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In this work, we formulate a mathematical model to evaluate the risk of the
introduction of yellow fever (YF) in towns by infected humans arriving from
forest areas. We obtain the basic reproduction numbers associated with the forest
and urban regions. We present numerical simulations to evaluate the risk of YF
spread for different migration rates.
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1 INTRODUCTION

Yellow fever (YF) is an infection of variable severity caused by Flavivirus and transmitted by the bite of mosquitoes. This
disease occurs mainly in Sub-Saharan Africa as well as Central and South America. YF causes fever and headaches in
most cases; however, roughly 15% of cases progress to a more severe form of the disease that is characterized by high fever,
jaundice, bleeding, and eventually shock. Liver damage results in yellowing of the skin, hence the name “yellow fever.”1,2

According to the World Health Organization,3 there are approximately 200 000 cases of YF worldwide each year, and
30 000 deaths, with about 90% of all the cases occurring in Africa. At the present, there is a vaccine against YF with
life immunity although it can be scarce. Other preventive measures, eg, use of insect repellent and mosquito netting are
recommended. However, despite the vaccine and protective measures since 1980s, the number of YF cases has increased.1

In the Americas, YF virus presents two cycles: jungle and urban. The jungle or sylvatic cycle involves transmission of
the virus mainly between nonhuman primates (eg, monkeys) and mosquito species found in the forest (Haemagogus spp.
mosquitoes). The virus is transmitted by mosquitoes to humans that are visiting or working in the jungle.

The urban cycle involves transmission of the virus between humans and urban mosquitoes, primarily Aedes aegypti.
The virus can be brought to the urban area by humans who were infected in the jungle. In Africa, in addition to the
jungle and urban cycles, there is an intermediate (savannah) cycle that involves transmission of virus from mosquitoes
to humans living or working in jungle border areas. In this cycle, the virus can be transmitted from monkey to human or
from human to human via mosquitoes.4

It is worth to mention that the largest outbreak of YF in Brazil in the last years, with more than 2000 confirmed cases
and 676 deaths from December 2016 to March 2018, was originated in nonhuman primates according to genetic and
poblational studies.5,6 Analysis of YF cases combined with genomes generated locally revealed an early phase of sylvatic
transmission and posterior spatial expansion toward areas free of YF, followed by a rise in viral transmission to humans
in urban areas in late 2016. The time series of confirmed cases in humans was compared with time series of nonhuman
primates, finding that human cases appeared four days later than cases in nonhuman primates. It was also found that the
risk of YF was higher for people who lived or worked in forested areas, where mosquitoes that usually feed on primates
can bite and transmit the virus to humans. Furthermore, they found that at the origins of the outbreak, 85% of the cases
were in men, who travel more than women to remote areas of the jungle.
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Mathematical models have been developed in order to evaluate the risk of YF, as well as efficacy of vaccination pro-
grams. Raimundo et al7 considered a model with vaccination and derived a threshold vaccination rate, above which the
disease would be eradicated from the human population. Estimations of the proportion of vaccinated against YF taking
into account the risk of serious adverse events associated with the vaccine are done in the works of Codeço et al8 and
Massad et al.9 Codeço et al10 also estimated the probability that infective individuals arriving from YF endemic areas can
trigger an epidemic in a disease-free area. They found that the risk of urban YF emergence may reach values as high as
29% during the epizootic periods but they found that the precision of the estimate is low. Massad et al11 designed a method
to calculate the density of Aedes aegypti mosquito females using data of dengue disease incidence in Rio de Janeiro neigh-
borhoods and verified that their estimates agreed with those obtained by means of traps. Using these data, they assessed
the risk that the introduction of an infectious individual would lead to an epidemic outbreak of YF in Rio de Janeiro.
Johansson et al12 formulated a stochastic metapopulation model to simulate the global spread of YF from a single urban
outbreak by infective airline travelers. They found that local incidence, travel rates, and basic transmission parameters
are enough to estimate a probability of introduction of YF to urban areas.

Our purpose in this work is to assess the risk of acquiring YF by migrants in the forest areas, as well as the potential
introduction of this disease into urban areas. We will only address the two-cycle case, given that we are particularly
interested in the spread of YF in the Americas. For this, we propose a mathematical model assuming that no vaccinated
humans enter to the forest to carry out specific works like cutting trees and constructing roads or for leisure like camping.
These humans that we call migrants are under risk of acquiring YF due to exposition to forest epidemics and to bring
the disease to urban settlements. The model is a variation of the Ross-MacDonald model in which we included migration
from the urban to the wild area, and it is based on our previous works on vector borne transmission.13,14

We found necessary conditions for the introduction of YF to the urban area due to the movement of people returning
from forest regions. These conditions are in terms of the basic reproductive numbers of urban, migrant, and wild region.
In this model, we do not have restrictions about the inflow and outflow of healthy and infected persons, since we are not
assuming a particular number of infected people going into the urban area or quantity of people that is traveling to the
forest area.

