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Abstract
Dengue disease is caused by an infected mosquito bite and manifests in different clini-
cal symptoms. The complexity of the pathogenesis of dengue virus and the limitations
of biological knowledge have been barriers to completely understanding the progress
of this disease. To address this concern, we developed a mathematical model of the
immune response to eliminate dengue virus. The model considered both cellular and
humoral immune responses, and we evaluated their contributions to the clearance of
dengue virus.We also performed global sensitivity analysis and parameters estimation
using clinical data. We found the global stability for virus-free equilibrium and for the
virus-presence equilibrium, we concluded that to avoid oscillations in themodel and to
control the viral load, a strong proliferation of cytotoxic cells must prevail. However,
if there exists a weak proliferation of cytotoxic cells, the way to avoid instabilities is
to either inhibit the differentiation of T-CD4+ helper cells in Th1 cells or increase the
proliferation of B cells.

Keywords Dengue virus · Adaptive immune response · Humoral and cellular
immune responses · Deterministic model · Net reproduction number of virus

Mathematics Subject Classification 92B05 · 92C50

1 Introduction

Dengue virus (DENV), a flavivirus of a large family of related positive-strand RNA
viruses (Flaviviridae), is transmitted by arthropod of the genus Aedes and is prevalent
in different parts of the world, actually there are four DENV serotypes (DENV-1,
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DENV-2, DENV-3, and DENV-4). As a result of being pathogenic for humans and
capable of transmission in heavily populated areas, dengue virus (arbovirus) can cause
widespread and serious epidemics, which constitute one of the major public health
problems in many tropical and subtropical regions of the world where Aedes aegypti
and other appropriate mosquito vectors are present.

After an infectious mosquito bite, DENV attaches to the surface of host cells
through an interaction of E-protein (type I membrane protein) with one or more
receptors, and several cell surface proteins have been described as a candidate for
flavivirus receptors. After binding, virions are taken up by receptor-mediated endo-
cytosis, although direct fusion at the plasma membrane has also been observed.
Virions are found in uncoated prelysosomal vesicles, where an acid-catalyzed mem-
brane fusion is thought to release the nucleocapsid into the cytoplasm. Following
entry and fusion, nucleocapsids are presumably disassembled, genomic RNA is trans-
lated and replication of RNA is initiated. Nascent virions are transported by bulk
flow through the secretory pathway to the cell surface, where exocytosis occurs
[15]. Dengue virus replicates in local lymph nodes and within 2–3days dissemi-
nates via the blood to various tissues. Virus circulates in the blood typically for
5days in infected monocytes/macrophages, and to a lesser degree in B cells and
T cells. It also replicates in the skin and reactive spleen lymphoid cells. How-
ever, the quick replication of the virus is contained by the immune response. The
rise of levels of serum neutralizing antibodies is correlated with the clearance of
viremia, but immunity is associated with both humoral and cellular immune responses
[19].

There are many mathematical models describing the transmission and spread-
ing of dengue infection in human population [9,13,14,32,34–36]. Those models are
allowed to evaluate some aspects of dengue epidemics, such as the populational risk
of dengue infection and control (measured by basic reproduction number, denoted
by R0), the dependence of dengue incidence with seasonally varying temperature
and rain, and the transovarial transmission. Besides this macroscopic approach,
mathematical models can deal with the interaction of dengue virus with immune
response mounted by humans. Indeed, there are mathematical models of DENV
that describe the interaction between DENV and the target cells, or the interac-
tion among DENV, the target cells and the immune system [2,3,6,11,24,25,27,29].
However, those models did not deal with humoral and cellular immune response
to dengue virus, except the paper [27]; our mathematical model instead try to
describe the adaptive immune response activated by the T helper cells, assum-
ing that the innate immune system failed to contain the virus injected by infected
mosquitoes. In the modelling, besides taking into account DENV and target cells,
our model considers T-CD4+ helper cells differentiating into Th1 cells or Th2
cells.

We stress the fact that a primary dengue infection is being considered here, and the
antibody dependent enhancement due to secondary dengue infection is not dealt with,
see [4] to view this consideration.

The paper is structured as follows. In Sect. 2, a model for primary dengue infection
interacting with an adaptive immune response is presented. Section3 presents the
analysis of the model (equilibrium points and the stability analysis)
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Table 1 Definition of the
variables of the model given by
Eqs. (1)–(4)

Symbol Definition

S Target cells

I Infected cells

V Dengue virus

T0 Naive Th0 helper cells

T1 Th1 helper cells

T2 Th2 helper cells

Tcr Naive cytotoxic T-CD8+ cells

Tca Activated cytotoxic T-CD8+ cells

Br Resting B cells

Ba Activated B cells

Section 4 presents the numerical simulation to evaluate the immune response. Sec-
tion 5 presents the estimation and sensitivity of the model parameters. Discussion is
given in Sect. 6.

2 Model formulation

Dengue virus circulates due to the interaction between human and mosquito pop-
ulations in urban areas. A primary infection by one serotype of dengue virus is
being considered in the modelling. A model dealing with a second serotype of
DENV becomes complex. For instance, antibody dependent enhancement due to sec-
ondary dengue infection may occur in the first days just after the virus inoculation
concomitantly with the immune system mounting a response to this secondary infec-
tion.

We model a primary infection by DENV and the reaction of adaptive immune
response as described in the introduction. To do this, we use cells involved in
the infection and the immune response to dengue virus. The model variables are:
S—target cells, I—infected cells, V—dengue virus; T-CD4+ helper cells Th0,
Th1 and Th2 denoted by T0, T1 and T2; Br—naive B cells, Ba—B plasma cells;
Tcr—T-CD8+ naive cells; Tca—T-CD8+ activated cells. The role of each of these
variables is described below. In Table 1 a summary of variables of the model is pre-
sented.

