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Abstract

We study the global stability of a model of virus dynamics with consideration 
of humoral and cellular immune responses. We use a Lyapunov direct method 
to obtain sufficient conditions for the global stability of virus-free and virus-
presence equilibriums. First, we analyze the model without an immune response 
and found that if the reproductive number of the virus is less than or equal to 
one, the virus-free equilibrium is globally asymptotically stable. However, for 
the virus-presence equilibrium, global stability is obtained if the virus entrance 
rate into the target cells is less than one. We analyze the model with humoral and 
cellular immune responses and found similar results. The difference is that in the 
reproductive number of the virus and in the virus entrance rate into the target 
cells appear parameters of humoral and cellular immune responses, which means 
that the adaptive immune response will cease or control the rise of the infection.

Keywords: global stability; immune response; Lyapunov direct method.

Introduction

Global stability analysis in models of within-host viral infections has been
addressed in particular cases. In [1], the authors proved global stability by
using an extension of the Poincaré–Bendixson theorem for the class of three-
dimensional competitive systems. In [2], the authors used the direct Lyapunov
method to demonstrate global stability. The same was done in a model with a
Beddington–DeAngelis functional response [3]. In [4], the authors proved
global stability of a model considering general nonlinear incidence rate, cure
rate and absorption. In [5], the authors proved global stability of an age-
structured viral infection model with general incidence rate and absorption.
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On the other hand, there are models (see [6-9]) that consider the immune
response with global stability analysis. All of those models study humoral or
cellular immune response or both. A model considering humoral, cellular
immune response and a general incidence rate is presented in [10], which
generalized all the models mentioned before. But this model did not consider
the virus absorption by target cells, that is, when the virus penetrates in the
cells, this amount must be diminished. In this sense, our model, besides
including the humoral and cellular immune responses, takes into account
the virus entrance rate into the target cells. Initially, using a direct Lyapunov
method, we show the global stability of a model of virus dynamics without
immune response. Further, we obtain conditions for the global stability of the
model considering humoral and cellular immune responses. The organization
of this paper is as follows. In Section 2, we present the formulation of the
model with immune response and the positive invariant set. The global
stability analysis of the model without an immune response is presented in
Section 3. Finally, in Section 6, we provide the global stability analysis of the
model with humoral and cellular immune responses.

Model Formulation

We denote by S, I , V , B and T the target cells, infected cells, dengue virus,
B cells and the cytotoxic T cells, respectively. The S cells are produced in
bone marrow at a constant rate ks . The target cells are chronically infected at
rate βI and die at a rate µs , the lysis of these infected cells occur by action of
the cytotoxic CD8+ cells T at rate αI , and die by apoptosis at rate µI . We
assume that cytotoxic T cells are responsible for cellular immune response,
that is, to eliminate the intracellular pathogens (kill the infected cells) and
that the B cells are responsible for humoral immune response, i.e., to defend
the host from extracellular pathogens. We consider that B cells and cytotoxic
T cells are produced in the bone marrow at rate kB and kT , and the diverse
chemical signals will activate B cells and cytotoxic T cells. However, these
cells, in the beginning of this activation, do not have high affinity, which
means that they are not efficient to clear the virus infection, so by somatic
hypermutations, they become step by step with better affinity (fit) to stop or
kill the virus. Therefore, the B cells are going to proliferate in the presence of
dengue virus at rate αB , and the cytotoxic T cells, by the presence of infected
cells at rate αT , and have death rateµB andµT , respectively. The virus amount
is considered proportional to the virus released by the infected cells after their
death N1(µs+µI )I , where N1 is the number of virions released by an infected
cell. We assume that more than one particle of virus will try to infect each
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cell denoted by N2, the action of antibodies against the virus is considered
proportional to the amount of B cells at rate αv , and finally the virus decay at
rate µv . The differential equations describing the interaction of dengue virus
and the immune system are given by

d S
d t
= ks −βI SV −µs S,

d I
d t
=βI SV −αI I T − (µs +µI )I ,

dV
d t
=N1(µs +µI )I −N2βI SV −αvBV −µvV ,

dB
d t
= kB +αBBV −µBB ,

dT
d t
= kT +αT T I −µT T .

(1)

The positively invariant set for the model (1) is given by

Ω=
§

P ∈R5
+ : N1S +N I +V +

αv

αB

B +
NαI

αT

T ≤ k
δ

ª

, (2)

where P = (S, I ,V ,B ,T ), N = (N1 +N2), k = N1ks + α

αv

n

B
kB +

NαI

αT
kT , and

δ =min µs ,µv ,µB ,µT ,
N2(µs +µI )

N

o

.

