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Tumorigenesis has been described as a multistep process, where each step is associated with a genetic
alteration, in the direction to progressively transform a normal cell and its descendants into a malignant
tumour. Into this work, we propose a mathematical model for cancer onset and development, considering
three populations: normal, premalignant and cancer cells. The model takes into account three hallmarks
of cancer: self-sufficiency on growth signals, insensibility to anti-growth signals and evading apoptosis.
By using a nonlinear expression to describe the mutation from premalignant to cancer cells, the model
includes genetic instability as an enabling characteristic of tumour progression. Mathematical analysis
was performed in detail. Results indicate that apoptosis and tissue repair system are the first barriers
against tumour progression. One of these mechanisms must be corrupted for cancer to develop from
a single mutant cell. The results also show that the presence of aggressive cancer cells opens way to
survival of less adapted premalignant cells. Numerical simulations were performed with parameter values
based on experimental data of breast cancer, and the necessary time taken for cancer to reach a detectable
size from a single mutant cell was estimated with respect to some parameters. We find that the rates of
apoptosis and mutations have a large influence on the pace of tumour progression and on the time it takes
to become clinically detectable.
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1. Introduction

Cancer is a complex disease that has more than a hundred different types and can occur in almost all
tissues in the body. Although each type of cancer has unique characteristics, the mechanisms that lead
to its development are similar and share a few cellular and molecular characteristics. In this way, one
can say that almost all cancer types obey certain universal rules (Hanahan & Weinberg, 2000, 2011).

Cancer begins when a mutation occurs in a cell and causes it to escape one of the mechanisms that
regulate the process of growth, division and death. However, a single mutation is not enough to develop
a malignant tumour, since a diversity of mechanisms exist to preserve tissue integrity. It is necessary
that, over the generations, the descendants of the mutant cell accumulate other specific mutations
that allow them to surpass the various barriers imposed by the organism against uncontrolled growth.
Thus, tumorigenesis is a multistep process, where each step is associated with a genetic change, in the
direction of progressive transformation of a normal cell and its descendants into a malignant tumour
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(Hanahan & Weinberg, 2000, 2011). Some clinical analyses revealed lesions that would be cells in
intermediary stages during the process of cancer formation (Foulds, 1954). Other experiments proved
that all cells in a tumour descend from only one common ancestral blackcell (Nowell, 1976). For a
detailed description of the biology of cancer, we refer to the book by Weinberg (2013).

Hanahan & Weinberg (2000, 2011) proposed that these genetic and phenotypic alterations can
be grouped and conceptually described in eight acquired capabilities, which were denominated
the Hallmarks of Cancer. They are self-sufficiency in growth signals, insensitivity to anti-growth
signals, evading apoptosis, limitless replicative potential, sustained angiogenesis, tissue invasion and
metastasis, reprogramming energy metabolism and evading immune destruction. They also included
two enabling characteristics, which represent the means that enable populations of premalignant cells
to reach the above hallmarks: genetic instability and tumour-promoting inflammation.

Several works developed mathematical models for carcinogenesis and cancer evolution through
multiple stages and using different approaches,such as Ordinary Differential Equations (ODEs)
(Spencer et al., 2004; Ashkenazi et al., 2008; Stiehl & Marciniak-Czochra, 2012; Gentry & Jackson,
2013), Partial Differential Equations (PDEs) (Enderling et al., 2007; Bellomo & Delitala, 2008;
Marciniak-Czochra & Kimmel, 2008), discrete (Tomlinson & Bodmer, 1995; d’Onofrio & Tomlinson,
2007) and computational models (Abbott et al., 2006; Spencer et al., 2006; Fumiã & Martins,
2013). From the modelling standpoint, our model is more similar to those in Spencer et al.
(2004); Ashkenazi et al. (2008); Gentry & Jackson (2013), and Enderling et al. (2007) which
consider each hallmark acquisition as a transition between cell populations. Spencer et al. (2004)
developed an ODE model to analyse how the interplay among angiogenesis, apoptosis, genetic
instability and abnormal growth gives rise to different kinetics in tumour progression. Through
numerical simulations based on data of breast cancer, they identified particular ordering of such
mutations under which cancer develops faster. The group of Gentry developed ODE models that
describe the acquisition of hallmarks and included tissue hierarchy, by considering three cell types:
stem, progenitor and mature cells (Ashkenazi et al., 2008; Gentry & Jackson, 2013). The model of
Enderling et al. (2007) considered the development of breast cancer as a step-wise process that involves
the loss of function of two tumour suppressor genes by breast stem cells. They also included spatial
dynamics (random motion and haptotaxis) for cancer cells. The model predicted that genetic instability
and a high number of breast stem cells blackare necessary conditions in order that a tumour arises
within a clinically observable time, i.e. within 30 years after puberty.

Here, we present an ODE model to describe the onset of cancer at an initial, avascular stage, with the
following hallmarks: self-sufficiency in growth signals, insensitivity to anti-growth signals and evading
apoptosis. We also consider the enabling characteristic genetic instability. Although the previous models
considered more hallmarks or included more complexity, their analysis consisted mostly of numerical
simulations. We follow a complementary approach, i.e. a rigourous analysis of a smaller model, which
may provide a more mechanistic understanding about the role of each model component. With this, we
expect to draw conclusions on how each hallmark acquisition and genetic instability contribute to the
process of oncogenesis. At the same time, our theoretical analysis also provides directions to numerical
simulations, which we perform blackusing experimental data from the literature to compare our model
predictions with clinical observations. Finally, a new feature of our model is the way the mutations
are described. While the previous models considered linear transitions, here, based on the interplay
between genetic instability and tumour progression, we adopt different mutation terms such as a single-
cell transition and a nonlinear term describing a threshold for genetic instability. These assumptions lead
to a richer dynamical behaviour which may translate into interesting consequences from the biological
point of view.
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The paper is organized as follows. Section 2 deals with the development of a mathematical model.
In Section 3 we present the mathematical analysis of the model. In Section 4, we obtain parameter
values based on literature data. In Section 5, we present numerical simulations and discuss the biological
implications of analytical and numerical results. In Section 6, the conclusions are presented.

2. A model for oncogenesis encompassing mutations and genetic instability

We consider the following three cell populations: the normal cells at a tissue in the human body are
denoted by N; the population of pre-cancer cells with a first hallmark of self-sufficiency in growth
signals is denoted by G and the population of cancer cells, with both the hallmarks self-sufficiency in
growth signals and evading apoptosis, is denoted by A. Due to the similarity between the hallmarks of
self-sufficiency in growth signals and insensitivity to anti-growth signals, we consider both as a single
characteristic acquired by pre-cancer and cancer cells. The model equations are

dN

dt
= rN − μNN − β1NA − β4NG − G0δD(t − t0), (2.1a)

dG

dt
= rGG

(
1 − G

KG

)
− (μG + εG)G − β2NG − β5AG + G0δD(t − t0) − δG2

ξ + G
, (2.1b)

dA

dt
= rAA

(
1 − A

KA

)
− (μA + εA)A − β3NA − β6AG + δG2

ξ + G
. (2.1c)

In the following, we briefly present the hypothesis behind model (2.1a). A short description of
each parameter is presented in Table 1 (Section 4). Other details can be found in Fassoni & Yang
(2016), where we studied a version considering only normal and cancer cells blackwhile including
chemotherapy. In that work, our focus was to propose a view on cancer treatment from the ecological
resilience perspective.

We assume that the production of normal cells is an intrinsic property of the tissue and adopt a
constant production term, described by rN , and a natural death rate μN . On the other hand, due to the
self-sufficiency in growth signals, the growth program of pre-cancer and cancer cells is independent of
tissue signalling. However, it still depends on nutrient limitation. Thus, a logistic growth is considered,
with growth rates rG and rA, and carrying capacities KG and KA. Parameters μG and μA are the natural
mortality rates of pre-cancer and cancer cells, and εG and εA are extra mortality rates due to apoptosis
(Danial & Korsmeyer, 2004). As cancer cells evaded apoptosis, εA is thought to be less than εG and can
be zero.

