission was maintained at a relatively higher level (the effective repro-
duction number reached one around 80 days later Yang et al. 2021a). However, since July
21, 2020, the observed number of deaths was systematically above the estimated curve Θ

considering quarantine only. This fact permitted establishing that the effects of relaxation
began in São Paulo State appeared on July 21; however, it was not fully implemented.

However, the persistent transmission of SARS-CoV-2 should result in a high number
of mutations. Among these mutations, some acquired an enhanced ability to infect cells,
increasing the risk of death. In fact, São Paulo State still maintained part of the population in
isolation, but 68,904 deaths on March 24, 2021, surpassed 57,300 predicted by the epidemic
with original SARS-CoV-2 (Yang et al. 2021a). This higher number of deaths may be a
consequence of the appearance of more virulent variants during the prolonged SARS-CoV-2
transmission. Moreover, more viruses will be released in the environment when more cells
are infected, increasing the transmission. Considering these biological effects, we shortened
parameters σ−1

v and γ −1
1v (times to become infectious and to present symptoms) and enlarged

γ −1
v , γ −1

2v , and γ −1
3v (times to recover from the infection) in Table 2. On the other hand, the

increased number of severe symptomatic individuals is isolated in hospitals, and mild cases
are detected by test and advised to isolate. Contrarily, the decreased numbers of asymptomatic
and pre-symptomatic individuals (carriers) are not detected and circulate freely. Additionally,
the carriers are in close contact with other susceptible individuals, contrarily to individuals
manifesting any suspicious symptoms (not necessarily COVID-19). These populational fea-
tures and social behaviors may vary the transmission rates, increasing or decreasing. These
complex biological and populational influences on the COVID-19 epidemic were oversim-
plified in our model, and letting for the variant virus transmission rates the same values
estimated from the original virus, we obtained R0v = 8.35.

In themodel, the force of infections λ and λv defined by Eq. (1) provide the per-capita inci-
dences in the subpopulations infected with original and variant SARS-CoV-2. We assumed
a transfer ( jE , jA, jP , and jM ) from individuals infected with the original virus to the status
of infection with the variant virus. This transfer can be hypothesized to have two origins
in the individuals infected with the pool of less virulent virus: (1) the occurrence of muta-
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Fig. 10 The fraction R/N at the end of the first wave of the natural epidemic as a function of R0. * indicates
R0 at which the value of R/N is calculated

tions expressing enhanced cells’ infection, and (2) a presence of a small amount of more
virulent virus accelerating cells’ infection than the original virus. In both cases, the predom-
inance of variant virus displacing the fewer cells’ infectivity virus results in the transfer to
subpopulation infected with more virulent SARS-CoV-2.

Figures 5b shows a good fitting for the daily recorded data of deaths. From this fitting, we
retrieved the daily severe COVID-19 curve shown in Fig. 6b. The observed data situate above
the retrieved curve, but the pattern is similar in both curves, indicating that the difference is the
infected individuals caught by mass tests. Using the accumulated severe COVID-19 curveΩ

retrieved from the estimated curve Θ shown in Fig. 6a, we estimated the accumulated deaths
using the clinical evolution shown in Fig. 9b. At the end of the first wave of the epidemic,
the number of fatalities will stay between 131300 and 142600.

Yang et al. (2021a) stated that the importance of a flattened epidemic by quarantine was
the avoidance of the overloaded hospitals and the time gained to develop vaccines. In Yang
et al. (2020b), they showed that the relaxation retook the interrupted epidemic, approaching
the natural epidemic, which is characterized by the absence of any interventions (quarantine
and protective measures). We use the original virus parameters given in Table 2 to evaluate
the fraction of recovered individuals at the end of the first natural epidemic (when the first
plateau is reached) as a function of the basic reproduction number. Figure 10 shows the
fraction R/N at the end of the first wave of the natural epidemic as a function of R0. For
R0 = 7.63, we have R/N = 99.38% and S/N = 0.25% .