Lemma 2.1. The set Ω is positively invariant with respect to system (1).

Proof. Let P0 =
�

S(0), I (0), V (0), B(0), T (0)
�

∈Ω be the initial condition of
the system (1), and Θ(t ) the function defined by

Θ =N1S +N I +V +
αv

αB

B +
NαI

αT

T .

Taking the derivative of Θ with respect to t , we have:

dΘ
d t
=N1ks −N1µs S −N2(µs +µI )I −µvV +

α

B

v

α
(kB −µBB)

+
NαI

αT

(kT −µT T ) ,

which can be written as

dΘ
d t
+N1µs S +N2(µs +µI )I +µvV +

α

B

v

α
µBB +

NαI

αT

µT T = k ,
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where k =N1ks +
αv

αB
kB +

NαI

αT
kT .

If we choose δ =min
n

µs ,µv ,µB ,µT ,
N2(µs +µI )

N

o

, we conclude that

dΘ
d t
≤ k −δΘ,

and it follows that
dΘ
d t
≤ 0 if Θ ≥ k

δ
. Besides, by basic comparison theorem

[11], whe have

Θ ≤ k
δ
+
�

Θ(0)− k
δ

�

e−δ t , for all t ≥ 0.

In particular, Θ ≤ k
δ δ

if Θ(0)≤ k
. Therefore, the set Ω is positively invariant.

In addition, if Θ(0)> k
δ

, then either the solution enters Ω an infinite number

of times or Θ(t ) approaches
k
δ

asymptotically. Hence, the set Ω attracs all
solutions in R5

+.

In the next sections we analyze the model without immune response and the
model considering humoral and cellular immune responses, given by (1).

Analysis of the model without immune response

If there is not immune response, we have the following model taking into
account only the infection of target cells and the release of virus

d S
d t
= ks −βI SV −µs S,

d I
d t
=βI SV − (µs +µI )I ,

dV
d t
=N1(µs +µI )I −N2βI SV −µvV .

(3)

This model is a particular case of the model in [4], letting ρ = 0 and with
f (x, y, v) =βI S . For this model we study the global stability of equilibrium
points.

Equilibrium Points for model (3)

�

ks

µs
, 0, 0

�

, and the virus-presenceThe virus-free equilibrium is given by P0w =

equilibrium by Pw = (S
∗
w , Iw

∗ ,Vw
∗), where
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S∗w =
ks

µs

1
R0

, I ∗w =
ks

(µs +µI )

�

1− 1
R0

�

, Vw
∗ =

µs

βI

(R0− 1),

and

R0w =
βI [N1−N2]ks

µvµs

. (4)

Global stability of virus-free equilibrium P0w

Theorem 4.1. For R0w ≤ 1, the virus-free point P0w is globally asymptotically
stable.

Proof. We use the direct Lyapunov method in this proof. Let L1 be the
function defined as follows L1 :Ω1→R, where

Ω1 = {(S, I ,V ) : S > 0, I ≥ 0, V ≥ 0},

and

L1 = (N1−N2)
∫ S

ks
µs

ζ − ks
µs

ζ
dζ +N1I +V .

It is easy to check that L1(P0w) = 0 and L1 > 0 in Ω1 − {P0w}. Besides the
orbital derivative of L1 along solutions of the system (3) is given by

L̇1 = (N1−N2) 1−
ks

µs S
ks −βI SV −µs S

� �

� �

�

+
� �

N1(µs +µI )I −N2βI SV −µvV
�

,+N1 βI SV − (µs +µI )I

which is equivalent to

L̇1 =−(N1−N2)µs S
�

1−
ks

µs S

�2

+(R0− 1)µvV .

µvµs

From the last equation, L̇1 < 0 in Ω1−{P0w} if and only if R0w ≤ 1. Then we
conclude that the virus-free point P0w is globally asymptotically stable.

Global stability of virus-presence equilibrium Pw

The existence of the equilibrium Pw is assured if R0w > 1, and we are going to
prove that Pw is globally asymptotically stable if the virus entrance rate into

the target cells is less than or equal to one, i.e.,
N2βI ks ≤ 1. For this purpose,

we define the function L2 :R3
+→R, where

L2 = (N1−N2)
∫ S

S∗w

ζ − S∗w
ζ

dζ +N1

∫ I

I ∗w

ζ − Iw
∗

ζ
dζ +

∫ V

V ∗w

ζ −Vw
∗

ζ
dζ . (5)
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This type of function was proposed by Goh in [12].