This paper is structured as follows. In Section 2, a model is formulated to describe the YF transmission in forest an
urban area. In Section 3, existence and stability of the model equilibria is investigated in order to assess the introduction
of YF in urban areas. In Section 4, the risk of YF among migrants is evaluated, and numerical simulations are presented
in Section 5. Finally, conclusions are given in Section 6.

2 FORMULATION OF THE MODEL

We denote by Nw the wild zoonotic population that we assume composed by monkeys that inhabit the wild areas, by Nu
the population that stays in the urban area, and by Nm the population that moves to the forest area, with Nh = Nu + Nm
the total human population. Furthermore, Vu and Vw are the populations of mosquito transmitters of YF in the wild area
(Haemagogus spp.) and urban area (Aedes aegypti), respectively. We assume that all the populations involved, Nw, Nh, Vw,
and Vu, are constant, that is, their respective birth and mortality rates are the same, and we denote the mortality rates by
𝜇w, 𝜇u, 𝜈w, and 𝜈u, respectively. The zoonotic population is divided into susceptibles, Sw, infected, Iw, and recovered, Zw,

with Nw = Sw + Iw + Zw. The urban population Nu is divided in Su, Iu, and Zu, with Nu = Su + Iu + Zu. Further, by Sm,
it is denoted the susceptible humans that move to the forest region, and by Im the humans that get infected there. In this
work, we will assume that infected humans do not enter to the forest, and we will not consider vaccination and mortality
due to the disease. The susceptible and infected mosquitoes in the wild area are Mw, and Yw, while in the urban area are
denoted by Mu and Yu. Since the life span of the mosquitoes is very short, they do not recover from the infection, and
therefore, their total population, Vi, is equal to Mi+Yi, i = u,w, which implies that susceptible mosquitoes are obtained by
the relation Mi = Vi − Ii, i = u,w, and it is enough to consider only the infective populations of both vectors. The average
number of vectors per zoonotic and per urban populations are given by Vw∕(Nw + Nm) and Vu∕(Nu − Nm), respectively.
Therefore, a particular individual of each population receives on average bwVw∕(Nw + Nm) and buVu∕(Nu − Nm) bites,
respectively, where bi, i = w,u, are the biting rates of wild and urban mosquitoes. A proportion Yi∕Vi, i = w,u, of these
bites comes from infected mosquitoes, and therefore, wild and urban susceptibles are infected by infectious mosquitoes
at rates bw𝛽wYw∕(Nw + Nm) and bu𝛽uYu∕(Nu − Nm), respectively, where 𝛽i, i = w,u, denote the probabilities that a bite
from an infective mosquito Yi, i = w,u, gives rise to a infective case in the wild and urban populations. The susceptible
population Sm that enters to the wild region get infected at a rate bw𝛽mYw∕(Nw + Nm), where 𝛽m is the probability that a
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bite from an infected Haemagogus gives rise to an infection in a migrant. Analogously, the infection rates from the forest
and urban population to mosquitoes are given by bw�̄�w∕(Nw +Nm) and bu�̄�u∕(Nu −Nm), respectively, and bw�̄�m∕(Nw +Nm)
is the contribution of infectious migrants, where �̄�i, i = u,m,w, denote the probabilities that a mosquito becomes infected
by Iu, Im, or Iw populations, respectively. Finally, we assume that monkey and human populations recover at rates 𝛾w and
𝛾u, respectively.

We denote by 𝛿 the percentage of humans that travel to the forest region per unit of time, and by 𝜖 the percentage of
humans that return to the urban area from the forest region per unit of time. When YF is endemic in the forest region,
susceptible migrant humans (𝛿Su) are under YF risk during the periods of time spent in forest region due to infected
mosquitoes Yw. According to the above assumptions we obtain, the following systems of ODE to describe the forest and
urban epidemic cycles of YF.

The forest epidemic cycle is given by

dSw

dt
= 𝜇wNw − bw𝛽w

Nw + Nm
SwYw − 𝜇wSw

dIw

dt
= bw𝛽w

Nw + Nm
SwYw − 𝛾wIw − 𝜇wIw

dZw

dt
= 𝛾wIw − 𝜇wZw

dYw

dt
= bw�̄�w

Nw + Nm
(Vw − Yw)Iw + bw�̄�m

Nw + Nm
(Vw − Yw)Im − 𝜈wYw. (1)