Let us discuss the role of vaccines. We discuss the effects of vaccination on the first wave
of the COVID-19 epidemic, and when the natural epidemic attains a steady state. We assume
that individuals vaccinated with 100% efficacy are transferred to the recovered compartment.

In Fig. 8, at the end of the first wave of the epidemic, the fraction of recovered individuals
attained 82.3% of the population. On the other hand, the susceptible individuals are 15.3%
of the population, including 6.7% of the isolated individuals. In Table 4, the protection factor
remained ε = 0.75 at the end of the first wave of the epidemic. Thismeans that by vaccinating
82.3% of the population, disregarding the past infection, the COVID-19 epidemic fades out.
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However, at this level of vaccine coverage, there is potentially retaken of the epidemic when
all individuals are released and the protective measures are abandoned. In this case, a smooth
outbreakmay occur, approaching the trend of the natural epidemic. To void this retaken of the
epidemic, around 99% of the population must be vaccinated (see Fig. 10), keeping in mind
that this result refers to a vaccine with 100% efficacy. Depending on how the effectiveness of
an administered vaccine is lowered, the epidemic will be sustained at a lower or intermediate
level.

The basic reproduction number R0 indicates how the epidemic grows in an outbreak,
and also the level of the epidemic at the steady state (in the transmission of SARS-CoV-
2 without mutations, the equilibrium fraction of the susceptible individuals (at endemicity)
obeys s∗ = 1/R0, see Eq. (33) in Appendix A.2) (Yang 2021).We stress that this relationship
is not valid at the end of the first wave of the epidemic. Reaching the endemicity, the basic
reproduction number R0 determines the magnitude of effort to eradicate infection—in the
case of 100% efficacy vaccine, the efforts to eliminate a diseasemust be vaccinating a fraction
equal to or greater than 1−1/R0 of susceptible individuals (Anderson andMay 1992) to yield
Ref < 1. In Yang (2001), analyzing vaccination as a control mechanism, if Ref is reduced by
the vaccine to a value lower than one, the number of cases decreased following exponential-
type decay. For R0 = 7.63, we must vaccinate at least 87% of susceptible individuals to
eradicate the infection (Anderson andMay 1992). For the variant SARS-CoV-2 transmission,
we must vaccinate at least 88%.

In this paper, we did not consider the waning of immunity. However, the loss of immunity
on the COVID-19 epidemic could be negligible during the 16 months of the pandemic. We
considered the same transmission rates for the original and variant viruses, and for individuals
transmitting in the asymptomatic, pre-symptomatic, andmildCOVID-19 compartments. This
assumption can be relaxed to provide a more accurate epidemiological scenario. Finally, we
can incorporate the appearance of new variants in themodel, such as the currently widespread
SARS-CoV-2 Delta variant originated from India.

5 Conclusion

During the epidemic, the fast mutations in RNA virus can result in a pool of variants. On
average, in this pool, mutations behaving like lower or higher virulence than the original
SARS-CoV-2 can be found. We formulated a model considering the transmission of lower
(original) and higher (variant) virulent SARS-CoV-2. The original SARS-CoV-2 transmission
explained the COVID-19 epidemic in São Paulo State during the partial quarantine. However,
the accumulated mutations yielding variant SARS-CoV-2 changed the trend of the original
COVID-19 epidemic when the relaxation began. Consequently, the severe COVID-19 cases
and fatalities increased hugely.

The efficacy of COVID-19 vaccines ranges between around 50% and 90%. Considering
this range of vaccine effectiveness, the model presented here can be adapted to evaluate
vaccination schemes tomaintain the transmission at a lower level or even to reach eradication.
This study is left for future work.
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A Analysis of themodel

We present the initial and boundary conditions supplied to the system of Eqs. (2), (3), and
(4) in the main text and the analysis to obtain the basic reproduction number R0.