Firstly, let us describe the dynamics of DENV and adaptive immune response
without interaction. We are assuming that innate immune response did not contain
DENV. All model parameters are constant and per-capita rates, unless explicitly
cited. DENV infects a pool of target cells, such as skin cells, dendritic cells, and
monocytes/macrophages. We assume that this pool of cells (S) is regulated by home-
ostasis, that is, they are produced (in different sites) at a total rate ks , and die at
a rate μs . These cells are infected by DENV at a rate βI , and become infected
cells (I ) which have, besides the natural mortality rate μs , an additional death
rate μI due to apoptosis. We assume that on average N2 viruses can infected each
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cell. For simplicity, we assume that nascent virus are released in the tissues as
soon as infected cells die (μs + μI ), and each dying cell releases on average N1
virions. On the other hand, the number of DENV in humans (V ) decreases at a con-
stant mortality rate μv . The dynamics of DENV without immune response is given
by ⎧

⎪⎨

⎪⎩

dS
dt = ks − βI SV − μs S
d I
dt = βI SV − (μs + μI )I
dV
dt = N1(μs + μI )I − N2βI SV − μvV .

As we have done with target cells, we assume that lymphocytes maintain
their size by homeostasis. The naive T-CD4+ helper cells (T0) are produced
in the thymus at total rate k0 and die at rate μ0. The naive T-CD8+ cyto-
toxic cells (Tcr ) are produced also in the thymus at total rate kcr and die at
rate μcr . The naive B cells (Br ) are produced in the bone marrow at total
rate kr and die at rate μr . Hence, the resting populations of lymphocyte cells
obey

⎧
⎪⎨

⎪⎩

dT0
dt = k0 − μ0T0
dTcr
dt = kcr − μcr Tcr
dBr
dt = kr − μr Br .

Now, we describe the adaptive immune system responding to face the invad-
ing DENV. We assume that both humoral and cellular immune responses are
acting to eliminate the virus, and, for simplicity, we are not taking into account
the inhibition of humoral response in the cellular response (one of the Th2
cytokines, IL-10, acts to decrease the rate of proliferation of Th1 cells), and vice-
versa (IFN-γ produced by Th1 cells decreases the rate of proliferation of Th2
cells).

After the innate immune response is left behind, the infected cells travel to
lymph node to activate the adaptive immune response. The different signals emit-
ted by the infected cells and the innate immune response will differentiate Th0
cells into Th1 and Th2 helper cells, in order to activate balanced humoral and cel-
lular immune responses to fade out the dengue infection. The naive Th0 helper
cells (T0) are capable of differentiating into Th1 cells (T1) by the signaliza-
tion of cytokine IL-12 and into Th2 cells (T2) by the cytokine IL-4. Instead of
cytokines, we assume that these differentiations are mediated by the presence and
the stimulus of infected cells (I ) and virus (V ), at rates γ1 I and γ2V , respec-
tively. The death rates of these activated Th1 and Th2 helper cells are μ1 and
μ2.

The humoral pathway response is triggered when Th2 helper cells (T2) activate
resting B cells (Br ) into activated B cells (Ba) at a rate αr T2. The plasma cells (Ba)
proliferate at rate αaV and decay at rate μa , and these cells secrete antibodies with
improved affinity to DENV. The formation of antigen-antibody complex is propor-
tional to Ba , and the phagocytosis of this complex occurs at rate αvBa .

In a similar way, the naive T-CD8+ cells (Tcr ) are activated by Th1 helper cells (T1)
at rate αcr T1. The activated T-CD8+ cells (Tca) proliferate at rate αca I and decay at
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rateμca , and these cells, receiving the correct signal, will perform the lysis of infected
cells at rate αI Tca .

Based on above assumptions and descriptionwith respect to the interaction between
DENV and immune response, the dynamics of this interaction is given by

⎧
⎪⎨

⎪⎩

dS
dt = ks − βI V S − μs S
d I
dt = βI V S − αI Tca I − (μs + μI )I
dV
dt = N1(μs + μI )I − N2βI SV − αvBaV − μvV ,

(1)

which describes the vital dynamics of virus, and the action of humoral and immune
responses to eliminate it, and the Eq. (2) describes the differentiation of Th0 cells into
Th1 and Th2 cells,

dT0
dt

= k0 − γ1 I T0 − γ2VT0 − μ0T0, (2)

Finally the system of equations (3) and (4), describe the cellular pathway of immune
response to clearance DENV, and the humoral pathway of immune response, respec-
tively.

⎧
⎪⎨

⎪⎩

dT1
dt = γ1 I T0 − μ1T1
dTcr
dt = kcr − αcr T1Tcr − μcr Tcr
dTca
dt = αcr T1Tcr + αca I Tca − μcaTca,

(3)

⎧
⎪⎨

⎪⎩

dT2
dt = γ2VT0 − μ2T2
dBr
dt = kr − αr T2Br − μr Br
dBa
dt = αr T2Br + αaV Ba − μa Ba,

(4)

The system of equations (1)–(4) describes the invasion of virus that evaded innate
immune response, that initiates unconstrained increasing of the viremia. However,
after the mounting of the adaptive immune response, the virus is contained, or even
eliminated. The model does not take into account the apoptosis of the activated lym-
phocytes after the containment of the virus. The apoptosis can be introduced in the
model allowing the parameters γ1, γ2, μca and μa be dependent on variables I and
V . For instance, the mortality rates μca and μa can be written as

μca =
{

μca, if I > I ∗
∞, if I ≤ I ∗ and μa =

{
μa, if V > V ∗
∞, if V ≤ V ∗ ,

where I ∗ and V ∗ are very small numbers such that infected cells and virus could be
considered eliminated, a model considering this approximation can be found in [33].
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3 Mathematical Analysis

3.1 Positively invariant set

A =
{

P ∈ R10+0 : N1S + N I + V + T0 + T1 + T2 + αv

αa
(Br + Ba)

+ θ (Tcr + Tca) ≤ k̄

δ
, I <

μca

αca
, V <

μa

αa

}

, (5)

where P = (S, I , V , T0, T1, T2, Br , Ba, Tcr , Tca), N =(N1+N2), θ= NαI
αca

, k̄ = k0+
N1ks+αv

αa
kr + θkcr and δ = min

{

μs, μv, μ0, μ1, μ2, μr , μa, μcr , μca,
N2(μs+μI )

N

}

.