The epidemic cycle among humans in forest region is given by

dSm

dt
= 𝛿Su −

bw𝛽m

Nw + Nm
SmYw − 𝜖Sm − 𝜇uSm

dIm

dt
= bw𝛽m

Nw + Nm
SmYw − 𝛾uIm − 𝜖Im − 𝜇uIm

dZm

dt
= 𝛿1Zu + 𝛾uIm − 𝜖Zm − 𝜇uZm, (2)

and the urban YF epidemics sustained by infectious migrant humans is given by

dSu

dt
= 𝜇uNu −

bu𝛽u

Nu − Nm
SuYu − 𝜇uSu − 𝛿Su + 𝜖Sm

dIu

dt
= bu𝛽u

Nu − Nm
SuYu − 𝛾uIu − 𝜇uIu + 𝜖Im

dZu

dt
= 𝛾uIu − 𝛿1Zu − 𝜇uZu + 𝜖Zm

dYu

dt
= bu�̄�u

Nu − Nm
(Vu − Yu)Iu − 𝜈uYu, (3)

where 𝛿1 is the migration rate of recovered individuals (in this work, we shall assume 𝛿1 = 𝛿). Adding up the equations
corresponding to system (1), (2), and (3), we obtain the equations dNw∕dt = 0 and dNh∕dt = 0. Because the equations
for recovered individuals Zw, Zm, and Zu are decoupled, they can be removed from the system and retrieved by Zw =
Nw−Sw−Iw, Zm = Nm−Sm−Im, and Zu = Nu−Su−Iu−(Sm+Im+Zm). Due to the fact that human and vector populations
are constant, it is convenient to write the above equations in terms of the proportions

sw = Sw

Nw
, iw = Iw

Nw
, zw = Zw

Nw
, su = Su

Nh
, iu = Iu

Nh
, zu = Zh

Nh
, sm = Sm

Nh
, im = Im

Nm
, 𝑦w = Yw

Vw
, 𝑦u = Yu

Vu
.
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Therefore, from Equations (1), (2), and (3), we obtain the following systems:

dsw

dt
= 𝜇w − 𝛽wsw𝑦w − 𝜇wsw

diw

dt
= 𝛽wsw𝑦w − 𝛾wiw − 𝜇wiw

d𝑦w

dt
= 𝛼w(1 − 𝑦w)iw + 𝛼m(1 − 𝑦w)im − 𝜈w𝑦w,

(4)

for the forest epidemic cycle (with zw = 1 − sw − iw),

dsm

dt
= 𝛿su − 𝛽msm𝑦w − 𝜖sm − 𝜇usm

dim

dt
= 𝛽msm𝑦w − 𝛾uim − 𝜖im − 𝜇uim, (5)

for the epidemic cycle among humans in forest region (with zm = 1 − sm − im − Nu∕Nh), and

dsu

dt
= 𝜇u − 𝛽usu𝑦u − 𝜇usu − 𝛿su + 𝜖sm

diu

dt
= 𝛽usu𝑦u − 𝛾uiu − 𝜇uiu + 𝜖im

d𝑦u

dt
= 𝛼u(1 − 𝑦u)iu − 𝜈u𝑦u,

(6)

for the urban YF epidemics sustained by infectious migrant humans (with zu = 1 − su − iu − Nm∕Nh).
To simplify the notation, in (4), (5), and (6), the infection coefficients are given by

𝛽w = bw𝛽w
Vw

Nw + Nm
𝛼w = bw�̄�w

Nw

Nw + Nm

𝛽m = bw𝛽m
Vw

Nw + Nm
𝛼m = bw�̄�m

Nu

Nw + Nm

𝛽u = bu𝛽u
Vu

Nu − Nm
𝛼u = bu�̄�u,

Nu

Nu − Nm
.

(7)

A summary of model parameters and their values is presented in Table 1.

3 MATHEMATICAL ANALYSIS OF THE MODEL

3.1 Disease-free equilibrium and the basic reproductive number
The disease-free equilibrium of Equations (4), (5), (6) is given by

P̄0 =
(

1, 0, 0, 𝛿

𝜖 + 𝜇u + 𝛿
, 0, 1 − 𝛿

𝜖 + 𝜇u + 𝛿
, 0, 0

)
and represents the state where the population is infection free. The basic reproductive number, denoted by R0, represents
the average number of secondary cases that one infective generates over the course of its infectious period in a whole
susceptible population. It is a threshold condition that determines whether an epidemic can occur or a disease remains
endemic, and thus, if R0 < 1, the disease dyes out, while for R0 > 1, it persists. Diekmann and Heesterbeek21 define
mathematically the basic reproductive number of a disease as the spectral ratio of the next-generator operator associated
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to the disease-free equilibrium, which is given by the product of two matrices: the nonnegative matrix of the infection
terms, K, and the inverse of the matrix of the transmission terms, T. For our model, these matrices are