Parameters βi, with i = 1, . . . , 6, represent the interactions between cell populations. While in
general these terms represent interspecific competition by space and nutrients, here they also comprise
other interactions. Parameters β2 and β3 embrace the response of the tissue repair system, activated by
normal cells in the presence of abnormal cells (Finn, 2008). Parameters β1 and β4 describe the damage
imposed to normal cells by changes in the local micro-environment introduced by mutant cells, such as
increasing the local acidity due to abnormal metabolism (Gatenby & Gawlinski, 2003). Parameters β5
and β6 describe the negative effects caused by population G on A, and vice-versa.

We now consider the transitions between cell compartments. In most mathematical models in this
context, they are modelled by linear terms like pN or qG, where p and q represent the probabilities of
occurrence of mutations/activation of oncogenes, per cell per division (Spencer et al., 2004; Enderling
et al., 2007; Gentry & Jackson, 2013). These probabilities are of order of 10−8 to 10−6 (Tomlinson
et al., 1996; Jackson & Loeb, 1998), but not always constant (Loeb, 1991; Negrini et al., 2010; Salk
et al., 2010). Indeed, as tumour growth proceeds, the genomes of tumour cells often become increasingly
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Table 1 Basic values of parameters adopted in simulations. The values for normal and
cancer cells were taken from Fassoni & Yang (2016) and are based on breast cancer. The
values for pre-cancer cells were obtained by biological reasoning and comparison with those
for cancer cells (see Section 4).

Parameter Description Value

rN total constant reproduction of normal cells 106 cell day−1

μN 1/μN is the lifetime of a normal cell 0.01 day−1

β1 cancer cells aggressiveness 0.35 × 10−9 cell−1day−1

rA cancer cells growth rate 0.05 day−1

KA cancer cells carrying capacity 108 cells
μA natural mortality rate of cancer cells 0.01 day−1

εA extra mortality rate of cancer cells 0.006 day−1

βII
3 tissue response to cancer cells - case II 0.35 × 10−9 cell−1day−1

rG pre-cancer cells growth rate 0.05 day−1

μG natural mortality rate of pre-cancer cells 0.01 day−1

εG extra mortality rate of cancer cells 0.01 day−1

β2 tissue response to pre-cancer cells 0.35 × 10−9 cell−1day−1

δ maximal mutation rate of pre-cancer cells 10−5 day−1

ξ threshold for genetic instability 103 cells
G0 initial number of pre-cancer cells 1 cell

unstable, and the rate at which mutations are acquired during each cell generation increases and may
exceed the rate at which Darwinian selection can eliminate the less-fit sub-clones of cells (see Sec. 11.7
and Chap. 12 of Weinberg (2013)). Thus, a linear probability rate oversimplifies the reality of cancer and
does not capture this departure from the genome’s highly stable state when a tumour proceeds Weinberg,
2013 (Loeb, 1991; Negrini et al., 2010; Salk et al., 2010; Weinberg, 2013).

In our model, we implemented a step-wise process to vary the mutation rate depending on the stage
of the tumour development. The first successful transition of a normal cell to a mutant cell is probabilistic
(Weinberg, 2013, Chap. 11). Once this viable transition occurs, due to its accelerated growth, the first
pre-cancer cell proliferates quickly and acts as a spark to activate cancer. We are interested in analysing
whether or not its progeny will be able to survive long enough to reach the next transition stage. As the
initial proliferation of these cells is high, the entering of other normal cells in this pool can be neglected.
Thus, we model the first effective transition from N to G by a Dirac Delta term, representing that G0
normal cells became pre-cancerous cells at time t0 (with the possibility to have G0 = 1),

G0δD(t − t0). (2.2)

After the onset of pre-cancer cells, their viable mutation is propagated trough cell generations, and
there is an increase of genetic instability, so they will be subject to a variable transition from G to A.
There is biological evidence that some of the same mutations that increase cell proliferation are also
responsible for enhanced genetic instability (Negrini et al., 2010; Salk et al., 2010). In order to include
such a threshold effect in the mutation from pre-cancer to cancer cells, we model the transition term as

δG2

G + ξ
, (2.3)
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so that the mutation rate δG/(G + ξ) is small when there are few cells, increases as the number of cells
increases and saturates to the level δ when the number of cells surpasses the threshold defined by ξ . In
our model, a linear transition term would be written as δG, with a constant mutation rate δ. Therefore,
while previous models considered such linear terms for all transition between cell populations, here,
based on the role of genetic instability, the first transition is modelled as a pulse, thereby mimicking a
random event, and the second one is a nonlinear flow that approaches a linear one only when a large
number of cells is present.

At a first moment, all features of model (2.1a) are important for the context of oncogenesis. However,
in order to perform a more detailed analysis, we can disregard some terms which do not have major
contribution in the first stage of tumour progression. With this, we obtain a simplified version that still
retains the characteristics we want to examine. Since our focus is the appearing of pre-cancer cells, the
values of interest are low. Thus, the negative effect caused by them on normal and cancer cells can
be neglected, and also the effect suffered by them due to the interaction with cancer cells. Therefore,
terms −β4NG, −β5AG and −β6AG can be disregarded. By the same reasoning, we disregard the term
−rGG2/KG. If, in some conclusions we observe that G → ∞, it will be understood that pre-cancer
cells reached a stationary state far from G = 0, which is what would happen if the logistic term was
included. The term −β2NG in (2.1b) cannot be disregarded because it encompasses the tissue response
to pre-cancer cells, which may occur at the very beginning phase. On the other hand, blackcancer cells
A constitute the final step in this avascular phase, and all terms in (2.1c) must be kept. By setting the
time of first mutation to t0 = 0 and initial conditions (N(0), G(0), A(0)) = (N0 − G0, G0, 0), the model
becomes

dN

dt
= rN − μNN − β1NA, (2.4a)

dG

dt
= rGG − β2NG − (μG + εG)G − δG2

ξ + G
, (2.4b)

dA

dt
= rAA

(
1 − A

KA

)
− β3NA − (μA + εA)A + δG2

ξ + G
. (2.4c)

3. Model analysis

We now present the mathematical analysis of system (2.4a). We perform an extensive study of
the existence and stability of biologically feasible equilibrium points. Biological interpretation and
discussion of these results are postponed to Section 5.

3.1 Trivial equilibrium—Normal cells only

We start by analysing the trivial equilibrium,

P0 =
(

rN

μN
, 0, 0

)
. (3.1)

The eigenvalues of the Jacobian matrix of system (2.4a) evaluated at P0 are

λ
(0)
1 = −μN , λ

(0)
2 = rN

μN
(β th

3 − β3) and λ
(0)
3 = rN

μN
(β th

2 − β2), (3.2)
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where

β th
2 = μN

rN
lG, β th

3 = μN

rN
lA, with lG = rG − μG − εG, and lA = rA − μA − εA. (3.3)

Parameters lG and lA can be thought of as the net reproduction rates of cells G and A, respectively, and
both will be assumed to be positive. Otherwise, blackpre-cancer cells G and blackcancer cells A would
be extinct naturally without interaction with normal cells; see (2.4a). Thus, P0 is stable if, and only if,

β2 > β th
2 = lG

rN/μN
and β3 > β th

3 = lA
rN/μN

. (3.4)

Therefore, if the negative blackeffects of normal cells on pre-cancer and cancer cells, described by β2
and β3, are high, then the tissue is able to eliminate the few mutant cells that arise. If the tissue repair
system is not good enough, and one of the two conditions above is not satisfied, P0 will be unstable, and
the blackappearance of a few mutant cells, small disturbances of P0, will break the tissue homeostatic
state free of cancer and will lead to cancer progression with presence of one or two types of mutant
cells. Note that larger values of the equilibrium value in the absence of cancer, rN/μN , decrease the
thresholds β th

i , and thus increase the protection against cancer. On the other hand, larger values of net
reproduction rates lG and lA (achieved by evading apoptosis or deregulated growth for instance) increase
the thresholds, which increases the risk of cancer onset.