A.1 Initial and boundary conditions

The initial conditions (simulation time t = 0) supplied to the system of Eqs. (2), (3), and (4)
are

S (0) = N0, X (0) = nX , where X = Q, E, A, P, M, D, R1, R2, R3

where nX is a non-negative number. For instance, nE = 0means that there is not any exposed
individuals at the beginning of the epidemic. At the beginning of the COVID-19 epidemic,
we have only original virus, then we use

⎧
⎪⎪⎨

⎪⎪⎩

original
(
S (0) = N0, Q (0) = 0, E (0) = 30, A(0) = 24,

P(0) = 6, M(0) = 6, D(0) = 1
)

and
variant

(
Ev (0) = 0, Av (0) = 0, Pv(0) = 0, Mv(0) = 0, Dv(0) = 0

)
(18)

plus R j (0) = 0 and R jv(0) = 0, for j = 1, 2, 3. Simulation time t = 0 corresponds to
the calendar time when the first case was confirmed (February 26 for São Paulo State), and
N0 = 44.6 million. (See Yang et al. 2021a for details in the initial conditions’ setup.)

We drop out the pulses in Eq. (2) and transfer them to the boundary conditions. Hence,
equations for susceptible and isolated individuals are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt
S = φN − μS − (λ + λv) S + π1y1R1 + π1v y1vR1v

+π2y2R2 + π2v y2vR2v + π3R3 + π3vR3v
d

dt
Q = −μQ,

(19)
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and the equations for original and variant SARS-CoV-2 infected individuals are given by Eqs.
(3) and (4). The isolation implemented at τ = 27 (corresponding to calendar time March 24,
2020) is described by the boundary conditions

{
S
(
τ+) = S

(
τ−) (1 − u) and Q

(
τ+) = Q

(
τ−) + S

(
τ−) u,

X
(
τ+) = X

(
τ−) , where X = E, A, P, M, D, R1, R2, R3,

(20)

with τ− = limt→τ t (for t < τ ), and τ+ = limτ←t t (for t > τ ).
The boundary conditions supplied to the model at the moments of release ti = τ +∑i
w=1 τw , for i = 1, 2, · · · , are

S
(
t+i

) = S
(
t−i

) + ui Q j
(
t−i

)
and Q

(
t+i

) = (1 − ui ) Q
(
t−i

)
, (21)

plus

X
(
t+i

) = X
(
t−i

)
, where X = E, A, P, M, D, R1, R2, R3, (22)

where we have t−i = limt→ti t (for t < ti ), and t+ = limti←t t (for t > ti ). If τw = τ , then
ti = τ + iτ .

The boundary conditions (20), (21), and (22) are connected to the original virus’s dynamic.
To the variant virus’s dynamic, we allow the transfer from the original virus’s compartments
to the variant virus’s compartments (E , A, P , and M to corresponding Ev , Av , Pv , and Mv).

A.2 Trivial equilibrium point: the basic reproduction number R0

The basic reproduction number R0 is obtained by the analysis of the trivial equilibrium point
in the steady state. However, the non-autonomous and varying population systemof Eqs. (19),
(3) and ( 4) does not have steady state. Nevertheless, the system of equations is autonomous
if we do not consider quarantine and relaxation (we let u = ui = 0, i = 1, 2, · · · ), but
the population N varies. For this reason, considering the fractions of individuals in each
compartment defined by

x = X
N , where X = S, Q, E, A, P, M, D, R1, R2, R3,

with similar definitions to the variant virus, and using Eq. (5 ) for N , we obtain

d

dt
x ≡ d

dt

X

N
= 1

N

d

dt
X − x

1

N

d

dt
N = 1

N

d

dt
X − x (φ − μ) + x (αd + αvdv) .