K =
(

K1 03×2
K3 K2

)
and T =

⎛⎜⎜⎜⎜⎝
𝛾w + 𝜇w 0 0 0 0

0 𝜈w 0 0 0
0 0 𝛾u + 𝜖 + 𝜇u 0 0
0 0 0 𝛾u + 𝜇u 0
0 0 0 0 𝜈w

⎞⎟⎟⎟⎟⎠
, (8)

where

K1 =
⎛⎜⎜⎝

0 𝛽w 0
𝛼w 0 𝛼m
0 𝛽m

𝛿

𝜖+𝜇u+𝛿
0

⎞⎟⎟⎠ , K2 =

(
0 𝛽u

(
1 − 𝛿

𝜖+𝜇u+𝛿

)
𝛼u 0

)
, K3 =

(
0 0 𝜖
0 0 0

)
. (9)

The next-generation operator associated with the disease-free equilibrium P̄0 is given by

KT−1 =
(

KT−1
1 03×2

KT−1
3 KT−1

2

)
, (10)

with

KT−1
1 =

⎛⎜⎜⎜⎝
0 𝛽w

𝜈w
0

𝛼w
𝛾w+𝜇w

0 𝛼m
𝛾u+𝜖+𝜇u

0 𝛽m
𝜈w

𝛿

𝜖+𝜇u+𝛿
0

⎞⎟⎟⎟⎠ , KT−1
2 =

(
0 𝛽u

𝜈u

(
1 − 𝛿

𝜖+𝜇u+𝛿

)
𝛼u

𝛾u+𝜇u
0

)
, (11)

and KT−1
3 a 2× 3 matrix, with null elements except (KT−1

3 )13 = 𝜖∕(𝛾u + 𝜖+𝜇u). The characteristic equation corresponding
to KT−1 is [

𝜆3 −
(

Rw
0 + Rm

0
)
𝜆
]
×
(
𝜆2 − Ru

0
)
= 0, (12)

with
Rw

0 = 𝛼w

𝛾w + 𝜇w
× 𝛽w

𝜈w

Rm
0 = 𝛼m

𝛾u + 𝜖 + 𝜇u
× 𝛽m

𝜈w
× 𝛿

𝜖 + 𝜇u + 𝛿

Ru
0 = 𝛼u

𝛾u + 𝜇u
× 𝛽u

𝜈u
×
(

1 − 𝛿

𝜖 + 𝜇u + 𝛿

)
.

(13)

Ru
0 is the basic reproductive number in the urban area, while Rs

0 = Rm
0 +Rw

0 denotes the basic reproduction number in the
wilderness. We define the basic reproductive number associated to the disease-free equilibrium P̄0 as

R0 = max
(

Rs
0,Ru

0
)
. (14)

TABLE 1 Summary of the model parameters (∗allowed to vary)

Symbol Meaning Value Reference
𝜇w Mortality rate of monkeys (alouattas) 0.0048 month−1 Guessed
𝛾w Recovery rate in monkeys 3 months−1 Moreno et al15

𝜈w Mortality rate of Haemagogus 0.46 month−1 Raimundo et al7

bw Biting rate of Haemagogus 6 month−1 Chadee et al16

𝛽w Trans. coefficient from Haemagogus to forest animals 0.4 Moreno et al15

𝛽m Trans. coefficient from Haemagogus to migrant humans 0.25 Guessed
�̄�w Trans. coefficient from monkeys to Haemagogus 0.4 Moreno et al15

�̄�m Trans. coefficient from migrant humans to Haemagogus 0.4 Guessed
𝜇u Mortality rate of humans 0.0012 month−1 Guessed
𝛾u Humans recovery rate 4 month−1 PAHO17

𝜖 Migration rate of humans from forest area 1.0∗ month−1 Guessed
𝛿 Migration rate of humans to forest area (month−1) 0.02∗ month−1 Guessed
𝜈u Mortality rate of Aedes 0.913 month−1 Dengue Virus Net18

bu Biting rate of Aedes 6 month−1 Seawright et al19

𝛽u Transmission coefficient from Aedes to humans 0.2 Guessed
�̄�u Transmission coefficient from humans to Aedes 0.25 Johnson et al20
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From Theorem 2 in the work of van den Driessche and Watmough,22 the next result is established.

Theorem 1. The equilibrium P̄0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Furthermore, following the work of Shuai and van den Driessche,23 global stability of the disease-free equilibrium for
R0 < 1 can be established using a suitable Lyapunov function. This implies that, if the basic reproductive number is less
than one, the infection cannot be maintained whatever the initial number of infectious.

Next, we shall study the situation where the reproduction number is bigger than one. We have to consider three cases.

I. YF circulating in the wild region: Rs
0 > 0, Ru

0 < 0.
II. YF circulating in the urban area: Rs

0 < 0, Ru
0 > 0.

III. YF circulating in both regions Rs
0 > 0, Ru

0 > 0.