Lemma 1 The set A is positively invariant with respect to system (1)–(4).

Proof let P0 ∈ A be the initial condition of the system (1)–(4) and

� = N1S + N I + V + T0 + T1 + T2 + αv

αa
(Br + Ba) + θ (Tcr + Tca) . (6)

Taking the derivative of � with respect to t , we have:

d�

dt
= N1

dS

dt
+ N

d I

dt
+ dV

dt
+ dT0

dt
+ dT1

dt
+ dT2

dt
+ αv

αa

(
dBr
dt

+ dBa

dt

)

+ θ

(
dTcr
dt

+ dTca
dt

)

replacing the equations of the system (1)–(4), we have

d�

dt
= N1ks − N1μs S − N2(μs + μI )I − μvV + k0 − μ0T0 − μ1T1 − μ2T2

+ αv

αa
[kr − (μr Br + μa Ba)] + θ [kcr − (μcr Tcr + μcaTca)] ,

which can be written as

d�

dt
+ N1μs S + N2(μs + μI )I + μvV + μ0T0 + μ1T1 + μ2T2

+ αv

αa
(μr Br + μa Ba) + θ (μcr Tcr + μcaTca) = k̄,

where k̄ = k0 + N1ks + αv

αa
kr + θkcr .
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If we choose δ = min

{

μs, μv, μ0, μ1, μ2, μr , μa, μcr , μca,
N2(μs+μI )

N

}

, we con-

clude that,

d�

dt
+ δ� ≤ k̄, then � ≤ k̄

δ
+

(

�(0) − k̄

δ

)

e−δt , for all t ≥ 0,

wich implies � ≤ k̄
δ
.

3.2 Basic reproduction number

The net reproduction number of virus R0 is given by

R0 = βI ks
μvμs

N1 − βI ks
μvμs

N2 = βI (N1 − N2)ks
μvμs

. (7)

The term net reproduction number of virus was borrowed from epidemiology [17].
Let us interpret the threshold R0. There are ks/μs number of target cells that can

be infected in a completely susceptible pool of cells. In the absence of the immune
response, the average period of survival time of virus is 1/μv , and during this time a
virus can infect a susceptible cell. Then, a virus, during the time period 1/μv , encoun-
ters ks/μs target cells, and infects one of them with rate βI . Hence,

(
βI ks/μs

)
/μv is

the capacity of one virus infecting one cell in a completely susceptible pool of target
cells. However, there are two characteristics when dealing with infection (or pene-
tration) of virus in a cell. First, instead of only one virus, it is considered infection
by on average N2 virions. On the other hand, instead of only one nascent virus, the
infected cell releases on average N1 virions. Hence, the first term in Eq. (7) is the
average number of virions released by one infected cell, while the second term is
the average number of virions penetrating one susceptible cell. Therefore, R0 is the
net reproduction of nascent virions originated from N2 virions penetrating in a single
cell. Biologically, the minimum number of virions infecting one cell is 1, and the net
reproduction number must be positive (if negative, P0 is always stable), hence we
must have 1 ≤ N2 < N1.

The system of equations (1)–(4) has two equilibrium points. The first equilibrium
point represents a clearance of infection by the effective action of immune response,
which we call the virus-free equilibrium point P0, which is given by

P0 =
(
ks
μs

, 0, 0,
k0
μ0

, 0, 0,
kr
μr

, 0,
kcr
μcr

, 0

)

.

The other equilibrium point P1 represents a persistent infection by DENV, which is
given by

P1 = (S∗, I ∗, V ∗, T ∗
0 , T ∗

1 , T ∗
2 , B∗

r , B∗
a , T ∗

cr , T
∗
ca),

where the coordinates are given in Sect. 3.4. Numerically, it was shown that there is a
unique biologically feasible steady state P1 (all coordinates are non-negatives).

123



M. C. Gómez, H. M. Yang

3.3 Stability of virus-free equilibrium

Let P0 be the virus-free equilibrium point which is obtained when we assume that non
particle of dengue virus is in the body, i.e., V = 0, then

P0 =
(
ks
μs

, 0, 0,
k0
μ0

, 0, 0,
kr
μr

, 0,
kcr
μcr

, 0

)

.

For this point, the local and global stability is analyzed, and the threshold R0 is
obtained.

Theorem 1 The virus-free equilibrium P0 is locally asymptotically stable if R0 < 1
and is unstable if R0 > 1.

Proof To prove the local stability at point P0, we show that the eigenvalues of the
Jacobian matrix of the system (1)–(4) at P0 are negative or have a negative real part .
The characteristic polynomial evaluated at point P0 is p(λ) = |A−λI3×3||B−λI7×7|,
where

A =

⎛

⎜
⎜
⎜
⎝

−μs 0 −βI ks
μs

0 −μs − μI

βI ks
μs

0
(
μs + μI

)
N1 −βI ks N2

μs
− μv

⎞

⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ0 0 0 0 0 0 0
0 −μ1 0 0 0 0 0
0 0 −μ2 0 0 0 0

0 0 −αr kr
μr

−μr 0 0 0

0 0 αr kr
μr

0 −μa 0 0

0 −αcr kcr
μcr

0 0 0 −μcr 0

0 αcr kcr
μcr

0 0 0 0 −μca

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The roots of polynomial p(λ) are givenby−μs ,−μ0, −μ1,−μ2,−μr ,−μa ,−μcr ,
−μca plus the solutions of following second degree polynomial:

λ2 +
(

μs + μI + μv + βI ks N2

μs

)

λ + (μs + μI )μv (1 − R0) ,

where R0 = βI (N1 − N2)ks
μvμs

. Then by the Routh Hurwitz criteria [10] (pg 230), the

virus-free equilibrium P0 is locally asymptotically stable if the coefficients of second
degree polynomial are positive, i.e., if R0 < 1, and it is unstable if R0 > 1.