Hence, the system of Eqs. (19), (3) and (4 ) in terms of fractions becomes, for susceptible
and isolated individuals,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt
s = φ − φs − (λ + λv) s + π1y1r1 + π1v y1vr1v + π2y2r2 + π2v y2vr2v

+π3r3 + π3vr3v + s (αd + αvdv)
d

dt
q = −φq + q (αd + αvdv) ,

(23)
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for original virus infected individuals,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
e = λs − (σ + φ) e + e (αd + αvdv)

d

dt
a = (1 − jE ) lσe − (γ + φ) a + a (αd + αvdv)

d

dt
p = (1 − jE ) (1 − l) σe − (γ1 + φ) p + p (αd + αvdv)

d

dt
m = (1 − jA) (1 − χ) γ a + (1 − jP ) kγ1 p − (γ3 + φ)m + m (αd + αvdv)

d

dt
d = (1 − jP ) (1 − k) γ1 p − (γ2 + φ + α) d + d (αd + αvdv)

d

dt
r1 = (1 − jA) χγ a + (1 − jM ) γ3m + γ2d − (π1 + φ) r1 + r1 (αd + αvdv)

d

dt
r2 = (1 − y1) π1r1 − (π2 + φ) r2 + r2 (αd + αvdv)

d

dt
r3 = (1 − y2) π2r2 − (π3 + φ) r3 + r3 (αd + αvdv) ,

(24)

and for variant virus infected individuals,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
ev = λvs − (σv + φ) ev + ev (αd + αvdv)

d

dt
av = jE lσe + lvσvev − (γv + φ) av + av (αd + αvdv)

d

dt
pv = jE (1 − l) σe + (1 − lv) σvev − (γ1v + φ) pv + pv (αd + αvdv)

d

dt
mv = jA (1 − χ) γ a + jPkγ1 p + (1 − χv) γvav + kvγ1v pv − (γ3v + φ)mv

+mv (αd + αvdv)
d

dt
dv = jP (1 − k) γ1 p + (1 − kv) γ1v pv − (γ2v + φ + αv) dv + dv (αd + αvdv)

d

dt
r1v = jAχγ a + jMγ3m + χvγvav + γ3vmv + γ2vdv − (π1v + φ) r1v

+r1v (αd + αvdv)

d

dt
r2v = (1 − y1v) π1vr1v − (π2v + φ) r2v + r2v (αd + αvdv)

d

dt
r3v = (1 − y2v) π2vr2v − (π3v + φ) r3v + r3v (αd + αvdv) ,

(25)

where λ is the force of infection given by Eq. (1) in the main text re-written as

λ = ε (β1a + β2 p + β3zm) , and λv = ε (β1vav + β2v pv + β3vzvmv) ,

and

s + q + e + a + p + m + d + r1 + r2 + r3 + ev + av + pv + mv + dv + r1v + r2v + r3v = 1.

This new systemof equations has a steady state, that is, the number of individuals in all classes
varies with time; however, their fractions attain equilibrium values (the sum of derivatives of
all classes is zero).
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The trivial (disease-free) equilibrium point P0 of the new system of Eqs. (23), (24) and
(25) is given by

P0 = (
s0 = 1, x0 = 0

)
, (26)

where x0 = (q, e, a, p,m, d, r1, r2, r3, ev, av, pv,mv, dv, r1v, r2v, r3v). Let us assess the
stability of P0 by applying the next generation matrix theory considering the vector of
variables x = (e, a, p,m, ev, av, pv,mv) (Diekmannet al. 2010).Weapplymethodproposed
in Yang (2014) and proved in Yang and Greenhalgh (2015). There are control mechanisms,
hence we obtain the reduced reproduction number Rc by interventions.