Case I. This case is the most important one, since it implies that YF could be introduced from the forest to the urban
areas. The basic reproduction numbers satisfy Rs

0 > 1 and Ru
0 < 1, and Equations (4), (5), (6) have an equilibrium P̄w =

(s̄w, ζ̄w, �̄�w, s̄m, ζ̄m, s̄u, ζ̄u, �̄�u) with

s̄w = 𝜇w

𝛽w�̄�w + 𝜇w

ζ̄w = 𝛽w𝜇w�̄�w

(𝛽w�̄�w + 𝜇w)(𝛾w + 𝜇w)

s̄m = 𝛿𝜇u

(𝛿 + 𝜇u)𝛽m�̄�w + 𝜇u(𝛿 + 𝜖 + 𝜇u)

ζ̄m = 𝛿𝜇u𝛽m�̄�w

[𝛿 + 𝜇u)𝛽m�̄�w + 𝜇u(𝛿 + 𝜖 + 𝜇u)](𝛾u + 𝜖 + 𝜇u)
,

s̄u = 𝜖s̄m + 𝜇u

𝛿 + 𝜇u

ζ̄u =
𝜖ζ̄m

𝛾u + 𝜃u

�̄�u =
𝛼uζ̄u

ζ̄u + 𝜈u

(15)

and �̄�w satisfies

c1�̄�
2
w + c2�̄�w + c3 = 0, (16)

c1 = −
[
𝛽w𝜇w(𝛿 + 𝜇u)Rw

0 + 𝛽w(𝛿 + 𝜖 + 𝜇u)Rm
0
]
,

c2 = 𝜇w𝛽w(𝛿 + 𝜇u)
(

Rw
0 − 1

)
+ (𝛿 + 𝜖 + 𝜇u)𝛽w

(
Rm

0 − 1
)
− 𝜇u𝜇w(𝛿 + 𝜖 + 𝜇u)Rw

0 ,

c3 = 𝜇u𝜇w(𝛿 + 𝜖 + 𝜇u)
(

Rm
0 + Rw

0 − 1
)
.

(17)

If Rs
0 = Rw

0 + Rm
0 < 1, the constants ci, i = 1, 2, 3, are all negative, and thus, the quadratic equation does not have positive

solutions. If Rs
0 > 1, c3 > 0, then by Descartes' rule, the equation has a unique positive root ζ̄w. In the case Rs

0 = 1, c3 = 0,
and the quadratic equation has a negative root and a zero root. Substituting �̄�w in (15), we shall obtain the coordinates of
P̄w. In the following,we will prove that solutions of systems (4), (5), (6) with positive initial condition evolve to the endemic
equilibrium P̄w. For this end, we will use a comparison theorem and a standard Lyapunov function for the variables
sw, iw, 1 − yw, yw, sm, and im.
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Since 0 ≤ s(t) ≤ 1, it follows from (6) the differential inequalities

diu

dt
≤ 𝛽u𝑦u − (𝛾u + 𝜇u)iu + 𝜖im

d𝑦u

dt
≤ 𝛼u𝑦u − 𝜈u𝑦u. (18)

Consider now the linear nonhomogeneous ODE system

dζ̃u(t)
dt

= 𝛽u𝑦u − (𝛾u + 𝜇u)ζ̃u + 𝜖im

d�̃�u(t)
dt

= 𝛼u𝑦u − 𝜈u𝑦u. (19)

Since Ru
0 < 1, the eigenvalues of the homogeneous system associated to (19), given by

dζ̃u(t)
dt

= 𝛽u𝑦u − (𝛾u + 𝜇u)ζ̃u

d�̃�u(t)
dt

= 𝛼u𝑦u − 𝜈u𝑦u, (20)

have negative real part, which implies ζ̃u(t) and �̃�u(t) go to zero as t → ∞. By a comparison principle,24 it follows that iu(t)
and yu(t) solutions of

diu

dt
= 𝛽usu𝑦u − (𝛾u + 𝜇u)iu

d𝑦u

dt
= 𝛼usu𝑦u − 𝜈u𝑦u

also approach zero when t → ∞. Therefore, the right-hand side of the equation for iu in system (6) becomes 𝜖ζ̄m, which
implies that iu(t) → 𝑓 (ζ̄m). Since there is only a nontrivial equilibrium when Ru

0 < 1 and Rs
0 > 1, then 𝑓 (ζ̄m) = ζ̄u. It

follows that su → s̄u, and 𝑦u → �̄�u.
In the following, we will assume that the variables su, iu, yu are already in the steady state. Global stability of P̄w is proved

using the following Lyapunov function W in the variables sw, iw, vw = 1 − yw, sm, and yw