3.2 Boundary equilibria—absence of pre-cancer cells

We now analyse the boundary equilibria corresponding to absence of pre-cancer cells. We start
presenting previous results about the subsystem formed by equations (2.1a) and (2.1c) with G = 0,
completely studied in (Fassoni & Yang, 2016, Section 3). These results will be used in the analysis
within this section. That subsystem is the restriction of system (2.4a) to the N × A plane, which is an
invariant set of (2.4a). We will refer to this subsystem as subsystem N × A. It has a trivial equilibrium
E0 = (rN/μN , 0) and two nontrivial equilibria

Ēi = (N̄i, Āi) =
(

rN

μN + β1Āi
, Āi

)
, i = 1, 2, (3.5)

where Ā1 and Ā2 are the roots of the second-degree polynomial

q(A) = aA2 + bA + c, (3.6)

with coefficients

a = β1
rA

KA
> 0, b = lA

(
β th

1 − β1

)
, c = rN

(
β3 − β th

3

)
, (3.7)

where

β th
1 = μNrA

lAKA
. (3.8)
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These roots satisfy Ā1 < Ā2 when both are real. An important threshold to this analysis is given by

β th
1,� = β th

1 + 2η + 2
√

η(β th
1 + η), (3.9)

where η = rArN(β3 − β th
3 )/(KAl2A). Notice that it is defined only for β3 > β th

3 .
In Fassoni & Yang (2016), we showed that subsystem N × A has one of the three behaviours:

I) If β3 > β th
3 and β1 < β th

1,�: Ā1 and Ā2 either are real and negative or complex conjugate, so that

Ē1 and Ē2 are not biologically feasible; E0 is globally stable.

II) If β3 > β th
3 and β1 > β th

1,�: Ā1 and Ā2 are real and positive, E0 and Ē2 are locally stable and Ē1
is a saddle-point.

III) If β3 < β th
3 : the roots satisfy Ā1 < 0 < Ā2, E0 is a saddle-point and Ē2 is globally stable for

initial conditions with A(0) > 0.

By setting G = 0 in (2.4a), we see that each equilibrium (N, A) of subsystem N × A corresponds
to one boundary equilibrium (N, G, A) of system (2.4a). Thus, besides the trivial equilibria P0, system
(2.4) has two nontrivial boundary equilibria given by

P̄i = (N̄i, 0, Āi) =
(

rN

μN + β1Āi
, 0, Āi

)
, i = 1, 2. (3.10)

These equilibria have positive coordinates under the conditions II and III stated above.
We now analyse the linear stability of these equilibria. The Jacobian matrix of system (2.4a)

evaluated at P̄i is given by

J(P̄i) =
⎡
⎣−β1Āi − μN 0 −β1N̄i

0 lG − β2N̄i 0
−β3Āi 0 lA − 2 rA

KA
Āi − β3N̄i

⎤
⎦ , i = 1, 2. (3.11)

The characteristic polynomial p(λ) of J(P̄) factors as

p(λ) = (lG − β2N̄ − λ)p2(λ) (3.12)

where p2(λ) is the characteristic polynomial of the Jacobian matrix of subsystem N × A evaluated at Ēi,

j(Ēi) =
[−β1Ā − μN −β1N̄

−β3Ā lA − 2 rA
KA

Ā − β3N̄

]
. (3.13)

We know the eigenvalues of j(Ēi) from the results about stability of Ēi in subsystem N × A (conditions
II and III above). They are also eigenvalues of J(P̄i). The third eigenvalue of J(P̄i) is

λ
(i)
3 = lG − β2N̄i = rN

μN + β1Āi
(β

th,i
2,λ − β2), (3.14)
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8 A. C. FASSONI AND H. M. YANG

where

β
th,i
2,λ = β th

2 + lGβ1Āi

rN
> β th

2 , i = 1, 2. (3.15)

Therefore, we conclude that P̄1 will be unstable whenever it is positive (case II above), with one positive
eigenvalue if β2 > β

th,1
2,λ , and two positive eigenvalues otherwise. Regarding the point P̄2, if β2 > β

th,2
2,λ ,

it will be stable whenever it is positive (cases II and III above). Otherwise, P̄2 will be unstable, with one
positive eigenvalue.

3.3 Internal equilibria—presence of pre-cancer and cancer cells

We now analyse the internal equilibria of system (2.4), given by P̃ = (Ñ, G̃, Ã). Here, Ñ and G̃ are given
in terms of Ã,

Ñ = rN

(μN + β1Ã)
, G̃ =

ξ
(

lG(μN + β1Ã) − β2rN

)

β2rN − (lG − δ)(μN + β1Ã)
, (3.16)

and Ã is a root of the fourth-degree polynomial equation

f (A) = g(A), (3.17)

with

f (A) = β1(lG − δ) A q(A) (AM − A) and g(A) = ξ l2G β2
1 (A − Am)2 . (3.18)

Here, q(A) is the second-degree polynomial given in (3.6), and Am and AM are given by

Am = rN

β1lG

(
β2 − β th

2

)
, AM = rN

β1(lG − δ)

(
β2 − β th

2,δ

)
, β th

2,δ = μN(lG − δ)

rN
. (3.19)

The fourth-degree polynomial equation (3.17) admits up to four roots. Thus, we have up to four
equilibrium points P̃i = (Ñi, G̃i, Ãi), i = 3, 4, 5, 6. We analysed the existence and positiveness of
equilibria P̃i in the entire parameter space and the results are summarized in Fig. 1. The proof of these
results and additional details are given in Appendix A.

Stability analysis of equilibria P̃i, i = 3, 4, 5, 6, is done by studying the roots of the characteristic
equation of the jacobian matrix of (2.4) evaluated at P̃i. The characteristic equation is

λ3 + a1λ
2 + a2λ + a3 = 0, (3.20)
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MODELING DYNAMICS FOR ONCOGENESIS 9

Fig. 1. Existence of positive internal equilibria P̃i, i = 3, 4, 5, 6, depending on β2 and δ. On the top left, we have the case
I) β3 > βth

3 and β1 < βth
1,�; on the top right, the case III) β3 < βth

3 ; at the bottom, the case II) β3 > βth
3 and β1 > βth

1,�. In each
case, the parameter sub-regions are separated by the thresholds indicated in the legend. At those regions where there is the word
‘OR’, the existence of some internal equilibria also depends on other conditions. Details are presented in Appendix A.

with coefficients

a1 = β1Ã + μN + ξ(lG − β2Ñ)

G̃ + ξ
− d,

a2 = −d

(
ξ(lG − β2Ñ)

G̃ + ξ
+ β1Ã + μN

)
+ ξ(lG − β2Ñ)

G̃ + ξ

(
β1Ã + μN

)
− β1β3ÑÃ,

a3 = −d
ξ(lG − β2Ñ)

G̃ + ξ

(
β1Ã + μN

)
− β1Ñ

(lG − β2Ñ)

G̃ + ξ

(
β2G̃(G̃ + 2ξ) − β3Ãξ

)
, (3.21)

Downloaded from https://academic.oup.com/imammb/advance-article-abstract/doi/10.1093/imammb/dqy010/5043024
by UNICAMP - Universidade Estadual de Campinas user
on 29 June 2018



10 A. C. FASSONI AND H. M. YANG

where Ñ, G̃ are given in (3.16), Ã is a root of (3.17) and d = (lA − 2 rA
KA

Ã − β3Ñ). According to the

Routh–Hurwitz criteria, an equilibrium P̃ is stable if

a1 > 0, a3 > 0 and a1a2 − a3 > 0. (3.22)

We studied these conditions by combining the analytical results on the existence of positive equilibria
P̃i with numerical bifurcation analysis using the software Mathematica©. With this, we analysed the
stability of equilibria P̃i in all regions of the parameter space. Figure 2 presents a sketch of the parameter
space and indicates which are the stable equilibria in each sub-region of the parameter space. Figure 3
summarizes all results about the existence and stability of the equilibria of system (2.4). The complete
details and explanations about the methods we used are given in Appendix A.2.