To obtain the reduced reproduction number, diagonal matrix V is considered. Hence, the
vectors f and v are

f T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε (β1a + β2 p + β3zm) s + e (αd + αvdv)

(1 − jE ) lσe + a (αd + αvdv)

(1 − jE ) (1 − l) σe + p (αd + αvdv)

(1 − jA) (1 − χ) γ a + (1 − jP ) kγ1 p + m (αd + αvdv)

ε (β1vav + β2v pv + β3vzvmv) s + ev (αd + αvdv)

jE lσe + lvσvev + av (αd + αvdv)

jE (1 − l) σe + (1 − lv) σvev + pv (αd + αvdv)

jA (1 − χ) γ a + jPkγ1 p + (1 − χv) γvav + kvγ1v pv + mv (αd + αvdv)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(27)

and

vT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(σ + φ) e

(γ + φ) a

(γ1 + φ) p

(γ3 + φ)m

(σv + φ) ev

(γv + φ) av

(γ1v + φ) pv

(γ3v + φ)mv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (28)

where the superscript T stands for the transposition of a matrix, from which we obtain the
matrices F and V (see Diekmann et al. 2010) evaluated at the trivial equilibrium P0, which
were omitted. The next-generation matrix FV−1 is
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FV−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 εβ1
γ+φ

εβ2
γ1+φ

εzβ3
γ3+φ

0 0 0 0

(1− jE )lσ
σ+φ

0 0 0 0 0 0 0

(1− jE )(1−l)σ
σ+φ

0 0 0 0 0 0 0

0 (1− jA)(1−χ)γ
γ+φ

(1− jP )kγ1
γ1+φ

0 0 0 0 0

0 0 0 0 0 εβ1v
γv+φ

εβ2v
γ1v+φ

εzvβ3v
γ3v+φ

jE lσ
σ+φ

0 0 0 lvσv

σv+φ
0 0 0

jE (1−l)σ
σ+φ

0 0 0 (1−lv)σv

σv+φ
0 0 0

0 0 0 0 0 (1−χv)γv

γv+φ
kvγ1v
γ1v+φ

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the characteristic equation corresponding to FV−1 is
[
κ
4 − (R1 + R2) κ

2 − R3κ
] × [

κ
4 − (R1v + R2v) κ

2 − R3vκ

] = 0, (29)

where the partial reproduction numbers R1, R2, R3, R1v , R2v and R3v are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 = (1 − jE ) lσ

σ + φ

εβ1

γ + φ

R2 = (1 − jE ) (1 − l) σ

σ + φ

εβ2

γ1 + φ

R3 =
[

(1 − jE ) lσ

σ + φ

(1 − jA) (1 − χ) γ

γ + φ
+ (1 − jE ) (1 − l) σ

σ + φ

(1 − jP ) kγ1
γ1 + φ

]
εzβ3

γ3 + φ

R1v = lvσv

σv + φ

εβ1v

γv + φ

R2v = (1 − lv) σv

σv + φ

εβ2v

γ1v + φ

R3v =
[

lvσv

σv + φ

(1 − χv) γv

γv + φ
+ (1 − lv) σv

σv + φ

kvγ1v

γ1v + φ

]
εzvβ3v

γ3v + φ
.

(30)

We have two third-degree polynomials, and the evaluation of the spectral radius ρ
(
FV−1

)

is not an easy task. The procedure proposed in Yang (2014) allows us to obtain the threshold
Rc using the sum of coefficients of the characteristic equations, that is,

Rc = max {R, Rv} , (31)

where R and Rv are given by

R = R1 + R2 + R3, and Rv = R1v + R2v + R3v. (32)

Hence, the trivial equilibrium point P0 is locally asymptotically stable if Rc < 1.
The control parameter ε decreases the transmission rate, which is absent at the beginning

of the epidemic, and the definition of the basic reproduction number is fulfilled. Hence, the
stringent definition of the basic reproduction number R0 is obtained when we let ε = 1
(absence of protective measures) in Eq. (30), and Rc = R0. Moreover, at the beginning of
the COVID-19 epidemic, the variant virus is absent (Rv = 0), hence R = R0.