W = b1

(
sw − s̄w − s̄w ln sw

s̄w

)
+ b2

(
iw − ζ̄w − ζ̄w ln iw

ζ̄w

)
+ b3

(
vw − v̄w − v̄w ln vw

v̄w

)
+ b4

(
𝑦w − �̄�w − �̄�w ln 𝑦w

�̄�w

)
+ b5

(
sm − s̄m − s̄m ln sm

s̄m

)
+ b6

(
im − ζ̄m − ζ̄m ln im

ζ̄m

)
,

(21)

where

b1 = b2 = 1, b3 = b4 = 𝛽ws̄w�̄�w

𝛼wv̄wζ̄w
, b5 = b6 =

𝛼mv̄wζ̄m

𝛽ms̄m𝑦w
b3, (22)
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and vw is the proportion of susceptible Haemagogus. The orbital derivative of W is given by

.
W = b1

(
1 − s̄w

sw

)
(𝜇w − 𝛽wsw𝑦w − 𝜇wsw)

+ b2

(
1 −

ζ̄w

iw

)
(𝛽wsw𝑦w − (𝛾w + 𝜇w)iw)

+ b3

(
1 − v̄w

vw

)
(𝜈w − 𝛼wvwiw − 𝛼mvwim − 𝜈wvw)

+ b4

(
1 − �̄�w

𝑦w

)
(𝛼wvwiw − 𝛼mvwim − 𝜈w𝑦w)

+ b5

(
1 − s̄m

sm

)
(𝛿s̄u − 𝛽msm𝑦w − (𝜖sm + 𝜇u)sm)

+ b6

(
1 −

ζ̄m

im

)
(𝛽msm𝑦w − (𝛾u + 𝜖 + 𝜇u)im) .

(23)

From systems (4) and (5) at equilibrium, we obtain the following relations:

𝜇w = 𝛽ws̄w�̄�w + 𝜇ws̄w

𝛾w + 𝜇w = 𝛽ws̄w�̄�w

ζ̄w

𝜈w = 𝛼wv̄wζ̄w + 𝛼mv̄wζ̄m + 𝜈wv̄w

𝜈w =
𝛼wv̄wζ̄w

�̄�w
+

𝛼mv̄wζ̄m

�̄�w

𝛿s̄u = 𝛽ms̄m�̄�w + (𝜖 + 𝜇u)s̄m.

(24)

Substituting the constants bi, and the parameters 𝜇w up to 𝛿s̄u in the Lyapunov derivative (23), we obtain, after several
calculations and simplifications,

.
W = − b1𝜇w

(sw − s̄w)2

sw
− b3𝜈w

(vw − v̄w)2

sm
− b5

[
𝜖 + 𝜇w

(vw − s̄m)2

vw

]

− A1

(
s̄w

sw
+ s̄v

vw
+

sw𝑦wζ̄w

s̄w�̄�wiw
+ vwiw�̄�w

s̄vζ̄w𝑦w
− 4

)

− A2

(
s̄v

vw
+ s̄m

sm
+ vwim�̄�w

s̄vζ̄m𝑦w
− 4

)
,

(25)

where A1 = 𝛽ws̄w�̄�w and A2 = 𝛼m𝛽ws̄wζ̄m∕
(
𝛼w𝛽ms̄mζ̄w

)
.

Using the fact that the geometric mean is less or equal than the arithmetic mean, it can be proved that the expressions
inside the parenthesis of the last two terms in (25) are greater or equal to zero, and they are zero if and only if sw = s̄w,
iw = ζ̄w, vw = v̄w, 𝑦w = �̄�w, sm = s̄m, and im = ζ̄m. Therefore,

.
𝑊 ≤ 0, and

.
W = 0 only for s̄w, ζ̄w, s̄v, �̄�w, s̄m, and ζ̄m. This

implies that all trajectories with positive initial conditions approach P̄w as t → ∞.
From the above results, we have the following.

Theorem 2. If Rs
0 > 1, the system given by (4) and (5) has a unique endemic equilibrium P̄w, which is globally

asymptotically stable.
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The urban equilibrium is found by substituting s̄m and ζ̄m in system (4) and solving the resulting steady state equations.
Since Rs

0 > 1, regardless of the value of Ru
0 , there is always a positive number of infected individuals in the urban area due

to the infective migrant population that depends on the migration rates.