Fig. 2. This figure shows which equilibria are locally stable in each sub-region of parameter space. At regions where there is the
word ‘OR’, the existence of some internal equilibria also depends on other conditions. These results were obtained by combining
analytical and numerical results, as detailed in Appendix A.
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Fig. 3. This scheme shows which equilibrium points are positive in each range of parameters space. In each region where ‘(M)’
appears after two points, a collision between these two points can occur depending on other parameters, and the points can be
both positive or not. Stability of equilibria is also indicated: black for stable, and red for unstable. Highlighted cells represent
ranges of parameter space where P0 is stable, i.e. cancer can be eliminated. All results for points P0, P̄1 and P̄2, and those about
positiveness of points P̃i, i = 3, 4, 5, 6, were mathematically proved, while results about stability of P̃i, i = 3, 4, 5, 6 and P∞ were
obtained numerically. See Appendix A for details.

In order to illustrate these analytical and numerical results on existence and stability of internal
equilibria, we obtained phase portraits corresponding to each region in Figs 2 and 3. It was done by
solving system (2.4) numerically with Mathematica©, with an implicit Runge–Kutta method. Some of
these phase portraits are presented in Fig. 4, while the others are not shown for sake of brevity. In all
cases shown in Fig. 4 it can be seen that some solutions (red trajectories) approach a point at ‘infinity’
such as (N, G, A) = (N, ∞, ∞). This point will be denoted by P∞. As commented in Section 2, P∞
represents the survival of G cells at a quantity very far from G = 0, due to the lack of a logistic term in
the dynamics of G. We also see in Figs 2 and 3 that there are subsets of the parameter space where the
phase space is divided into three basins of attraction, as illustrated by phase portraits II)e) and II)h) in
Fig. 4. Therefore, the model outcomes are highly dependent not only on the parameters regimens, but
also on the initial conditions.
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12 A. C. FASSONI AND H. M. YANG

Fig. 4. Phase portraits of system (2.4) for parameter values corresponding to some cases of Fig. 3. Stable equilibrium points
are indicated by black dots, while saddle or unstable equilibrium points are indicated by grey dots. The trajectories are coloured
according to the equilibrium they converge to: P0 (blue, normal cells only), P̄2 (green, no pre-cancer cells), P̃5 (orange, all cell
types) and P∞ (red, all cell types, with G, A → ∞). Case II)d): phase space is divided in the basins of attraction of P0 and P∞.
Region II)g): phase space is divided in the basins of attraction of P0, P̃5 and P∞. Case II)h): phase space is divided in the basins
of attraction of P0, P̄2 and P∞. Case III)c): phase space is divided in the basins of attraction of P̄2 and P∞.

4. Model parametrization

In this section we obtain values for parameters in order to illustrate the discussions with clinical relevant
simulations and to assess how some key parameters influence on the quantitative behaviour of the
model. The basic values for parameters of normal and cancer cells were taken from Fassoni & Yang
(2016), where we obtained values relevant for breast cancer Spencer et al. (2004). These parameters are
presented in Table 1. We now present the values for pre-cancer cells.

• Using the same value of rA set in Fassoni & Yang (2016), we assume that the growth rates of
pre-cancer and cancer cells are the same, rG = rA = 0.05 days−1. Since cancer cells have evaded
apoptosis while blackpre-cancer cells do not, and εA = 0.01 days−1 is used in Fassoni & Yang
(2016), we assume εG = 0.01 days−1, and values for εA in the range 0 � εA � 0.01.

• Concerning mutation rates, in the literature, the probability of a mutation occurring in a gene
during cell division is estimated to be from 10−8 to 10−6 (Tomlinson et al., 1996; Jackson
& Loeb, 1998). Also, it is assumed that approximately 100 genes are involved in a same
physiological change that characterizes a hallmark of cancer, like evading apoptosis or self-
sufficiency in growth signals (Spencer et al., 2004). Thus, we consider the gene mutation
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probability to be 10−7 and multiply it by 100 in order to obtain the maximal mutation rate
δ = 10−5. The threshold of genetic instability, at which the effective mutation rate reaches half
the value of δ, was initially set to G = ξ = 103 cells.

• The values of interacting parameters β1, β2 and β3, in units of cell−1day−1, are unknown a priori
but, by substituting the values of other parameters, it is possible to obtain at least the values for
the thresholds to β1, β2 and β3. Using the previous parameter values, and εA = 0.01 day−1, the
thresholds are given by β th

2 = β th
3 = 0.30 × 10−9, β th

1 = 0.17 × 10−9 and β th
1,� = 0.37 × 10−9.

As we want to observe the different behaviours when βi, i = 1, 2, 3, are greater or lesser than
these thresholds, we start with the following basic values for them, β1 = β2 = β3 = 0.35×10−9

cell−1day−1, which corresponds to Region I) c) of parameter space (see Figs 2 and 3).

5. Discussion

We now turn to discuss the biological implications of qualitative analysis in Section 3. We illustrate the
discussion with numerical simulations. Here, we omit the units of the parameters (see Table 1).

5.1 Cancer onset from very few cells

First, we analyse the results from the point of view of cancer onset from very few mutant cells. We
focus our attention to specific regions of parameters space where tumour progression is possible from
very few cells. Thus, we must consider regions where P0 is not stable, because the more biologically
relevant initial conditions in this viewpoint are small disturbances from P0, and these solutions would
return to P0 if blackthis equilibrium is stable.

If we disregard the mutation from G to A for a moment (δ = 0), we have the following. When
β2 < β th

2 , normal cells fail to prevent the growth of G cells, because G → ∞ (see (2.4) and (3.3)). In
this case, there is no need for G cells to acquire a second hallmark. On the other hand, if β2 > β th

2 ,
normal cells are capable of preventing the growth of G cells, and G → 0. In this case, the hallmark
of self-sufficiency in growth signals is not enough for the development of these mutant cells, and it
is necessary that these cells acquire another hallmark that increases their survival chances. Thus, if
we require that the mutation from G to A is a necessary step, then, the more biologically plausible
regions are those where β2 > β th

2 . Following these conditions, we observe that in regions I and II, when
β3 > β th

3 , there is no chance for cancer onset from very few mutant cells, since in all sub-regions, P0 is
locally stable if β2 > β th

2 . Therefore, cancer onset from very few mutant cells is possible only in region
III, with β3 < β th

3 . Thus, the mutation from G cells to A cells represents the condition of mutant cells
adapting, which requires mutation from a population with β2 > β th

2 to one which satisfies β3 < β th
3 .

Next we examine this condition in more detail.