Theorem 5.1. The virus-presence equilibrium Pw is globally asymptotically stable
if

N2βI ks

µvµs

≤ 1. (6)

Remark 1. The conditions R0w > 1 and
N2βI ks

µvµs
≤ 1 give us a threshold for

the parameter βI : βI
∗ <βI ≤βI

∗∗, where βI
∗ = µvµs

[N1−N2]ks
and βI

∗∗ = µ

N
v

2k
µ

s

s .

Proof. First we start the proof showing that the orbital derivative of function
L2 is negative in R3

+ − {Pw}. Taking the derivative of function L2 along
trajectories of system (3), we have

L̇2 = (N1−N2) 1−
S∗w
S

ks −βI SV −µs S
� �� �

�

1−
I ∗w
I

��

+N1 βI SV − (µs +µI )I
�

V ∗
w
��� �

+ 1−
V

N1(µs +µI )I −N2βI SV −µvV . (7)

From the equilibrium equations, we have

ks =βI S∗wVw
∗ +µs S

∗
w , µv = (N1−N2)βI S∗w , (µs +µI ) =

βI S∗wVw
∗

I ∗w
. (8)

Substituing the last equations into (7), it becomes

L̇2 = [N2βI Vw
∗ − (N1−N2)µs] S

∗
w

�

S∗w
S
+

S
S∗w
− 2

�

−N1βI S∗wVw
∗
�

S∗w
S
+

S
S∗w

V
V ∗

w

I ∗w
I
+

V ∗
w

V
I
I ∗w
− 3

�

.
(9)

From the fact that the arithmetic mean is greater than or equal to the geometric
mean, i.e.,

n
∑

i=1

xi

n
≥ n

√

√

√

n
∏

i=1

xi , (10)

∗
wwe have

S
S
+

S
S
∗
w

∗
w≥ 2, and

S
S
+

S
S
∗
w

V
V ∗w

I ∗w
I
+

V ∗w
V

I
I ∗w
≥ 3.

Then L̇2 < 0, if [N2βI Vw
∗ − (N1−N2)µs] S

∗
w ≤ 0, in fact, from (8) we can

write

[N2βI Vw
∗ − (N1−N2)µs] S

∗
w =N2(ks −µs S

∗
w)−

µvµs

βI

≤N2ks −
µvµs

βI

,
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and by the inequality (6), we have

[N2βI Vw
∗ − (N1−N2)µs] S

∗
w ≤

µvµs

βI

�

N2βI ks

µvµs

− 1
�

≤ 0.

L̇Then 2 < 0 in R3
+ − {Pw}. Besides L2(Pw) = 0 and L2 > 0 in R3

+ − {Pw}.
Therefore the point Pw is globally asymptotically stable.

Stability analysis of model with immune response

Equilibrium Points for model (1)

Here we show the existence of virus-free equilibrium and virus-presence
equilibrium. In fact setting the system (1) equal to zero and making some
calculations we can write:

S =
ks

βI V +µs

, (11)

I =
βI SV

αI T +(µs +µI )
, (12)

V =
N1(µI +µs )I

(N2βI S +αvB +µv)
, (13)

B =
k

µB −
B

αBV
, (14)

T =
kT

µT −αT I
. (15)

µT

αT

and V <
µB

αB

.These equations have biological meaning if we have I <

Now putting (11) and (12) into (13) we obtain

V =
ks N1(µI +µs )βI V

[N2βI ks +(αvB +µv)(βI V +µs )][(αI T +(µs +µI )]
,

from this equation we conclude that

V = 0, (16)

or

[N2βI ks +(αvB +µv)(βI V +µs )][(αI T +(µs +µI )]
= ks N1(µI +µs )βI .

(17)

P0 =
ks

µs

, 0, 0,
kB

µB

,
kT

µT

Notice that V = 0 implies the existence of a virus-free point which is denoted
by P0, and has the coordinates

� �

.
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For the existence of virus-presence equilibrium, we must show that (17) has
µBone solution such that V < . Initially, we write (12) and (15) in terms of
αB

V , for this purpose, we substitute (15) into (12) to obtain

c1I 2− c2I + c3 = 0, (18)

where c1 = αT (µs + µI ), c2 = (kTαI + µT (µs + µI ) + αTβI SV ), and
c3 = µTβI SV . This equation has two solutions but just one satisfies our
requirements. In fact

I =
c2±

Æ

c2
2− 4c1c3

2c1

must be real, positive and less than µT
αT

. First, the values are real because the
expression inside of the root is always positive, that is,

� �2kTαI +µT (µs+µI )+αTβI SV − 4αT (µs +µI )µTβI SV

= (kTαI )
2+ 2kTαIµT (µs +µI )+ 2kTαIαTβI SV

+[αTβI SV −µT (µs +µI )]
2 .