Case II. We assume YF is circulating only in the urban area, that is, Rs
0 < 1, Ru

0 > 1. In this case, we have the endemic
equilibrium

P̄u = (s∗w, i∗w, 𝑦∗w, s∗m, i∗m, s∗u, i∗u, 𝑦∗u) (26)

with coordinates given by s∗w = 1, i∗w = 0, 𝑦∗w = 0, s∗m = 𝛿s∗u
𝜖+𝜇u

, i∗m = 0, and

s∗u = 𝜇u

𝛽u𝑦
∗
u +

𝜇u(𝜖+𝛿+𝜇u)
𝜖+𝜇

, i∗u =
𝛽us∗u𝑦∗u

(𝛾u + 𝜇u)
, 𝑦∗u =

𝜇u(𝜖 + 𝛿 + 𝜇u)
(

Ru
0 − 1

)
𝛽u(𝜖 + 𝜇u) + 𝜇u(𝜖 + 𝛿 + 𝜇)Ru

0
. (27)

Using the function

Q(x) = 𝛼w

𝜈w

1
𝛾w + 𝜇w

1
𝜂

iw + 1
𝜈w

𝑦w + 𝛼m

𝜈w

1
𝛾u + 𝜖 + 𝜇u

1
𝜂

im, (28)

with 𝜂 =
√

Rs
0, which is indeed a Lyapunov function, it can be proved that

lim
t→∞

(sw(t), iw(t), 𝑦w(t), sm(t), im(t)) = (1, 0, 0, s∗m, 0) .

Assuming that systems (4) and (5) are already in the asymptotic form, system (6) becomes

dsu

dt
= 𝜇u

(
1 −

𝛿s∗m
𝜖 + 𝜇u

)
− 𝛽usu𝑦u − 𝜇usu

diu

dt
= 𝛽usu𝑦u − 𝛾uiu − 𝜇uiu

d𝑦u

dt
= 𝛼u(1 − iv)iu − 𝜈u𝑦u,

substituting sm(t) and im(t) by s∗m and i∗m, respectively.
As in Case 1, it can be proved that positive solutions (su(t), iu(t), yu(t)) approach (s∗u, i∗u, 𝑦∗u) when t → ∞ using the

Lyapunov function

V = a1

(
su − s∗u − s∗u ln su

s∗u

)
+ a2

(
iu − iu − i∗u ln iu

i∗u

)
+ a3

(
vu − v∗u − v∗u ln vu

v∗u

)
+ a4

(
𝑦u − 𝑦u − 𝑦∗u ln 𝑦u

𝑦∗u

)
, (29)

where

vu = 1 − 𝑦u a1 = a2 = 1
𝛽us∗u

, a3 = a4 = 1
𝛼us∗v i∗u

.

Case III. YF in urban and wilderness is well established. We assume that the number of migrants infected in the forest
that return to the city is very small compared to the number of urban YF cases, which allow us to take 𝛿 ≪ 1. In this case,
we obtain two decoupled systems for the urban and wild cycles and the following result is proved.

Theorem 3. If Ru
0 ≤ 1, all trajectories of system (4) with initial conditions (su(0), iu(0), yu(0)) in Ω = {(su, iu, yu)|0 ≤

su, 0 ≤ iu, su + iu ≤ 1, 0 ≤ yu ≤ 1} approach the disease-free equilibrium. If Ru
0 > 1, the disease free equilibrium

becomes unstable, and all trajectories with initial conditions (su(0), iu(0), yu(0)) in Ω with i0 > 0 or y0 > 0 approach a
unique endemic equilibrium. (See the work of Esteva and Vargas13 for a proof).

Interchanging u by w, the above result is also valid for the forest system given by (4).
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4 RISK OF YF

In this section, we will find an expression to determine the risk of YF among migrants in the forest regions, assuming
that this disease is endemic there and it is not circulating in the urban area. For this, let Sm be the number of migrant
humans, and we assume Rs

0 = Rw
0 +Rm

0 > 1. On average, an Haemagogus bites an individual (monkey or human) at a rate
bw∕(Nw +Nm), and the probability that this bite is given to a susceptible migrant human is Nm∕(Nw +Nm). Therefore, one
Haemagogus bites a susceptible migrant human at a rate

bw

Nw + Nm
× Sm

Nw + Nm
. (30)

On the other hand, a susceptible migrant human can be bitten by Yw infectious Haemagogus, then the total rate of
potentially infectious bites pin is

pin = bw

Nw + Nm
× Sm

Nw + Nm
× Yw, (31)

and during the period of time staying in the forest region (1∕𝜖), a migrant susceptible human receives an average of pin∕𝜖
bites from all infectious Haemagogus.

Remembering that 𝛽m is the probability of migrant humans to be infected by YF in the forest region and replacing this
parameter by 𝛽m given in (7) the risk, rm, of susceptible migrant humans to be infected is

rm = 1
𝜖
(𝛽m × pin) =

1
𝜖

(
𝛽m

Sm

Nw + Nm

)
𝑦w,

where 𝑦w = Yw
Vw

.
If all migrants are susceptible (Sm = Nm) and forest YF is at the endemic steady state, we call rm the potential risk of YF,

and it becomes

rm =
𝛽m

Nm
Nw+Nm

𝜖
�̄�w, (32)

where �̄�w is given by the positive solution of Equation (16).