5.2 Evading apoptosis and decreasing tissue response against cancer are necessary conditions for
cancer onset from very few cells

The condition for cancer onset from very few cells, β3 < β th
3 , is equivalent to

β3 + rN

μN
εA <

rN

μN
(rA − μA). (5.1)
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14 A. C. FASSONI AND H. M. YANG

This condition will be satisfied if the apoptosis rate of cancer cells is reduced (low εA) and/or if the
repair system is not strong enough (low β3). Under these conditions, the tissue is not able to prevent
tumour growth and the appearance of a few mutant cells will break the homeostatic state in the tissue
and lead to a tumour with the presence of one or two types of mutant cells. Thus, the first barrier to
tumour progression is broken by evading apoptosis and/or the disruption of the repair system against
cancer cells. With respect to evading apoptosis, it is well known as one of the major hallmarks of cancer
(Hanahan & Weinberg, 2011). With respect to disruption of repair systems, these conclusions agree with
the evidences that the probability of tumour progression is often enhanced in injured organs and tissues
that display lost or diminished regenerative ability (Ruggiero & Bustuoabad, 2006).

Even if condition (5.1) is satisfied, apoptosis and tissue response can also be barriers to tumour
progression from a quantitative point of view. We illustrate this by numerical simulations, assuming
parameter values in Table 1 and assessing the outcome of varying εA and β3. We suppose that a single
pre-cancer cell arises at time t = 0, i.e. G0 = 1. Initially, we consider that the apoptotic rate of cancer
cells is 40% less than the rate of pre-cancer cells, εA = 0.006. With these parameters values we have
the threshold β th

3 = 0.34 × 10−9. If we consider that the tissue responses to pre-cancer and cancer cells
are the same, β3 = 0.35 × 10−9 > β th

3 , then we are in region I) c) of parameters space, where P0 is
locally stable. Figure 5 (A) shows the corresponding simulation, and we see that pre-cancer and cancer
cells are eliminated. In order to have the possibility of cancer progression, the condition β3 < β th

3 must
be satisfied. This can be expressed for parameter εA: if we set β3 = 0.35 × 10−9, the condition becomes
εA < 0.005. Therefore, in the next simulation we decrease the apoptosis rate of cancer cells by half, to
εA = 0.003 (Fig. 5 (B)). With this value, we pass to region III, where P0 is unstable and cancer onset
is possible from a qualitative point of view. However, the simulation indicates that cancer cells take
42 years to reach the stationary population of 0.52×106 cells. Based on Schabel (1975), we assume that
cancer is detectable when it attains a tumour with 106 cells. Thus, in this simulation the final tumour
is clinically undetectable. Therefore, even if the cancer can develop from a qualitative point of view
(the apoptosis rate is small so that P0 is unstable), it can take too long to reach the final size, which is
still undetectable. Thus, a quantitative decrease of the apoptosis rate is necessary to reach a detectable
size during a human lifetime. This is illustrated in panel (C). In this simulation, assuming that cancer
cells have completely evaded apoptosis, εA = 0, the cancer takes only 18 years to reach the equilibrium
population with 1.3×106 cells, which now is detectable. Evasion of tissue response by cancer cells also
accelerates tumour progression and increases its final size. As an example, Fig. 5 (D) shows a simulation
where cancer cells have completely evaded apoptosis (εA = 0), and the tissue response to cancer cells
decreased by 20%, β3 = 0.28 × 10−9. With these values, the tumour reaches an equilibrium size with
2.9 × 106 cells within 8 years. A summary of these simulations is given in Table 2.

Table 2 Effects of parameter changes on the final tumour size (S, number of cancer cells) and the
time needed to reach final size (T, in years). With exception of the parameters varied in each simulation
(row), all other parameter values are those of Table 1.

Values Size S Time T Detectable Figure

εA = 0.006, β3 = 0.35 × 10−9 0 - no 5 (A)
εA = 0.003, β3 = 0.35 × 10−9 0.52 × 106 42y no 5 (B)
εA = 0, β3 = 0.35 × 10−9 1.3 × 106 18y yes 5 (C)
εA = 0, β3 = 0.28 × 10−9 2.9 × 106 8y yes 5 (D)
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MODELING DYNAMICS FOR ONCOGENESIS 15

We analyse in more detail how β3 and εA modify the necessary time for cancer to attain a clinically
detectable size. Simulations of system (2.4), with initial condition G0 = 1, and different values of εA

and β3, were performed. In each simulation, we seek the first time at which cancer cells (either A or G)
reached the detectable size of 106 cells. Results are shown in Fig. 6. We see that diminishing both the
tissue response and tumour intrinsic apoptotic rate blackleads to a smaller time for tumour development,
which can vary from larger values, e.g. 21 years, to small ones, e.g. 2 years. Thus, besides predicting
qualitatively that evading apoptosis allows cancer development, the model also agrees quantitatively
with biological facts by showing that evading apoptosis increases the velocity of tumour progression.
It is also worth noting that there are intervals of parameters β3 and εA for which the tumour attains
a maximum size smaller than the clinically detectable size. So the model also predicts the onset and
establishment of cancer at non-detectable, avascular stage, but which may suffer other mutations that
enable other hallmarks, such as angiogenesis and subsequent invasion and metastasis.

Fig. 5. Simulations of system (2.4) with initial condition G0 = 1. In the first simulation, with parameter values given in Table 1,
cancer cells are eliminated (A). If cancer cells partially evade apoptosis (εA = 0.003), then they are able to survive, but it takes 42
years to reach the undetectable size of 0.52 × 106 cells (B). If cancer cells completely evade apoptosis (εA = 0), it takes 18 years
to reach the detectable size of 1.3 × 106 cells (C). Finally, panel (D) shows the effect of evading apoptosis (εA = 0) combined
with a decreasing in the tissue response by 20%, β3 = 0.28×10−9. In this case, cancer cells reach the stationary size of 2.2×106

cells in only 4 years.
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16 A. C. FASSONI AND H. M. YANG

Fig. 6. Necessary time for cancer to reach detectable size (106 cells), beginning with a single mutant pre-cancer cell black G0 = 1.
(A) The effect of varying β3 is shown (with εA = 0.006 fixed): for values of β3 near zero, cancer attains detectable size in only
2.5 years; as the tissue response is increased, this time grows up to 17 years; for 0.29 × 10−9 < β3 < 0.34 × 10−9, the maximum
tumour size is below detectable size; for β3 > 0.34 × 10−9 = βth

3 , cancer cells are eliminated (P0 is stable). (B) The effect of

varying εA is assessed (with β3 = 0.29 × 10−9 fixed): the necessary time to reach a detectable size varies from 7 years to 21
years; for 0.007 < εA < 0.010, the maximum tumour size is below detectable size; for εA > 0.010 (not shown), cancer cells are
eliminated (P0 is stable).

5.3 Genetic instability is an enabling characteristic for tumour progression

We now analyse the effect of genetic instability, which may blackalter the values of mutation rate and the
initial number of mutant cells. Initially, we assess the role of genetic instability by changing the values
of the mutation rate δ and comparing the sub-cases in Region III of parameter space as δ increases (see
Fig. 2). In subsystem N × A, we have cancer growth, since Ē2 is globally stable in this subsystem. To
understand what happens in the system (2.4), we consider two possibilities: δ < lG and δ > lG. The first
one can be rewritten as δ + εG < rG − μG. Thus, the sum of mutation rate and additional apoptotic rate
of G is low, lesser than the net growth rate. In this scenario, blackwe have the following:

Case a: if β2 < β
th,2
2,δ (which is possible even with β2 > β th

2 —see Fig. 3), P∞ is globally stable and
cancer grows in the tissue achieving a high number of cells. It happens because the presence of tumour
cells A resistant to the tissue response leads to a decrease in the quantity of N cells. These cells, in a
lesser number, do not blackcreate enough pressure to eliminate G cells. Thus, while at an initial instant
pre-cancer cells G work as a trigger to development of cancer cells A, at a subsequent instant, cancer
cells A open space in the tissue for the development of less adapted cells, which would not survive in
the absence of the more adapted A cells. This feedback leads to a heterogeneous tumour, with distinct
cell subpopulations.