αT

Second, due to c2
2 > c2

2−4c1c3, for c1 > 0, and c3 > 0, they are real, and positive.
To show that just one of them satisfies the condition I < µT , we see that this
is true if

[kTαI −µT (µs +µI )+αTβI SV ]±
Æ

c2
2− 4c1c3

c1

<0, (19)

so the only possibility for I is

I =
c2−

Æ

c2
2− 4c1c3

2c1

.

Then (12) and (15) are functions of V and

I =
c2−

Æ

c2
2− 4c1c3

2c1

, (20)

T =
kT

µT −αT I
. (21)

Finally, let us rewrite (17), and define q as the polynomial:

q(V ) =
� �

(N2βI ks +µvµs +µvβI V )(µB −αBV )+αv kB(βI V +µs )
· [αI T +µs +µI ]− ks N1(µs +µI )βI (µB −αBV ),

(22)
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from which we verify easily that

�

q(0) = (1−R0) αI
kT

µT

+µs +µI

��

αv
kB

µB

+µv

�

µsµB < 0, if R0 > 1,

q
�

µB

αB

�

> 0,

αB

where R0 is defined by the equation (35) in Appendix I. Then there is one
solution V such that 0 < V <

µB . Therefore, there exists a virus-presence

point P ∗ = (S∗, I ∗,V ∗,T ∗,B∗), for R0 > 1, where:

S∗ =
ks

βI V ∗+µs

, (23)

I ∗ =
c2−

Æ

c2
2− 4c1c3

2c1

, (24)

B∗ =
kB

µB −αBV ∗
, (25)

T ∗ =
kT , (26)

µT −αT I ∗

and a root of the polynomial (22) such that 0<V ∗ <
µB

αB
and I ∗ <

µT

αT
.

Stability of virus-free equilibrium

Here we study the stability of the virus-free point P0

Theorem 8.1. For R0 ≤ 1, the virus-free point P0 is globally asymptotically
stable.

Proof. Let Ω3 =
� 	

(S, I ,V ,B ,T ) : S > 0, I ≥ 0,V ≥ 0,B > 0,T > 0 and
L3 :Ω3→R be the function defined as follows:

L3 = a1

∫ S

ks
µs

ζ − ks
µs

ζ
dζ + a2I + a3V +

αI

αT

a2

∫ T

kT
µT

ζ − kT
µT

ζ
dζ

+
αv

αB

a3

∫ B

kB
µB

ζ − kB
µB

ζ
dζ ,

(27)

with the values a1 =N1(µs +µI )−N2

�

αI
kT

µT
+µs +µI

�

, a2 =N1(µs +µI ),

and a3 = αI
kT

µT
+µs +µI

� �

. It is clear that L3(P0) = 0 and L3 > 0 in Ω3− P0.
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Now we prove that L̇3 < 0. In fact

L̇3 = a1

�

1−
ks
µs

S

�

�

ks −βI SV −µs S
�

+ a2

�

βI SV −αI I T − (µs +µI )I
�

+ a3

�

N1(µs +µI )I −N2βI SV −αvBV −µvV
�

+
αI

αT

a2

�

1−
kT
µT

T

�

�

kT +αT T I −µT T
�

+
αv

αB

a3

�

1−
kB
µB

B

�

�

kB +αBBV −µBB
�

.

After some calculations, we have that

L̇3 =−a1µs S

�

1−
ks
µs

S

�2

+
�

αv
kB

µB

+µv

�

V [R0− 1]

−
αI

αT

a2µT T

�

1−
kT
µT

T

a3

�2

−
αv

αB

a3µBB

�

1−
kB
µB

B

�2

.

Then L̇3 is negative in Ω3− P0 if R0 ≤ 1. Therefore the point P0 is globally
asymptotically stable for R0 ≤ 1.