5 NUMERICAL SIMULATIONS

In the numerical simulations presented in this section, we show the temporal course of the dynamical variables for two
values of the migrant rate 𝛿, assuming that migrants stay one month in the forest (𝜖 = 1). We assume that the total
populations satisfy Nm = 𝛿Nu∕(𝜖 + 𝜇), Nw = 0.5Nu, Vw = 3Nw, and Vu = 2Nu. At the initial time, we assume that the
urban area is free of YF, and the forest region is already at endemic equilibrium. Taking the values given in Table 1, we
obtain Ru

0 = 0.9, Rm
0 = 0, and Rw

0 = Rs
0 = 12. For these values, all populations remain at equilibrium, the risk of a human

migrant to contract YF is zero, and the incidence of YF in the forest region is high. In Figure 1, we assume that 𝛿 = 0.02
for t > 0, that is, 2% of the urban population enters to the forest area per month. The numerical simulations show an
initial epidemic outbreak in the urban area that decreases to an endemic proportion below to 2 × 10−4 corresponding to
the proportion of infected migrants (see iu graph in Figure 1).

Figure 2 illustrates the time course of the infective proportions when the migrant proportion increases to 𝛿 = 0.35.
In this case, the risk of contracting the infection elevates to pm = 0.004, and the urban basic reproductive number Ru

0
increases to 1.5 given rise to big YF urban outbreaks (see iu graph in Figure 2). The disease can remain endemic in the
urban area without the presence of infected migrants since Ru

0 > 1. The basic reproductive number Rm
0 increases to

0.57, and Rw
0 decreases to 4.3, which indicates that the infection is moving through the migrants from the forest area to

the city.
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FIGURE 1 Numerical simulations of Equations (4), (5), and (6) showing the temporal evolution of the proportions of susceptible and
infective populations of wild, urban, and migrant populations. In this case, 𝛿 = 0.02, 𝜖 = 1, Ru

0 = 1.0, Rm
0 = 0.08, Rw

0 = 11.5, rm = 0.001, and
the rest of the parameters are as in Table 1.
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FIGURE 2 Numerical simulations of Equations (4), (5), and (6) showing the temporal evolution of the proportions of susceptible and
infective populations of wild, urban, and migrant populations. In this case, 𝛿 = 0.35, 𝜖 = 1, Ru

0 = 1.4, Rm
0 = 0.57, Rw

0 = 4.3, and rm = 0.004

6 CONCLUSIONS

One of the main factors behind the distribution and persistence of the diseases is the human migration. Migration allows
the pathogens to invade places where the disease could disappear if they were isolated. Currently, diseases travel much
faster due to large human movements, and there is a need to take rapid measures to control their invasion to virgin
territories. In particular, vector-borne diseases have expanded geographically due to the migration of humans, animals,
and insects. One of these diseases is YF, which can be taken to the cities due to migrants that travel to regions where this
disease is mainly maintained by a cycle between wild animals and vectors.

In order to evaluate the risk of introduction of YF, in this work, we formulated an ODE model considering humans
that live in an urban area and some of them enter for different purposes to the forest regions where YF is maintained
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mainly by monkeys and Haemagogus spp. We based our study on the basic reproduction numbers, Rw
0 ,Rm

0 , and Ru
0 of

monkeys, migrant humans, and urban humans, respectively. These numbers represent estimations of the average number
of infections caused by an infective individual when introduced in a whole susceptible population. Besides, we denote by
Rs

0 = Rw
0 + Rm

0 the number of secondary cases given by sylvatic monkeys and migrant humans in the forest area. When
Rs

0 < 1 and Ru
0 < 1, both forest and urban YF epidemics fade out. Furthermore, we have the following cases.

Case I. R0s>1 and Ru
0 < 1. Forest YF outbreaks lead to urban YF cases carry out by infectious migrant humans im.

Case II. Rs
0 < 1 and Ru

0 > 1. Forest YF fades out, but urban YF epidemics occurs.
Case III. Rs

0 > 1 and Ru
0 > 1. Both forest and urban YF cases reach high levels of indigenous cases independently of

migrants due to the occurrence of intrinsic forest and urban epidemics.

Based in our model, we found an expression named rm to estimate the risk of acquiring YF by migrants during their
stay in the forest region. It was calculated numerically for several conditions, and the results showed that rm increases
when the number of migrants increases. Furthermore, the simulations corroborated that, if the migrants proportion is
high, the urban reproductive number can increase to levels that lead to epidemics of considerable magnitude and/or to the
establishment of the disease. However, if the urban area is relatively safe (ie, Ru

0 sufficiently low), the return of infectious
migrants can sustain only very low incidence of YF.

At this point, it is worthy to mention that our concept of YF risk is different to the one that is given in the work of
Massad et al.11 In this paper, the authors consider one infected person entering in a city free of YF, while we consider the
opposite, namely, healthy persons going into an environment with YF.
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