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a b s t r a c t 

The anthropophilic and peridomestic female mosquito Aedes aegypti bites humans to suck blood to matu- 

rate fertilized eggs, during which dengue virus can be spread between mosquito and human populations. 

Besides this route of transmission, there is a possibility of dengue virus being passed directly to offspring 

through transovarial (or vertical) transmission. The effects of both horizontal and transovarial transmis- 

sion routes on the dengue virus transmission are assessed by mathematical modeling. From the model, 

the reproduction number is obtained and the contribution of transovarial transmission is evaluated for 

different levels of horizontal transmission. Notably, the transovarial transmission plays an important role 

in dengue spread when the reproduction number is near one. Another threshold parameter arises, which 

is the product of the fractions of the susceptible populations of humans and mosquitoes. Interestingly, 

these two threshold parameters can be obtained from three different approaches: the spectral radius of 

the next generation matrix, the Routh–Hurwitz criteria and M -matrix theory. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Dengue virus is a flavivirus transmitted by arthropod of the

enus Aedes . As a result of being pathogenic for humans and capa-

le of transmission in heavily populated areas, dengue virus (an ar-

ovirus) can cause widespread and serious epidemics, which con-

titute one of the major public health problems in many tropical

nd subtropical regions of the world where Aedes aegypti and other

ppropriate mosquito vectors are present [1] . 

The incidence of dengue is clearly dependent on abiotic fac-

ors such as temperature and precipitation, which affect directly

he population dynamics of mosquitoes with serious implications

or dengue transmission. By using estimated entomological param-

ters dependent on temperature, and including the dependency of

hese parameters on rainfall, the seasonally varying population size

f mosquito A. aegypti was evaluated by a mathematical model [2] .

his model considered only the horizontal transmission, but the

ransovarial (or vertical) transmission can play some role in dengue

pidemics, which must be assessed. 

There is evidence that transovarial (the transfer of pathogens

o succeeding generations through invasion of the ovary and infec-

ion of the eggs) transmission can occur in some species of Aedes

osquitoes [3–8] , but the role of transovarial transmission in the

aintenance of dengue epidemics is not clearly understood [5,9] .
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oreover, the transovarial transmission of dengue virus in A. ae-

ypti has been observed at a relatively low rate [3,8] . 

In this paper, the transovarial transmission is included in the

odeling. The effects of both horizontal and transovarial routes of

engue transmission are analyzed by obtaining the gross reproduc-

ion number, denoted by R g . This is a threshold parameter encom-

assing model parameters related to the horizontal and transovar-

al transmission. The reproduction number R g is obtained by using

hree different methods aiming the comparison among them: eval-

ating the spectral radius of the next generation matrix [10] , and

etermining the conditions that assure to Jacobian matrix eigenval-

es with negative real part, which can be assessed by two meth-

ds: Routh–Hurwitz criteria and M -matrix theory [11–13] . 

In simple directly transmitted infection modeling, there is a

ell established relationship between the fraction of susceptible

umans ( s ) and the basic reproduction number ( R 0 ) in the en-

emic steady state [14,15] : s ∗ = 1 /R 0 . Similarly, in dengue trans-

ission modeling considering only horizontal transmission, the in-

erse of R 0 is the product of the fractions of susceptible humans

nd mosquitoes, denoted by χ0 . But, if transovarial transmission

s included in this dengue transmission, then χ0 cannot be let as

he inverse of R 0 , and an additional threshold quantity must arise.

he appearance however of two thresholds also arise for directly

ransmitted infections modeling. For instance, a well understood

wo thresholds occur in diseases with secondary infection, such as

uberculosis: a threshold and a sub-threshold [16] . But two thresh-

lds, one for the gross reproduction number and other for the
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Table 1 

Summary of the dynamical states of mosquito and human popula- 

tions. 

Symbol Meaning 

l 1 Density of uninfected immatures (females) 

l 2 Density of infected immatures (females) 

l Total density of immatures (females) 

m 1 Density of uninfected adult mosquitoes (females) 

m 2 Density of infected adult mosquitoes (females) 

m Total density of mosquito population (females) 

s Fraction of susceptible humans 

i Fraction of infectious humans 

r Fraction of recovered humans 

N Total size of human population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Summary of the model parameters. 