Remark 1 When R0 = 1 we have a zero eigenvalue and all others have negative real
part, that is, the point P0 is non hyperbolic. We shall prove that this point is globally
asymptotically stable if R0 < 1.
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3.3.1 Global stability of disease-free equilibrium

Theorem 2 The point P0 is globally asymptotically stable if R0 < 1 in A.

Proof To proof this, we start to show that the system (1) is globally asymptotically
stable if R0 < 1 when Tca and Ba are bounded non-negative functions. Finally we use

this result to proof that the point
(
k0
μ0

, 0, 0, kr
μr

, 0, kcr
μcr

, 0
)
is globally asymptotically

stable for the system (2)–(4).
Firstly, observe that Tca and Ba are bounded by Lemma 1. Let L be the function

defined as follows L : 	 → R, where

	 = {(S, I , V ) : S > 0, I ≥ 0, V ≥ 0}

and

L = (N1 − N2)

(

S − ks
μs

− ks
μs

ln
μs S

ks

)

+ N1 I + V .

It is easily to check that L( ks
μs

, 0, 0) = 0 and L > 0 for all point different of ( ks
μs

, 0, 0).
Besides, the orbital derivative of L along solutions of the system (1) is given by

L̇=(N1−N2)

(

1− ks
μs S

) (

ks−βI SV−μs S

)

+N1

[

βI SV − αI Tca I − (μs + μI )I

]

+
[

N1(μs + μI )I − N2βI SV − αvBaV − μvV

]

,

which is equivalent to

L̇ = −(N1 − N2)μs S

(

1 − ks
μs S

)2

+ (R0 − 1)μvV − N1αI Tca I − αvBaV .

From last equation L̇ < 0 in 	 − {( ks
μs

, 0, 0)}, if and only if R0 < 1. Then the point

( ks
μs

, 0, 0) is global asymptotically stable for the system (1). It means that (S, I , V ) →
( ks
μs

, 0, 0) as t → ∞ and R0 < 1, which implies that the system (2)–(4) could be
analyze as follow:

In the Eq. (2), we can see that

dT0
dt

= k0 − γ1 I T0 − γ2VT0 − μ0T0 �⇒ dT0
dt

= k0 − μ0T0, then T0 → k0
μ0

and in the system of equations (3), we have

dT1
dt

= γ1 I T0 − μ1T1 �⇒ dT1
dt

= −μ1T1, then T1 → 0 which implies that
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dTcr
dt

= kcr − αcr T1Tcr − μcr Tcr �⇒ dTcr
dt

= kcr − μcr Tcr , then Tcr → kcr
μcr

dTca
dt

= αcr T1Tcr + αca I Tca − μcaTca �⇒ dTca
dt

= −μcaTca, then Tca → 0.

Similarly, we can see that in the system of equations (4), we can have T2 → 0,
Br → kr

μr
and Ba → 0, when (S, I , V ) → ( ks

μs
, 0, 0) as t → ∞ and R0 < 1.

3.4 Virus presence equilibrium

Theorem 1 implies that the net reproduction number R0 is a parameter of bifurcation.
When R0 > 1, the systemhas two equilibria, but just one of this solution is biologically
feasible (V has a positive value).

Let P1 = (S∗, I ∗, V ∗, T ∗
0 , T ∗

1 , T ∗
2 , B∗

r , B∗
a , T ∗

cr , T
∗
ca) be the non-trivial equilibrium

point. The coordinates of P1 are given by:

S∗ = ks
βI V

∗ + μs

I ∗ = φ(V ∗)V ∗

N1(μI + μs)

T ∗
0 = k0N1(μI + μs)

ψ(V ∗)

T ∗
1 = γ1k0φ(V ∗)V ∗

μ1ψ(V ∗)

T ∗
2 = γ2k0N1(μI + μs)V ∗

μ2ψ(V ∗)

B∗
r = krμ2ψ(V ∗)

αrγ2k0N1(μI + μs)V ∗ + μrμ2ψ(V ∗)

B∗
a = −ϕ(V ∗) + √

ϕ(V ∗)2 + 4(μa − αaV ∗)ξηV ∗2
2(μa − αaV ∗)ξV ∗

T ∗
cr = kcrμ1ψ(V ∗)

θφ(V ∗)V ∗ + μcrμ1σ̄ (V ∗)

T ∗
ca = αcr kcrγ1k0φ(V ∗)V ∗

(μca − αca I ∗){θφ(V ∗)V ∗ + μcrμ1σ̄ (V ∗)} , (8)

where

ξ = μrμ2γ1αv

η = αr krγ2k0N1(μI + μs)

θ = (αcrγ1k0 + μcrμ1γ1)

ϕ(V ∗) = (μa − αaV
∗)

{
η

kr
V ∗ + μrμ2[γ1(N2βI S

∗ + μv)V
∗ + (γ2V

∗ + μ0)N1(μI + μs)]
}
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φ(V ∗) =
αv

(
−ϕ(V ∗) + √

ϕ(V ∗)2 + 4(μa − αaV ∗)ξηV ∗2
)

2(μa − αaV ∗)ξV ∗ + N2βI ks
(βI V

∗ + μs)
+ μv

ψ(V ∗) = γ1φ(V ∗)V ∗ + (γ2V
∗ + μ0)N1(μI + μs)