Case b: increasing tissue aggressiveness against G cells, if β th
2,δ < β2 < β th

2,λ, P̃5 becomes stable.

Thus, initial conditions near P0 will converge to P̃5. A heterogeneous tumour establishes in the tissue,
but attains a steady state level less than the encountered in the previous case.

Case c: increasing the tissue response, β2 > β th
2,λ, P̃5 ceases to exist and P̄2 becomes stable. Thus,

initial conditions near P0 will converge to P̄2. Therefore, in this case, the tissue high aggressiveness
against blackpre-cancer cells G does not allow the survival of them, and the final tumour is not
heterogeneous as in the previous case. However, the onset of pre-cancer cells works at least as a trigger
to tumour progression, since it enables blackcancer cells A, to attain a positive stationary state.
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Fig. 7. Necessary time for cancer to reach the detectable size (106 cells), beginning with a G0 mutant cells. (A) The effect of
varying δ, with G0 = 1 fixed. (B) The effect of varying G0, with δ = 10−5 fixed. Parameter values are indicated in the text.

The other possibility, δ + εG > rG − μG, is similar to the previous case. The difference is that the
high apoptotic rate εG does not allow blackpre-cancer cells G to attain high levels (P∞ is not stable).

From a quantitative point of view, the effects of varying δ are shown in Fig. 7 (A). As δ increases,
the time T for cancer to reach the detectable size diminishes linearly with log δ, according with T =
10.05 − 1.26 log δ. So, a 10 fold increase in the mutation rate diminishes the time T by 1.26 years. At
the standard value δ = 10−5 we have T = 16.3 years. When δ = 10−3, we have T = 13.8 years.

Besides increasing the mutation rate of cells, genetic instability and tissue exposure to carcinogenic
factors may blackalso increase the initial number of premalignant cells, described by G0 in the model.
The effect of increasing G0 is illustrated in the plot of T versus log2 G0 in Fig. 7 (right). The parameter
values are those in Table 1, with β3 = 0.29 × 10−9, εA = 0.006. When G0 = 1, we have T = 16.3
years. As G0 increases, T decreases linearly with log2 G0 according to equation T = 16.3−0.74 log2 G0.
Therefore, doubling the initial number of pre-cancer cells leads to a reduction of approximately 9 months
in the time taken for the tumour to reach 106 cells.

As seen above, specially in Fig. 7, small changes in the mutation rate or the initial number of mutant
cells have a large impact on the pace of tumour progression. These results illustrate the fact that the
differences between a cancer patient and a healthy person may not be structural or qualitative differences
between their intrinsic cellular systems, i.e. differences in parameters that lead to different regions on
parameters space, some where P0 is stable and other where P0 is unstable. On the contrary, the unique
difference between these people could be only quantitative, in the sense that virtually both will have
cancer some day, but after different times, due to the differences between the mutation rate or exposure
to carcinogenic factors. From this point of view, genetic instability is the major factor that leads to
tumour progression within a clinically observable time. These results agree with the understanding that
genetic instability is an enabling characteristic of cancer (Hanahan & Weinberg, 2011), and with results
of Enderling et al. (2007), which predicts that normal mutation rates give rise to a tumour within a
human lifetime only if genetic instability is a driving force of the mutation pathway.

5.4 The feedback effect between cancer and pre-cancer cells

Finally, we comment on the role of pre-cancer cells and their mutation to cancer cells. We turn attention
to region I of parameter space, where cancer cells would be extinct if there would not be pre-cancer
cells, since P0 is globally stable in subsystem N × A. In the full system, we see in Fig. 3 that P0
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18 A. C. FASSONI AND H. M. YANG

is not globally stable anymore. Under the more realistic condition β2 > β th
2 (where pre-cancer cells

would be eliminated if they do not mutate into cancer cells, as discussed above) P0 is only locally
stable. Therefore, under high genome instability which increases initial conditions favourable for pre-
cancer and cancer cells, the constant transition from pre-cancer to cancer cells may sustain the tumour
progression in scenarios where both of these cell populations could not survive alone.

6. Conclusion

An ordinary differential equation model considering normal, pre-cancer and cancer cells was proposed
to describe cancer onset and progression considering three hallmarks of cancer: self-sufficiency
on growth signals, insensibility to anti-growth signals and evading apoptosis. Transitions between
compartments were modelled differently from previous works, by using Dirac Deltas and a continuous
nonlinear flux in order to capture the effects of genetic instability as a factor that enhances the
probabilities of mutations. Combining analytical and numerical methods, the model was studied in detail
and the existence and stability of steady states were characterized in the entire parameter space, allowing
to obtain a global description of model behaviour.

Previous models approaching oncogenesis have been analysed mostly with numerical simulations
and the results provided insights on several aspects of tumour progression, mainly with focus on optimal
orders of hallmark acquisition which accelerate cancer progression (Spencer et al., 2004; Ashkenazi
et al., 2008; Gentry & Jackson, 2013), but also on implications of genetic instability on the pace of
tumour progression black (Enderling et al., 2007). Here, the qualitative approach adopted to analyse the
model allowed us to study oncogenesis from a more mechanistic point of view.

We showed that pre-malignant cells with self-sufficiency in growth signals cannot survive without
a further step to a more malignant phenotype, through evasion of apoptosis or corruption of the tissue
repair system. At the same time, the analysis also predicted that the presence of these aggressive cancer
cells allows the survival of those less adapted pre-cancer cells which would not survive alone, thereby
leading to formation of a heterogeneous tumour. Interestingly, in a scenario where neither the pre-
cancer would survive without suffering mutations, nor the cancer cells would persist in the absence
of pre-cancer cells, the model predicted that the constant mutation from pre-cancer cells to cancer cells
combined with an increased genetic instability may sustain the tumour growth. Numerical simulations
with parameter values based on experimental data of breast cancer showed predictions similar to
biological observations. The necessary time for tumour progression and diagnosis was estimated for
several parameters values, and may range from 2 to 80 years, being very sensible to the apoptotic rate
of cancer cells, the mutation rate of premalignant cells and the initial number of mutant cells.

Our model did not consider spacial heterogeneity, which is very important to almost all types of
cancer, since all cell interactions and signalling take place in the tumour microenvironment. However,
even by adopting a simplified description of such reality, our model provided functional and mechanistic
insights to the understanding of cancer as a multi-step process. As a further step, spacial heterogeneity
could be considered by an extended model, which should also include other hallmarks of cancer, such
as angiogenesis and acid-mediated invasion (Gatenby & Gawlinski, 2003; Hanahan & Weinberg, 2011),
two phenomena where spatial configuration plays a major role.
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Appendix A. Mathematical analysis of nontrivial equilibria

In this Appendix, we present the proofs and details concerning the existence and stability of internal
equilibria P̃i, i = 3, 4, 5, 6.

A.1 Existence

The roots of (3.17) occur at the intersection of the curves of f (A) and g(A) in (3.18). The roots of f (A)

are A = 0, AM , Ā1 and Ā2 (where Ā1 < Ā2 are the roots of q(A)), and their relative positions determine
the intervals where f (A) > 0. The polynomial g(A) is always positive and has a double root A = Am.
If we know the relative positions of roots of f and g, we can determine, through graphical analysis, the
position of roots Ãi, i = 3, 4, 5, 6, and then, know which of them give rise to a positive equilibrium P̃i.

Notice that Ñ > 0 whenever Ã > 0. Thus, from the expression of G̃ in (3.16), we obtain the
following conditions for an equilibrium point P̃i be positive:

1. If δ < lG and β2 < β th
2 , then P̃i is positive if and only if, the root Ãi lies in the interval

I1 = [0, AM] (which is empty if β2 < β th
2,δ).

2. If δ < lG and β2 > β th
2 , then P̃i is positive if and only if, the root Ãi lies in the interval

I2 = [Am, AM].