Global stability of virus-presence equilibrium

In this section, we prove the global stability of virus-presence equilibrium P ∗

using a direct Lyapunov method. Let L4 :R5
+→R be defined as follows

L4 = a
S∗

ζ − S∗

ζ
dζ + b

I ∗

ζ − I ∗

ζ
dζ +

∫ S ∫ I ∫ V

V ∗

ζ −V ∗

ζ
dζ

+
αI

αT

b
∫ T

T ∗

ζ −T ∗

ζ
dζ +

αv

αB

∫ B

B∗

ζ −B∗

ζ
dζ ,

(28)

�

N1(µs +µI )I
∗

βI S∗V ∗
where a = −N2

�

, and b = N1(µs +µI )I
∗

βI S∗V ∗
. This type of function

was proposed by Goh in [12].

Theorem 9.1. The virus-presence equilibrium P ∗ is globally asymptotically stable
if

N2βI ks
�

αv µ
kB

B
+µv

�

µs

≤ 1. (29)
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Remark 2. The conditions R0 > 1 and
N2βI ks

�

αv
kB

µB
+µv

�

µs

≤ 1 give us a threshold

for the parameter βI : βI
∗ <βI ≤βI

∗∗, where

β∗I =
αv µ

kB

B
+µv

� �

µs
�

(µs +µI )
�

αI µ
kT

T
+µs +µI

�
N1−N2

�

ks

and βI
∗∗ =

�

αv µ
kB

B
+µv

�

µs

N2ks

.

Remark 3. The term
N2βI ks

�

αv
kB

µB
+µv

�

µs

is the average number of virions intaken

by one macrophage, for more details see [13]. Therefore, condition (29) means
that this average has to be at most 1.

Proof. We start by showing that the derivative of the function L4 defined
in (28) is negative along trajectories of system (1), if (29) holds. In fact, taking
the derivative of the function L4 along trajectories of system (1), we have

L̇4 = a
� S∗

S

�

�

ks −βI SV −µs S
�

1−
�

1− I ∗

I

�

�

βI SV −αI I T − (µs +µI )I
�

+

+ b
�

1− V ∗

�

V

�

�

N1(µs +µI )I −N2βI SV −αvBV −µvV
�

+
αI

αT

b 1− T ∗

T

�

�

kT +αT T I −µT T
�

+
αv

αB

�

1− B∗

B

�

�

kB +αBBV −µBB
�

.

(30)

From the equilibrium equations (11)–(15), we have

ks =βI S∗V ∗+µs S
∗,

kT =µT T ∗−αT T ∗I ∗,

kB =µBB∗−αBB∗V ∗, (31)

(µs +µI ) =
βI S V∗ ∗−αI T ∗I ∗

I ∗
,

µv =
(N1−N2)βI S∗V ∗−N1αI T ∗I ∗−αvB∗V ∗

V ∗
.
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Substituing the last equations into (30), it turns into,

L̇4 =−aµs S
∗
�S

S
+

S
∗
− 2

�

+ aβI S∗V ∗
�

2− S∗ ∗

S
− I

I ∗
− S

S∗
V
V ∗

I ∗

I
+

V
V ∗

�

S
�

− I
I ∗
−

S∗
S V

V ∗

I ∗

I
+

V
V ∗
+

S
S∗

�

+N2βI S∗V ∗

+N1βI S∗V ∗
� I

I ∗
− V

V ∗
− I

I ∗
V ∗

V
+ 1

�

+N1αI T ∗I ∗
� V

V ∗
− I

I ∗
− 1+

V ∗

V
I
I ∗

�

+ bαI T ∗
�

I ∗−
µT

αT

�

� T
T ∗
+

T ∗

T
− 2

�

+αvB∗
�

V ∗−
µB

αB

�

� B
B∗
+

B∗

B
− 2

�

. (32)

From (12) we have

a =
�

N1
(µs +

∗

µI )
∗

I ∗

βI S V
−N2

�

=N1−N2−N1
αI T

∗

∗I ∗

βI S V ∗
, (33)

taking the equation (33) into (32) implies

L̇4 = (N2βI V
∗− aµs ) S

∗
�S∗

S
+

S
S∗
− 2

�

− (µs +µi )I
∗N1

�S∗

S
�

�

+
S
S∗

V
V ∗

I ∗

I
+

V ∗

�

V
I
I ∗
− 3

�

+ bαI T ∗
�

I ∗−
µT

αT

T
T ∗
+

T ∗

T
− 2

+αvB∗
�

V ∗−
µB

αB

�

� B
B∗
+

B∗

B
− 2

�

.