σ̄ (V ∗) = (γ2V
∗ + μ0)N1(μI + μs),

and V ∗ is positive solution of the equation

χ(V ) = χ1(V )χ2(V )χ3(V ) − g(V ) = 0, (9)

and

χ1(V ) = [((N1 − N2)βI ks − μv(βI V + μs))2(μa − αaV )ξV − αv B̄a(βI V + μs)]
χ2(V ) = [(μca N1(μI + μs) − αcaμvV )(βI V + μs) − αca N2βI ksV ]2(μa − αaV )ξ

− αcaαv B̄a(βI V + μs)

χ3(V ) = {[θ(N2βI ks + μv(βI V + μs))V + μcrμ1σ̄ (βI V + μs)]2(μa − αaV )ξ

+ θαv B̄a(βI V + μs)}
g(V ) = ξb

[
(N2βI ks + μv(βI V + μs))2(μa − αaV )ξV + αv B̄a(βI V + μs)

]2

2(μa − αaV )(βI V + μs)

B̄a = 2(μa − αaV )ξV Ba

b = N1αI αcr kcrγ1k0.

Equation (9) has two positive solutions for V , but just one is feasible (positive values)

if we impose the restrictions V ∗ <
μa

αa
and I ∗ <

μca

αca
, which are necessary to get

positive values of B∗
a and T ∗

ca respectively. Figure 1 show the graphs of the function
defined in (9) for the cases αca < αa (Fig. 1a), αca = αa (Fig. 1b) and αca > αa

(Fig. 1c). In all these cases, there exists only one feasible solution.
Now we focus our attention in this point (P1) to evaluate the humoral and cellular

immune responses and present this analysis in the next section.

4 Evaluating the immune response by the differentiation of T helper
cells

The immune system is very complex and every disease generates a different immune
response, which arise challenges for the researchers. However, there is a well known
differentiation pathway of naive Th cells into Th1 and Th2 cells mediated by chemical
signaling: Th1 cells are inhibited by the cytokines IL-4 and IL-10 produced by Th2
cells, which, in turn, can be inhibited by IFN-γ produced by Th1 cells. In the model
the action of these cytokines was not considered explicitly, however we can assess the
inhibitory actions indirectly by parameters γ1 and γ2.

In this sense, we analyze the joint action of humoral and cellular immune responses
for the virus-presence equilibrium, P1, by studying the model, given by Eqs. (1)–
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Fig. 1 The figure shows the existence of unique feasible V value. a Graph of the function defined in the

equation (9) when αca < αa . In this case, there exist two points satisfying V <
μa

αa
, but just one of these

pointsmeets the inequality I <
μca

αca
. The feasible point is V = 1.774×10−20, I = 2.4303×−19, while the

thresholds are
μa

αa
= 0.066and

μca

αca
= 0.55.bCasewhenαca = αa . There exists just onepoint that satisfies

the constraints, V <
μa

αa
and I <

μca

αca
. The values of the point are V = 1.3906 × 10−20 <

μa

αa
= 0.55

and I = 1.9052×10−19 <
μca

αca
= 0.55 c Finally αca > αa . In this situation, there exists just one possible

point satisfying V <
μa

αa
and I <

μca

αca
. The point is V = 1.606× 10−19 and I = 2.2002× 10−18, while

the thresholds are
μa

αa
= 0.066 and

μca

αca
= 0.0413

(4). In particular, we discuss how the variation of the Th helper cells differentiation
parameters γ1, γ2 and the proliferation parameters of activated Ba and Tca cells, αa ,
αca respectively, affects on the dynamic of the general model.

In order to do this, we use the values of the parameters given in Table 2 and the

initial point

(
ks
μs

, 0, V0,
k0
μ0

, 0, 0,
kr
μr

, 0,
kcr
μcr

, 0

)

, where V0 = 0.9× 10−3, indicates

the amount of virus inoculated in a healthy person.
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In Fig. 2a, we can see the viral dynamics when the proliferation parameter of
cytotoxic cells (αca) is lower than proliferation parameter of activated B cells (αa)
and in the Fig. 2b we can see an increase (200 times) in the proliferation parameter
αa . In these cases, it is not possible to keep the viral load in low levels due to
periodic oscillations. However, if there is an increase in the proliferation parameter
of cytotoxic cells (100 times), it seems enough to avoid oscillations and to keep the
viral load in low levels (see Fig. 2c). In this situation, the influence of the cytotoxic
activity is fundamental to control the viral load. On the other hand, if there exists a
weak cytotoxic response represented in a decrease in proliferation parameter αca but
a strong humoral response represented in a increase of proliferation parameter αa , we
have two situations to avoid the oscillations. First, if the proliferation parameter αca

is decreased ten fold and the proliferation parameter αa is increased in one thousand
fold, the oscillations disappear, and the infection is controlled (see Fig. 3a). Second,
if there is an inhibition of Th0 cells differentiating into Th1 cells, i.e., γ2 
 γ1, with
γ1 decreased in one hundred fold and the parameter αa increased in ten fold, the viral
load has a significant reduction(see Fig. 3b).

Previous results show that the cellular immune response affects more on the dynam-
ics of the general model. Also, with a high proliferation of Tca cells, it is possible to
decrease the viral load to the level which laboratory tests can not detect the DENV in
the body, although, mathematically, the viral load will always be nonzero. However,
when the proliferation of Ba cells is not strong enough, the humoral immune response
will not completely stop the infection by DENV, and it is necessary the usage of
different strategies, like inhibition of differentiation of Th0 cells into Th1 cells.

5 Numerical simulation using parameters from literature and viral
load data

Here we deal with global sensitivity analysis and parameter estimations.