In this model, it is not an easy task to obtain the fraction of the susceptible individual at
the non-trivial equilibrium point by solving the system of Eqs. (23), (24) and (25), neither
by calculating the characteristic equation applying the procedure proposed in Yang (2014).
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Hence, we can not obtain the effective reproduction number Ref (see Yang et al. 2021a).
However, for original SARS-CoV-2 transmission alone, letting Rv = 0, we have

s∗ ≈ S∗
N∗ = 1

R0
and Ref ≈ R0

S
N . (33)

The global stability of the trivial equilibrium point when R0 < 1 can be found in Yang et al.
(2021b).

The basic reproduction number R0 is the secondary cases produced by one infectious
individual (could be anyone in one of the individuals harboring the virus) in a completely
susceptible population without constraints (Anderson and May 1992). Let us understand R1,
R2, and R3 stressing that the interpretation is the same for the mutant variant. To facil-
itate the understanding, we consider this infectious individual in exposed class E . This
individual enters into one of the infectious compartments composed of asymptomatic (A),
pre-symptomatic (P); and pre-symptomatic individual enters into mild COVID-19 compart-
ment (M).

1. R1 (and R2) takes into account the transmission by one exposed individual becoming
asymptomatic (A) or pre-symptomatic (P). We interpret for asymptomatic individ-
ual transmitting (between parentheses, for pre-symptomatic individual) infection. One
exposed individual survives during the incubation period with probability σ/ (σ + φ)

and does not harbor virulent variant with probability 1 − jE , and becomes asymp-
tomatic with probability l (pre-symptomatic, with 1 − l) and generates, during the time
1/ (γ + φ) (pre-symptomatic, 1/ (γ1 + φ)) staying in this class, on average β1/ (γ + φ)

(pre-symptomatic, β2/ (γ + φ)) secondary cases, which is R1 (and R2).
2. R3 takes into account the transmission by a mild COVID-19 individual. An infectious

individual has two routes to reach M : passing through A or P (this case is given between
parentheses). One exposed individual survives during the incubation period with proba-
bility σ/ (σ + φ), and not harboring virulent variant with probability 1− jE , and becomes
asymptomatic with probability lv and not harboring virulent variant with probability
1 − jA (pre-symptomatic, with 1 − lv and 1 − jP ); survives at this stage with prob-
ability γ / (γ + φ) (pre-symptomatic, γ1/ (γ1 + φ)) and presents mild COVID-19 (M)
with probability 1 − χ (pre-symptomatic, k); and generates, during the time 1/ (γ3 + φ)

staying in this class, on average zβ3/ (γ3 + φ) secondary cases, which is R3.

B Estimationmethod

The detailed estimation procedure can be found in Yang et al. (2021a). Briefly, to estimate
the model parameters, we consider the squared sum

n∑

i=1

[
� (ti ) − �

ob (ti )
]2

, (34)

where � (ti ) is the solution of the dynamic system and �
ob (ti ) is the observed value at time

ti :

(1) To estimate β1, β2, β3, u, and ε, we use � (ti ) = Ω given by Eq. (7) and �
ob = Ωob.

(2) To estimate α, we use � (ti ) = Θ (ti + Δ) given by Eq. (9) and �
ob = Θob. We

considered Δ = 15 days obtained by analyzing the data from São Paulo State (Yang
et al. 2021a).
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(3) To estimate the fatality proportions and the progression rates of COVID-19, we use
� (ti ) = Θ (ti + Δ1) given by Eqs. (14), (15 ), and (16) and �

ob = Θob. We must
consider that the time of registering new cases and deaths is delayed by Δ1 days, that is,
Θ1o (t + Δ1) = α1oς1oB1o(t), for instance.