(34)

Now notice that, from the expressions in (31), the first term of (34) can be
written as

N2βI S∗V ∗− aµs S
∗ =N2(ks −µs S

∗)−
αvB∗+µv

βI

µs

≤N2ks −
αvB∗+µv

βI

µs ,

and in view of B∗ ≥ kB
µB

and the inequality (29), we have

N2βI S∗V ∗− aµs S
∗ ≤N2ks −

αv
kB
µB
+µv

βi

µs

=
αv µ

kB

B
+µv

βi

µs

�

N2βI ks
�

αv µ
kB

B
+µv

�

µs

− 1

�

≤ 0.
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Due to the fact that N2βI S∗V ∗ − aµs S
∗ ≤ 0, V ∗ < µ

B

B
α , and I ∗ < µT

αT
, and

remember
�

∑

ing that the
∏

arithme
�

tic mean is greater than or equal to the geometric
n
=1

xi
nmean i ≥ n

p

n
i=1 xi L̇, we have 4 < 0 in R5

+− {P ∗}. Additionally,

L̇we have that 4(P
∗) = 0 and L4 > 0 in R5

+ − {P ∗}. Then P ∗ is globally
asymptotically stable in R5

+.

Remark 4. If we assume in this model that the number of the virus entry
into the target cells N2βI SV is included into the virus loss µvV , i.e., N2 = 0,
then we avoid the restriction (29) and the virus-presence equilibrium P ∗ is
globally asymptotically stable if R0 > 1, with the same Lyapunov function
(28) and the same proof.

Discussion

In this study, we determined the global stability of a mathematical model
of a virus dynamics when there is no immune response and when there are
humoral and cellular immune responses. Using the direct Lyapunov method,
we showed that the virus-free point of the model with or without immune
response is globally asymptotically stable, if the reproductive number of the
virus is less than or equal to one, i.e., whatever the initial viral load, the virus
will be cleared. In the first case, we can argue that the innate immune response
is acting to stop the viral increase. Of course, in the second case, we can argue
that the adaptive immunity is an effective response to control the virus and
infected cells. Further, we determined the global stability of the virus-presence
equilibrium whenever the viral entrance rate in the healthy cells is less than
or equal to one. This condition is almost the same for the two models. The
difference is that the immune response controls the rise of this viral entrance
rate. In this situation does not matter how large is the initial viral load, and
the result will always be a virus persistence.
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Dinámica global de las respuestas inmunes humorales y 
celulares a la infección por virus

Resumen: Estudiamos la estabilidad global de un modelo de dinámica 
de virus teniendo en cuenta las respuestas inmunes humorales y 
celulares. Utilizamos un método directo de Lyapunov para obtener las 
condiciones suficientes para la estabilidad global de los equilibrios sin 
virus y con presencia de virus. Primero, analizamos el modelo sin una 
respuesta inmune y encontramos que si el número reproductivo del 
virus es menor o igual a uno, el equilibrio libre de virus es globalmente 
asintóticamente estable. Sin embargo, para el equilibrio en presencia de 
virus, la estabilidad global se obtiene si la tasa de entrada del virus en las 
células diana es menor que uno. Analizamos el modelo con respuestas 
inmunes humorales y celulares y encontramos resultados similares. La 
diferencia es que en el número reproductivo del virus y en la tasa de 
entrada del virus en las células diana, aparecen parámetros de respuestas 
inmunes humorales y celulares, lo que significa que la respuesta inmune 
adaptativa cesará o controlará el aumento de la infección.

Palabras clave: estabilidad global; respuesta inmune; método directo 
de Lyapunov.

Dinâmica global das respostas imunes humorais e 
celulares à infecção viral

Resumo: Estudamos a estabilidade global de um modelo de dinâmica 
de vírus com consideração das respostas imunes humoral e celular. 
Utilizamos um método direto de Lyapunov para obter condições 
suficientes para a estabilidade global dos equilíbrios sem vírus e com 
a presença de vírus. Primeiro, analisamos o modelo sem uma resposta 
imune e descobrimos que se o número reprodutivo do vírus é menor 
ou igual a um, o equilíbrio livre de vírus é globalmente assintoticamente 
estável. No entanto, para o equilíbrio na presença de vírus, a estabilidade 
global é obtida se a taxa de entrada do vírus nas células-alvo for menor 
que um. Analisamos o modelo com respostas imunes humoral e celular 
e encontramos resultados semelhantes. A diferença é que no número 
reprodutivo do vírus e na taxa de entrada do vírus nas células-alvo 
aparecem parâmetros de resposta imune humoral e celular, o que significa 
que a resposta imune adaptativa cessará ou controlará o aumento da 
infecção.

Palavras-chave: estabilidade global; resposta imune; método direto de 
Lyapunov.
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