5.1 Parameters from literature

The half life of monocytes/macrophages in vivo is between 1 and 2months [5], so
we assume the value μs = 1

60 = 0.017 (dimensions of the parameters are given in
Table 3, hence they are omitted in the text). The activated macrophages has a half
life of 7 days and because the virus induces apoptosis [7,20], the death rate of the
infected cells is taken as μI = 0.2. There are on average 4 × 105 monocytes per
milliliter of blood in humans [1], this will be the initial quantity of monocytes S(0),
so this implies that ks = μs S(0) = 6.8 × 103. In healthy humans, the T-CD4+ and
T-CD8+ cells survive on average 87 and 77 days, respectively [12], it means that the
death rates μ0, μ1 and μ2 have the same value 0.011, and μcr = 0.013. The initial
values of T0(0) and Tcr (0) are 1 × 106 per milliliter of blood, which are the average
quantities of T cells per milliliter of blood [1], thus k0 = μ0T0(0) = 1.1 × 104 and
kcr = μcr Tcr (0) = 1.3 × 104. The activated T-CD8+ cells have half life of a month
approximately [28], then μca = 0.03 . The B cells in rest have half life between 2 and
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Fig. 2 The figure shows the viral dynamics when the proiliferation parameters of immune response are
varied. a In this figure, we can see a weak immune response represented in a low proliferation of activated
citotoxic cells and activated B cells. In this case, we have instability and the appearance of periodic oscil-
lations. b In this figure, we see an increase of proliferation(αa ) of Ba cells and the parameter αca remains
as before. This increase is not enough to prevent oscillations, that is, control or decrease of the viral load. c
In this figure, we consider that the proliferation parameter of Tca cells is increased in one hundred fold and
the proliferation parameter of Ba cells remains as in (a). In this case, the viral load is decreased and there
is no oscillations. This means that cytotoxic activity causes a strong influence on the decline of viral load
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(a) αca = 0.006, αa = 500
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Fig. 3 The figure shows the viral dynamics and represents the way how the immune system acts with a weak
cellular immune response to control the infection. a In this case, to avoid the oscillations, it is necessary a
strong humoral immune represented in the proliferation of Ba cells. b This case describes the incapacity of
the immune system to reduce the viral load only by the increasing the proliferation of B cells, for which it
is necessary an inhibition of differentiation of T0 cells into T1 cells, implying in a reduction of parameter
γ1 with γ2 
 γ1.
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Table 3 Additional values for model parameters

Parameter Definition Value Unit Reference

ks Target cells production rate 6.8 × 103 ml−1 × day−1 [1,5]

k0 Th helper cells production rate 1.1 × 104 ml−1 × day−1 [1,12]

kr Naive B cells production rate 5 × 105 ml−1 × day−1 [1]

kcr Naive citotoxic cells production rate 1.3 × 104 ml−1 × day−1 [1]

μs Natural mortality rate of target cells 0.017 day−1 [5]

μI Apoptosis rate of infected cells 0.2 day−1 [7,20]

μ0 Death rate of Th helper cells 0.011 day−1 [12]

μ1 Death rate of Th1 helper cells 0.011 day−1 [12]

μ2 Death rate of Th2 helper cells 0.011 day−1 [12]

μr Naive B cells death rate 0.25 day−1 [18]

μa Death rate of activated B cells 0.02 day−1 [18]

μcr Naive cytotoxic cells death rate 0.013 day−1 [12]

μca Death rate of activated cytotoxic cells 0.03 day−1 [28]

N1 Virions released by infected cells on average 5 × 104 [5,16]

N2 Average of virions entrance into target cells 2

4 days and more than 6 weeks if they are activated [18], which implies μr = 0.25 and
μa = 0.02, respectively.

The quantity of B cells per milliliter of blood is around of 2×106 [1], thus B(0) =
2×106, and as beforewe have kr = μr B(0) = 5×105. The number of virions released
by one infected cell is N1 = 5 × 104 [5,16], and we assume the value N2 = 2.

A summary of these parameters and dimensions is presented in Table 3. The values
of other parameters which are not presented in this table will be estimated in section
5.3.

5.2 Global uncertainty and sensitivity analysis

In mathematical models there are frequently many unknown parameters, therefore
important questions that must be answered are concerned with the relationship of
these parameters with the model outputs, in particular, which ones contribute most
to output variability, and which ones require additional research or are insignificant.
These questions can be answered using uncertainty and sensitivity analyses. We use
the Latin hypercube sampling (Lhs) and Partial rank correlation coefficients (Prcc),
and Extended Fourier amplitude sensitivity test (Efast) to assess global uncertainty
and sensitivity analyses following the methodology proposed in [21]. The chosen
days for these analyses were based on the viremia found in day two and day seven
after infection because these times are crucial in the evolution of dengue infection:
the onset of infection and the clearance. The parameters selected to perform global
uncertainty and sensitivity analyses were βI , αv , γ1, γ2, αr , αcr and μv . We do not
know the thresholds of these parameters except for the mortality rate of DENV μv .
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Table 4 The Lhs with N = 800 and Prcc for the virus V in the days two and seven (∗∗p value < 0.01)

Time βI αv γ2 αr αI γ1

2 0.800394∗∗ − 0.78303∗∗ − 0.62821∗∗ − 0.59711∗∗
7 − 0.63696∗∗ − 0.35573∗∗ − 0.42147∗∗

Table 5 The Lhs with N = 800 and Prcc for the infected cells I in the days two and seven (∗∗p value
< 0.01)

Time βI αv γ2 αr αI γ1

2 0.90099∗∗ −065448∗∗ −0.5645∗∗ −0.55954∗∗
7 −0.6318∗∗ −0.37803∗∗ −0.42181∗∗

The four serotypes of DENV have half life between 2.5 and 7.5h [30]. The results
of Lhs/Prcc for variable V show that in the day two, the effect of infection rate βI is
positively correlated (0.800394) with the viral load V . It means that if we increase this
parameter, the viral load will rise, while the action of antibodies against virus αv , the
differentiation rate of T helper cells into Th2 cells, γ2, and activation of the B cells,
αr , have negative correlations − 0.78303, − 0.62821, and − 0.59711, respectively.
The results of Lhs/Prcc for variable V in the day seven show an interesting fact: the
infection rate βI , the cytotoxic action rate αI and the differentiation rate of T helper
cells into Th1 γ1 are negatively correlated (see Table 4).