All model parameters are described in Yang et al. (2021a), except the hospitalization
parameters’ values. Let us present their values, considering three clinical stages in the
COVID-19 states: (I) early infection, (II) pulmonary phase, and (III) hyper inflammation
phase. Siddiqi and Mehra (2020) observed that complications appeared around 10–12 days
after initial symptoms, leading to the cytokine storm. Hence, we let for the period in each
one of the three phases ς−1

1o = 3, ς−1
2o = 7 and ς−1

3o = 15 (all in days). We allow increased
periods for variant subpopulation, ς−1

1o = 4, ς−1
2o = 9 and ς−1

3o = 20 (all in days).
At the beginning of the epidemic, severe COVID-19 cases (D) were confirmed during

hospital care; hence, we use ho = 1.0 and hv = 1.0. In Wuhan, China (Surveillances
2020), 81% of infections did not need hospital care, 14% were severe (developing severe
diseases including pneumonia and shortness of breath), and 4.7% were critical (respiratory
failure, septic shock, and multi-organ failure). From 19%, we use h1 = 0.19, which is
the proportion of hospitalized individuals. However, we use higher values for variant and
original subpopulations, h1v = 0.25 and h1o = 0.21. For the ratio hospital:ICUs/intubated,
we use approximately 14% and 4.7%, resulting in 3 : 1, and h2 = 1/4 = 0.25, which is the
proportion of ICUs/intubated care. However, we use higher values for variant and original
subpopulations, h2v = 0.5 and h2o = 0.45.We assume a lowmortality rate in viremia (phase
1), letting α1o = 0.0005 and α1v = 0.0005. For patients with an inflammatory response
in-hospital care (phase 2), we let α2o = 0.04 and α2v = 0.04. Finally, we assume that
proportions not surviving in ICUs/intubated with Cytokine storm (phase 3) are α3o = 0.55
and α3v = 0.55.

References

Alvarenga MY, Sameshima K, Baccalá LA, Yang HM (1999) Non-linear analysis of the rhythmic activity in
rodent brains. Math Biosci 157(1–2):287–302

Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Oxford University
Press, Oxford

Battineni G, Chintalapudi N, Amenta F (2020) SARS-CoV-2 epidemic calculation in Italy by SEIR compart-
mental models. Appl Comput Inform 16/17: 1–10. https://doi.org/10.1108/ACI-09-2020-0060

Boletim completo (2020). https://www.seade.gov.br/coronavirus/. Accessed 8 May 2020
CDC: Sars-cov-2 variants (2021). https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-

surveillance/variant-info.html. Accessed 23 February
Diekmann O, Heesterbeek J, Roberts MG (2010) The construction of next-generation matrices for compart-

mental epidemic models. J R Soc Interface 7(47):873–885
FergusonNM, LaydonD, Nedjati-Gilani G, Imai N, Ainslie K, BaguelinM, Bhatia S, Boonyasiri A, Cucunubá

Z, Cuomo-Dannenburg G et al (2020) Impact of non-pharmaceutical interventions (NPIS) to reduce
covid-19 mortality and healthcare demand. Imperial College covid-19 response team. Imperial College
COVID-19 Response Team, p 20

Guirao A (2020) The covid-19 outbreak in Spain. A simple dynamics model, some lessons, and a theoretical
framework for control response. Infect Dis Model 5:652–669

Informações covid-19 (2021). http://www.transparencia.am.gov.br/covid-19/monitoramento-covid-19/.
Accessed 27 February

KorberB, FischerWM,GnanakaranS,YoonH,Theiler J,AbfaltererW,HengartnerN,Giorgi EE,Bhattacharya
T, Foley B et al (2020) Tracking changes in sars-cov-2 spike: evidence that d614g increases infectivity
of the covid-19 virus. Cell 182(4):812–827

Liu Y, Ning Z, Chen Y, GuoM, Liu Y, Gali NK, Sun L, Duan Y, Cai J, Westerdahl D et al (2020) Aerodynamic
analysis of Sars-cov-2 in two Wuhan hospitals. Nature 582(7813):557–560

123

https://doi.org/10.1108/ACI-09-2020-0060
https://www.seade.gov.br/coronavirus/
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
http://www.transparencia.am.gov.br/covid-19/monitoramento-covid-19/