3. If δ > lG and β2 < β th
2 , then P̃i is positive if and only if the root Ãi lies in the interval I3 =

[0, ∞).

4. If δ > lG and β2 > β th
2 , then P̃i is positive if and only if, the root Ãi lies in the interval

I4 = [Am, ∞).

In order to study these conditions, the following thresholds need to be considered:

β
th,i
2,δ = β th

2,δ + (lG − δ)β1Āi

rN
, i = 1, 2, δ1 = lGβ1(Ā2 − Ā1)

μN + β1Ā2
, δ2 = lGβ1Ā2

μN + β1Ā2
. (A.1)

From definitions of β th
2 , β th,i

2,λ , Am, AM and β
th,i
2,δ , in (3.3), (3.15), (3.19) and (A.1), we obtain the following

relations:
Am > 0 ⇐⇒ β2 > β th

2 , (A.2)

AM > 0 ⇐⇒ β2 > β th
2,δ and δ < lG, (A.3)

Āi < Am ⇐⇒ β2 > β
th,i
2,λ , i = 1, 2, (A.4)

Āi < AM ⇐⇒ β2 > β
th,i
2,δ and δ < lG, i = 1, 2. (A.5)

Further, we have that
limA→±∞ f (A) = −∞, if δ < lG,

limA→±∞ f (A) = +∞, if δ > lG, and
limA→±∞ | f (A)/g(A)| = +∞.

(A.6)

Also, from (A.1), notice that in case II, with 0 < Ā1 < Ā2, we have

0 < δ1 < δ2 < lG. (A.7)
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With relations (A.2–A.7), and considering each of the cases I, II and III which determine the
existence of positive roots Ā1 and Ā2 for q(A) in (3.6), we have all information about the roots of
f (A) and g(A) and we can determine which root Ãi, i = 3, 4, 5, 6, lies in the appropriate interval Ij. The
thresholds for β2 and δ in each case can be seen in Fig. 1. Some cases below are illustrated in Fig. A1.

A.1.1 Case I. Initially we consider β3 > β th
3 and β1 < β th

1,�. In this case, the roots Āi, i = 1, 2, are

complex or negative. a–c) For δ < lG, the thresholds for β2 which are of interest are 0 < β th
2,δ < β th

2 . We
have the following.

a) If β2 < β th
2,δ , the feasibility interval I1 is empty. Thus, there is no positive equilibrium P̃i.

b) If β th
2,δ < β2 < β th

2 , then, from (A.2) and (A.3), we have Am < 0 < AM . The curves of f (A)

and g(A) may intersect zero or twice in the interval I1. It depends on the value of ξ . For ξ below
a certain threshold ξ th, the graphic of g(A) intersects the curve of f (A) twice. For ξ > ξ th, the
curves do not intersect. The value of ξ th is the value of ξ such that the curves of f and g are
tangent at a root Ã. Thus, (ξ th, Ã) is a solution to the system

{
f (A) = g(A)

f ′(A) = g′(A)
. (A.8)

Thus, two equilibria, say P̃5 and P̃6, are both positive, or all equilibria are non-positive.

c) If β2 > β th
2 , we have 0 < Am < AM . The curves of f and g intersect at Ã5 < Am and at Ã6 ∈ I2.

Therefore, P̃6 is the unique positive equilibrium P̃i.

d–e) For δ > lG, the thresholds for β2 satisfy β th
2,δ < 0 < β th

2 . We have the following:

d) If β2 < β th
2 , then AM < Am < 0. As f (A) is a fourth-degree polynomial, while g(A) has degree

two, from (A.6) we have that f (A) > g(A) for A sufficiently large. As f (0) = 0 < g(0), there
is at least one root Ãi in the interval I3 = [0, ∞). Other two roots can both lie in this interval,
depending on other parameters, such as above. Therefore, equilibrium P̃4 is positive, and P̃5
and P̃6 may be both positive.

e) If β2 > β th
2 , then AM < 0 < Am. The curves of f and g intersect at one root in the interval

(0, Am), but it does not result in a positive P̃i. It is possible that the curves intersect twice or zero
in the interval (Am, ∞). Thus, no point P̃i is positive, or P̃5 and P̃6 are both positive.

A.1.2 Case II. Now, we consider β3 > β th
3 and β1 > β th

1,�. In this case, the roots Ā1 and Ā2 are

positive, with Ā1 < Ā2.

a–h) For δ < lG, we have the following:

a) If β2 < β th
2,δ , there is no positive P̃i, since I1 is empty.

b) If β th
2,δ < β2 < min{β th

2 , β th,2
2,δ }, we have Am < 0 < min{Ā1, AM} < max{Ā1, AM} < Ā2. Thus,

f (A) is positive only in the interval I2 for values A ∈ [0, min{Ā1, AM}]. As g(A) > 0 for A > Am,
the curves of f and g may intersect zero or twice in I2, again depending on ξ . Therefore, either
there are no positive equilibria P̃i, or P̃3 and P̃4 are positive.
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Fig. A1. Curves of f (A) and g(A) in various subcases. The roots of equation (3.17) are the intersecting points of both curves, and
must occur at an appropriated interval Ij, in order to give origin to positive equilibria P̃i. The roots of f (A) are A = 0, AM , Ā1, Ā2
and their positions determine the intervals where f (A) > 0. The polynomial g(A) is always positive and has a double root A = Am.
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c) If β
th,2
2,δ < β2 < β th

2 , then Am < 0 < Ā1 < Ā2 < AM . The curves of f and g may intersect zero

or twice in the interval [0, Ā1], and also zero or twice in the interval [Ā2, AM]. Thus, equilibria
P̃3 and P̃4 may be both positive or not, and the same happens with P̃5 and P̃6. Therefore, we
may have zero, two or four positive equilibria P̃i.

d) If β th
2 < β2 < min{β th,1

2,λ , β th,2
2,δ }, then 0 < Am < min{Ā1, AM} < max{Ā1, AM} < Ā2. Thus,

since f (A) is positive in the interval I2 only if A ∈ [Am, min{Ā1, AM}], and since g(Am) = 0, the
unique root in the interval I2 is Ã4. Therefore, P̃4 is the unique positive nontrivial equilibrium.

e) If max{β th
2 , β th,2

2,δ } < β2 < β
th,1
2,λ , then 0 < Am < Ā1 < Ā2 < AM . We have f (A) > 0 for

A ∈ (Am, Ā1) ∪ (Ā2, AM). As g(Am) = 0, the unique root in (Am, Ā1) is Ã4. The roots Ã5 and
Ã6 may both lie in (Ā2, AM), or both do not exist, depending on the value of ξ . Therefore, P̃4 is
positive and P̃5 and P̃6 may be both positive or not.

f) If β
th,1
2,λ < β2 < β

th,2
2,δ , then 0 < Ā1 < Am < AM < Ā2. Therefore, f (A) < 0 in I2, in such way

no P̃i is positive, i = 3, 4, 5, 6.

g) If max{β th,2
2,δ , β th,1

2,λ } < β2 < β
th,2
2,λ , then 0 < Ā1 < Am < Ā2 < AM . At I2, we have f (A) > 0

only if A ∈ [Ā2, AM]. Thus, the curves of f and g can intersect zero or twice (at Ã5 and Ã6) in
the interval I2. Therefore, only P̃5 and P̃6 may be positive.

h) If β2 > β
th,2
2,λ , then 0 < Ā1 < Ā2 < Am < AM . The curves of f and g intersect exactly once in

I2, at Ã6. Only P̃6 is positive.

i–l) For δ > lG, we have the following.