The negative correlation of parameters αI and γ1 is due to the cytotoxic action
rate αI helping to decrease the infected cells and the differentiation rate γ1 activates
Th1 cells, which are crucial for the activation of cytotoxic activity. With respect to
the negative correlation of parameter βI , we can say that if we increase this infection
rate, there are more infected cells helping Th0 cells to differentiate into Th1 cells
that are capable of activating the cytotoxic activity of the Tca cells. This suggests that
cytotoxic activity is more important for the clearance of infection. Similar behaviors
happen with the infected cells (see Table 5). The results of sensibility analysis by Efast
are quite similar to those obtained by Lhs/Prcc. The parameters with high first order
(Si ) and total order STi sensitivity indexes are βI , αv and γ2 in the second day, and in
the seventh day, the parameters are αI , γ1 and αcr (see Table 6 ). Similar results occur
with the infected cells (data not shown).

5.3 Parameter estimation

In order to perform parameter estimations, we use real data from primary dengue fever
of three patients with DENV1, DENV2, and DENV3, respectively. These data show
the quantity of DENV in plasma (they can be accessed in the supplementary data in
[6]). We used the parameters of Table 3 and genetic algorithm to find the best set of
unknown parameters βI , αv , γ1, γ2, αr , αa , αcr , αca and μv (see “Appendix A” for a
short explanation). Table 7 shows the parameters estimated from data.
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Table 6 The Efast with Ns = 600 for the virus V in the days two and seven (∗ pvalue < 0.05 and
∗∗ pvalue < 0.01)

Time βI αv γ2 αI γ1 αcr

Si
2 0.0124∗∗ 0.0542∗∗ 0.0083∗
7 0.0135∗ 0.0143∗∗ 0.0126∗ 0.0135∗ 0.0265∗∗ 0.0131∗
STi
2 0.6521∗∗ 0.8805∗∗ 0.6246∗
7 0.8706∗ 0.8751∗∗ 0.8589∗ 08731∗∗ 08694∗∗ 0.8538∗

Table 7 Parameters estimated from three patients with dengue fever with serotypes 1, 2 and 3 (DENV-1,
DENV-2 and DENV-3), respectively

Parameters DENV-1 DENV-2 DENV-3 Units

βI 5 × 10−8 2.37 × 10−8 5 × 10−8 ml × day−1

αv 1.2 × 10−5 2.34 × 10−5 1.21 × 10−5 ml × day−1

γ2 1.0 × 10−7 2.48 × 10−5 1.43 × 10−5 ml × day−1

αr 1.6 × 10−7 1.8 × 10−5 1.61 × 10−5 ml × day−1

αa 2.94 × 10−10 2.1 × 10−12 2.0 × 10−13 ml × day−1

αI 1.6 × 10−5 2.28 × 10−5 1.41 × 10−5 ml × day−1

γ1 1.13 × 10−4 2.38 × 10−5 1.3 × 10−5 ml × day−1

αcr 1.21 × 10−7 2.2 × 10−5 1.41 × 10−5 ml × day−1

αca 4.89 × 10−7 3.16 × 10−9 4.0 × 10−11 ml × day−1

μv 3.3 3.5 3.3 day−1

In all estimations we obtained high values for the proliferation parameter (αca) of
activated Tca cells in comparison with the proliferation parameter (αa) of Ba cells,
whereas the differentiation of Th0 cells into Th1 or Th2 cells is almost of the same
order, which implies that the control of viral load and infected cells are obtainedmostly
by the cytotoxic activity but not exclusively. Indeed, we can see in the fittings of these
parameters in Figs. 4, 5 and 6 that there is a little inhibition of activated Tca cells and
a strong response of Ba cells in the beginning of dengue infection. This could be a
strategy of DENV to spread the virions because it will activate a greater amount of
B cells, which will become into plasma cells that release antibodies with a not high
affinity which may difficult the opsonization of pathogen. The clearance of the DENV
happens when the antibodies improve its affinity and the cytotoxic cells respond to
the right chemical signal. This allows the destruction of infected cells to prevent the
release of new virus, which happens approximately on the fourth day (see Figs. 4, 5,
6).
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Fig. 4 The figure shows the virus, infected cells and immune response dynamics of primary dengue fever
for a patient with virus serotype 1. The points indicated the viral load data. There exists a high response of
B cells compared to T cells. (Color figure online)
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Fig. 5 The figure shows the virus, infected cells and immune response dynamics of primary dengue fever
for a patient with virus serotype 2. The red points indicated the viral load data. There exists a high response
of B cells compared to T cells. It is possible to observe that the response of T cells start after the B cells,
showing a possible inhibition of this immune response. (Color figure online)

6 Discussion

In the present study, we developed a mathematical model of interaction between the
immune system and dengue virus, which is a complex dynamics mediated by many
factors. We proposed a model in which the cellular and humoral immune responses
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Fig. 6 The figure shows the virus, infected cells and immune response dynamics of primary dengue fever
for a patient with virus serotype 3. The points indicated the viral load data. There exists a high response of
B cells compared to T cells and the cellular immune response is inhibited initially but strongly activated in
the end. (Color figure online)

depend on the differentiation of Th0 helper cells into Th1 and Th2 cells. We showed
that the virus-free equilibrium is globally asymptotically stable if the basic reproduc-
tion number is less than one, which could be interpreted like the effectively answer
of innate immune response to stop the dengue virus infection. Finally, the stabil-
ity analysis of virus presence equilibrium showed that the dynamics of the general
model is mostly affected by the cellular immune response. A strong cellular immune
response will be enough to control the viral load and avoid oscillations. Meanwhile,
a weak response in the proliferation of cytotoxic cells will generate oscillations and
the appearance of a limit cycle. There exist two ways to change this behavior. The
first is a strong proliferation of activated B cells, which will generate an improve-
ment in the fitness of antibodies to stop the infection. The second is inhibition of
the differentiation of Th0 cells into Th1 cells, which means that activation of cyto-
toxic cells should be low. In this way, the immune response would predominantly
be the humoral immune response, and the dynamical system will has no oscilla-
tions.