Evaluating relaxation and mutation Page 27 of 27   272 

Pericàs J, Hernandez-Meneses M, Sheahan T, Quintana E, Ambrosioni J, Sandoval E, Falces C, Marcos M,
TusetM, Vilella A et al (2020) Covid-19: from epidemiology to treatment. Eur Heart J 41(22):2092–2112

Plano são paulo (2020). https://www.saopaulo.sp.gov.br/coronavirus/planosp. Accessed 10 May 2020
Siddiqi HK, Mehra MR (2020) Covid-19 illness in native and immunosuppressed states: a clinical-therapeutic

staging proposal. J Heart Lung Transpl 39(5):405
Surveillances V (2020) The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases

(covid-19)—China, 2020. China CDC Wkly 2(8):113–122
WHO (2021) Coronavirus disease (covid-19): Virus evolution, 30December 2020. https://www.who.int/news-

room/q-a-detail/sars-cov-2-evolution. Accessed 23 Feb 2020
Yang H (2001) Modeling directly transmitted infections in a routinely vaccinated population-the force of

infection described by a Volterra integral equation. Appl Math Comput 122(1):27–58
Yang H (2014) The basic reproduction number obtained from Jacobian and next generation matrices-a case

study of dengue transmission modelling. Biosystems 126:52–75
Yang HM (2021) Are the beginning and ending phases of epidemics characterized by the next generation 750

matrices? –A case study of drug-sensitive and resistant tuberculosis model. J Biol Syst 29(3):719–740
Yang H, Greenhalgh D (2015) Proof of conjecture in: the basic reproduction number obtained from Jacobian

and next generation matrices—a case study of dengue transmission modelling. Appl Math Comput
265:103–107

Yang HM, Lombardi Junior HMLP, Yang AC (2020a) Are the SIR and SEIR models suitable to estimate
the basic reproduction number for the covid-19 epidemic? medRxiv. https://doi.org/10.1101/2020.10.
11.20210831

Yang HM, Lombardi Junior LP, Yang AC, Castro FFM (2020b) Evaluating the impacts of release in Säo Paulo
state (Brazil) on the epidemic of covid-19 based on mathematical model. medRxiv. https://doi.org/10.
1101/2020.08.03.20167221

Yang HM, Lombardi Junior LP, Castro FFM, Yang AC (2021a) Mathematical modeling of the transmission
of Sars-cov-2–evaluating the impact of isolation in São Paulo state (Brazil) and lockdown in Spain
associated with protective measures on the epidemic of covid-19. Plos One 16(6):e0252271

Yang HM, Junior LLP, Yang AC (2021b)Modeling the transmission of the new coronavirus in São Paulo state,
Brazil—assessing the epidemiological impacts of isolating young and elder persons. Math Med Biol J
IMA 38(2):137–177

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al (2020) A novel
coronavirus from patients with pneumonia in china, 2019. New Engl J Med 382(8):727–733. https://doi.
org/10.1056/NEJMoa2001017

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.saopaulo.sp.gov.br/coronavirus/planosp
https://www.who.int/news-room/q-a-detail/sars-cov-2-evolution
https://www.who.int/news-room/q-a-detail/sars-cov-2-evolution
https://doi.org/10.1101/2020.10.11.20210831
https://doi.org/10.1101/2020.10.11.20210831
https://doi.org/10.1101/2020.08.03.20167221
https://doi.org/10.1101/2020.08.03.20167221
https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1056/NEJMoa2001017

	Evaluating the impacts of relaxation and mutation in the SARS-CoV-2 on the COVID-19 epidemic based on a mathematical model: a case study of São Paulo State (Brazil)
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 The SQEAPMDR1,2,3 model
	2.2 Epidemiological values

	3 Results
	3.1 The epidemiological scenario of quarantine
	3.2 The epidemiological scenario of relaxation


	4 Discussion
	5 Conclusion
	Acknowledgements
	A Analysis of the model 
	A.1 Initial and boundary conditions 
	A.2 Trivial equilibrium point: the basic reproduction number  R0  

	B Estimation method 
	References