i) If β2 < β th
2 , then min{Am, AM} < max{Am, AM} < 0 < Ā1 < Ā2. At the interval I3, f is positive

when 0 < A < Ā1 or A > Ā2. As g(Am) = 0, from (A.6), there is a root Ã6 > Ā2. At the interval
0 < A < Ā1, the curves can intersect zero or twice (at Ã4 and Ã5). Therefore, P̃6 is positive and
P̃4 and P̃5 may be positive.

j) If β th
2 < β2 < β

th,1
2,λ , then AM < 0 < Am < Ā1 < Ā2. The curves of f and g intersect twice, at

Ã5 < Ā1 and Ã6 > Ā2. P̃5 and P̃6 are positive.

k) If β
th,1
2,λ < β2 < β

th,2
2,λ , we have AM < 0 < Ā1 < Am < Ā2. The curves intersect exactly once in

the interval I4, at Ã6 > Ā2. Therefore, only P̃6 is positive.

l) If β2 > β
th,2
2,λ , we have AM < 0 < Ā1 < Ā2 < Am. Therefore, the four roots of f (A) occur before

Am, in such way that f is a strictly increasing function for A > Am, because the three possible
points where f ′(A) = 0 lie between the roots of f . As f (Am) > 0 = g(Am), the curves cannot
intersect in the interval I4. Therefore, no P̃i is positive.

A.1.3 Case III. In the third case, when β3 < β th
3 , we have Ā1 < 0 < Ā2.

a–c) For δ < lG, we have the following:

a) If β2 < β
th,2
2,δ , there is no positive P̃i. Indeed, if β2 < β

th,2
2,δ , we have Am < AM < 0 < Ā2, and

the interval I1 is empty. If β th
2,δ < β2 < β

th,2
2,δ , we have A1 < 0 < AM < Ā2, in such way that
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f (A) < 0 for A ∈ [0, AM]. As g(A) ≥ 0, there is no root Ãi in the intervals I1 (for β2 < β th
2 ) and

I2 (for β2 > β th
2 ).

b) If β
th,2
2,δ < β2 < β

th,2
2,λ , then A1 < 0 < Ā2 < AM . Thus, f (A) > 0 in the interval [Ā2, AM]. As

Am < Ā2, the curves of f (A) and g(A) may intersect zero or twice in the interval [Ā2, AM] ⊂ Ij,
j = 1, 2. Therefore, there may be zero or two positive equilibria P̃i, P̃5 and P̃6.

c) If β2 > β
th,2
2,λ , then Ā1 < 0 < Ā2 < Am < AM . Thus, there is exactly one root Ãi in the interval

I2. Thus, only P̃6 is positive.

d–e) If δ > lG, we have the following:

d) If β2 < β
th,2
2,λ , then min{Ā1, AM} < max{Ā1, AM} < 0 < Ā2, with Am < Ā2. If A > max{Am, 0},

f (A) is positive only if A > Ā2. Thus, there is only one root Ãi > max{Am, 0}, which is Ã6.
Therefore, only P̃6 is positive.

e) If β2 > β
th,2
2,λ , we have min{Ā1, AM} < max{Ā1, AM} < 0 < Ā2 < Am. The curves of f and g

can intersect zero or twice (at Ã5, Ã6 > Am) in the interval I4. Thus, or P̃5 and P̃6 are positive,
or no P̃i is positive.

A.2 Linear Stability

Here we present numerical results concerning the stability of the nontrivial equilibria P̃i. Conditions
(3.22) were studied numerically. By varying β2, bifurcation diagrams were obtained and stability of
each equilibrium P̃i was inferred. In each of the cases I, II and III, we fixed δ in a determined region,
according to Fig. 1, and allowed β2 to vary, obtaining the bifurcation diagrams for different intervals
of δ. In general, a bifurcation occurs when β2 surpasses the thresholds that limit the regions a), b),
c), etc. The obtained diagrams are presented in Figs A2 and A3. In the main graphic of each figure, the
behaviour of roots Ãi depending on β2 is presented, together with the values of Am and AM , which delimit
the interval where the roots Ãi give origin to positive P̃i (see Appendix A.1). The values A0 = 0, Ā1 and
Ā2, corresponding to equilibria P0, P̄1 and P̄2, whose existence does not depend on β2, but stability
does, are also plotted in the main graphic. These analyses and figures were done using the software
Mathematica©. Based on these diagrams, and corroborated by numerical simulations (not shown) and
phase portraits like those of Fig. 4, we obtained the conclusions summarized in Figs 2 and 3. We present
the reasoning for case I in detail, while we summarize it for cases II and III.

A.2.1 Case I. If β3 > β th
3 and β1 < β th

1,�, P0 is locally stable, while P̄1 and P̄2 are not positive.
Corresponding bifurcation diagrams are presented in Fig. A2.

a–c) For δ < lG, we have the following:

a) If β2 < β th
2,δ , there is no positive P̃i, and P0 is unstable. Numerical results indicate that all

solutions tend to P∞.

b) If β th
2,δ < β2 < β th

2 , P0 is unstable, and P̃5 and P̃6 can be positive, depending on ξ . If it happens,

numerical simulations indicate that P̃5 is stable and P̃6 is unstable, separating solutions that
converge to P̃5 from those that tend to P∞.
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Fig. A2. Bifurcation diagram of equilibria P̃i depending on β2, in cases: I) δ < lG (top), I) δ > lG (middle) and II) δ < δ1
(bottom). Stability of points P̃i was determined by observing the curves of coefficients a1, a3 e a1a2 − a3 (right panels). Plotting
is continuous, dashed or dotted, when the corresponding equilibrium is stable, unstable or not positive, respectively.
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Fig. A3. Bifurcation diagram of equilibria P̃i depending on β2, in cases: II) δ > lG (top), III) δ < lG (middle) and III) δ > lG
(bottom). Stability of points P̃i was determined by observing the curves of coefficients a1, a3 e a1a2 − a3 (right panels). Plotting
is continuous, dashed or dotted, when the corresponding equilibrium is stable, unstable or not positive, respectively.
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c) If β2 > β th
2 , P0 and P̃6 are the positive equilibria. P0 is stable and P̃6 is unstable, separating the

basins of attraction of P0 and P∞.

d–e) If δ > lG, according to the bottom diagram on Fig. A2, we have the following:

d) If β2 < β th
2 , P0 is unstable. P̃4 is positive and stable. P̃5 and P̃6 can be both positive, depending

on ξ . If they are not, numerical simulations indicate that all solutions converge to P̃4. If P̃5 and
P̃6 are positive (not shown in Fig. A2), P̃5 is unstable, separating the basins of attraction of P̃4
and P̃6, which are stable.

e) If β2 > β th
2 , P̃4 is no longer positive and P0 becomes stable. P̃5 and P̃6 can be both positive,

and the results are analogous to the previous case.

A.2.2 Case II. If β3 > β th
3 and β1 > β th

1,�, then P0, P̄1 and P̄2 are positive. P̄1 is unstable. In order
to analyse bifurcations with respect to β2, we must consider four intervals for parameter δ, separated by
0 < δ1 < δ2 < lG. The corresponding bifurcation diagram for the sub-case 0 < δ < δ1 is presented in
Fig. A2. Note that there are no parts c) and e) in this sub-case (see Fig. 1). If δ1 < δ < δ2, the transitions
occur through regions a), b), d), e), g) and h), and for the interval δ2 < δ < lG the transitions occur
through regions a), b), c), e), g) and h). The corresponding bifurcation diagrams for these cases are very
similar to the case 0 < δ < δ1 and are not shown for sake of brevity. For δ > lG, we have transitions
between regions i), j), k) and l), and the bifurcation diagram is shown in Fig. A3.

A.2.3 Case III. If β3 < β th
3 , P0 and P̄2 are positive. P0 is unstable. The bifurcation diagrams for

each of the cases δ < lG and δ > lG are presented in Fig. A3.
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