By using the parameters from the medical literature and performing fittings of
unknown parameters of the model through the use of clinical data on dengue fever,
we showed that there is more proliferation of cytotoxic cells than B cells. This is
evident in the values of the proliferation parameter of activated cytotoxic cells, αca ,
which are higher than the values of the proliferation parameter of activated B cells, αa .
These values assure the control of infection, avoid oscillations and suggest a dominant
cellular immune response in relation to the humoral immune response.
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Finally, the simulations showed that the initial humoral immune response is faster
than the cellular immune response at the onset of infection, but the cellular immune
response acts strongly in clearance. This means that the cellular immune response
is inhibited in the beginning of infection as a possible strategy used by the virus to
spread through the body, because the large number of activated B cells will release
initially low affinity antibodies which may difficult the opsonization of pathogen and
it may be a clue to answer why the antibodies can help in the enhancement of second
infections. In fact, in vitro studies of dengue infections in dendritic cells reported a
notably suppressed proliferation of T cells [26,31], and some studies with patients
showed an increase T-CD8+ cell counts later in the course of disease [8,23]. Other
models considering the role of cytokines have to be considered to better analyze the
role of the T-CD8+ cells in the control of the viral replication and the balance between
humoral and cellular immune responses.

Acknowledgements This study was supported by research Grant 2013/17264-0, São Paulo Research Foun-
dation (FAPESP)

Appendices

A Genetic Algorithm

The function to be minimized is f (V , Υ ) = (V − Vdata)2, where V is the viral
load, given by positive solution of the system (1)–( 4) at steady state, Vdata are the
data of viral load of patients and Υ = (βI , αv, γ1, γ2, αr , αa, αcr , αca, μv) is the set
of the unknown parameters, where βI ∈ (βI min, βI max ), αv ∈ (αvmin, αvmax ), . . .,
μv ∈ (μvmin, μvmax ). The first step is the transformation of each parameter in binary
and form a string called chromosome. Let Γ be the binary representation of Υ . Then

Γ = (βI 2αv2γ12γ22αr2αa2αcr2αca2μv2)

will be the chromosome,which has just 1’s and 0’s andβI 2,αv2, γ12, γ22,αr2,αa2,αcr2,
αca2 andμv2 are the binary representation of parameters. This chromosome has length
m = ∑9

i=1 mi , where m1 is the smallest integer such that (βI max − βI min) × 10p <

2m1 − 1, m2 is the smallest integer such that (αvmax − αvmin) × 10p < 2m2 − 1, . . . ,
m9 is the smallest integer such that (μvmax − μvmin) × 10p < 2m9 − 1 and p is the
number indicating decimal places desirable for the parameters. Each mi is the length
of binary string of parameters.
The algorithm is:

1. Initial population
We create a random population P0 of chromosomes, where each chromosome is a
binary string of length m = ∑9

i=1 mi . We suppose that this initial population has
n chromosomes, i.e.,

P0 = {Γ 1
0 , . . . , Γ n

0 }.
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Fig. 7 The one-point crossover in two chromosome

Fig. 8 The mutation operator

2. Evaluation of function
At this step we evaluate the function f at each element of the population P0, that
is, f (V , Υ i ), where Υ i is the decimal representation of Γ i

0 , i = 1, . . . , n.
3. Next Population

At this step we select the next population by applying the genetic operator
(crossover and mutations).

• Selection method
In order to select the population, we apply the tournament selection method,
which consists in selecting randomly some number k of chromosome and
storing the minimum of the set { f (V , Υ J1), . . ., f (V , Υ Jk )} of k elements,
where J is a subset of k elements (J ⊂ {1, 2, . . . , n}), into the next generation.
This process is repeated n times. Obviously, some chromosomes would be
selected more than once. Now, we apply the crossover and mutations operators
to this selected population.

• Crossover operator
This operator apply recombination in the chromosomes (see Fig. 7). We give
the probability of crossover pc. This probability gives us the expected number
pc × n of chromosomes, which undergo the crossover operation. The process
of crossover function is done in the following way: for each chromosome in
the (new) population, we generate a random number r from the range [0, 1].
If r < pc, we select this chromosome for crossover.
If the number of selected chromosomes is even, we can pair them easily. If
the number of selected chromosomes were odd, we would either add one extra
chromosome or remove one selected chromosome, which is made randomly
as well. The operator explained here is known as one-point crossover. There
are other crossover operator as: two-point crossover, uniform crossover and
half uniform crossover.

• Mutation operator
This operator applies alterations in the elements of chromosomes (changes of
0 for 1 and vice versa (see Fig. 8).We give the probability of mutation pm . This
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probability gives us the expected number of mutated elements pm ×m×n . The
process to perform the mutation operator is similar to the crossover operator:
for each chromosome in the current (i.e., after crossover) population and for
each element within the chromosome, a random number r is generated in the
range [0, 1]. If r < pm , then we mutate the element.

4. After all the above steps, we have created the first generation: population P1.
Now just repeat the steps 2 and 3 to P1, and the process goes up to the desired
generations.

A detailed explanation of genetic algorithms can be found in [22]. The algorithm
adapted and used in the simulations can be accessed in the link http://people.csail.mit.
edu/gbezerra/Code/GA/ga.m.
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