Symbol Meaning 

βm Transmission coefficient to female mosquitoes 

βh Transmission coefficient to humans 

α Fraction of immatures infected by vertical transmission 

φ Per-capita oviposition rate 

q Fraction of eggs hatching 

f Fraction of eggs originating female mosquitoes 

C Total number of breeding sites 

σ a Per-capita transformation rate of immatures to adults 

μa Per-capita mortality rate of immatures 

μf Per-capaita mortality rate of adults 

μh Per-capita mortality rate of humans 

σ h Per-capita recovery rate of humans 
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fraction of susceptible individuals, can occur: Driessche and Wat-

mough [10] , in their analysis of a tuberculosis transmission includ-

ing treatment, did not realize the existence of these two thresh-

olds. 

The paper is structured as follows. In Section 2 , model for

dengue transmission encompassing transovarial transmission is

presented, and in Section 3 , the model is analyzed, determining

the equilibrium points, and performing the stability analysis of the

disease free equilibrium point. Section 4 presents the discussion

about the effects of the transovarial transmission on dengue trans-

mission and on the gross reproduction number R g and the product

of the fractions of susceptibles χ0 , and the interpretation of these

two thresholds for tuberculosis with failure in the treatment. Con-

clusions are given in Section 5 . 

2. A model for dengue transmission 

Dengue virus circulates due to the interaction between human

and mosquito populations in urban areas. A unique serotype of

dengue virus is being considered in the modeling. A model incor-

porating two or more serotypes of dengue virus (currently, there

are four serotypes) becomes complex. For instance, disregarding

co-infection with two or more serotypes, the number of classes

of infectious mosquitoes and humans are increased, besides the

complexity resulting by the incorporation of the periods of time

of cross-immunity in the modeling. 

The model described here considers dengue virus being trans-

mitted by both horizontal and transovarial transmission routes. 

With respect to state (dynamical) variables, the human popula-

tion is divided into three compartments according to the natural

history of the disease: s, i and r , which are the fractions at time t

of, respectively, susceptible, infectious and recovered persons, with

s + i + r = 1 . The constant total number of the human population is

designated by N . The female adult mosquito population is divided

into two compartments: m 1 and m 2 , which are the numbers at

time t of, respectively, susceptible and infectious mosquitoes. The

size of female mosquito population is given by m = m 1 + m 2 . In

both populations the latent classes are omitted. 

The incorporation of the transovarial transmission of dengue

virus results in more state variables. A fraction α, with 0 ≤ α ≤
1, of eggs laid by infectious mosquitoes m 2 is infected by virus

dengue through transovarial transmission. Hence, the immature (or

aquatic) phase of mosquito is split into two categories, which are

denoted by l 1 and l 2 representing the numbers of, respectively, un-

infected and infected immatures (comprising larvae and pupae, fol-

lowing Yang et al. [17] ) at time t , where the total size is l = l 1 + l 2 .

In Yang et al. [18] , A. aegypti population modeling considered larva

and pupa compartments. Due to the transovarial transmission be-

ing focused on, a simplified version of the model (constant hu-

man population and an aquatic phase comprising larva and pupa)

is considered here ( Table 1 ). 
With respect to the model parameters, the birth and mortality

ates of human population are equal (constant size), both desig-

ated by μh . The life cycle of A. aegypti encompasses an aquatic

hase (larva and pupa) followed by winged (adult) form. The num-

er of eggs is determined by the oviposition rate ϕ(M) = φm,

here φ is the per-capita oviposition rate. As l is the number at

ime t of immatures comprised by larvae and pupae (female) that

onstitute the entire aquatic phase, the effective immatures pro-

uction rate is given by q f ( 1 − l/C ) φm, where q and f are the frac-

ions of eggs that are hatching to larva and that will originate fe-

ale mosquitoes, respectively, and C is the total carrying capacity

f the breeding sites (see [19] for a model including egg compart-

ent). The number of immatures decreases according to change to

dult form (or mature) and death, described, respectively, by the

hanging σ a and the mortality μa rates. The number of female

osquitoes increases according to the emerging of immatures ( σ a )

nd decreases according to the mortality rate μf . 

The horizontal transmission of dengue virus is sustained by the

ows between human and mosquito compartments according to

he following dengue epidemics cycle. The susceptible humans are

nfected during the blood meal by infectious mosquitoes, with the

ransmission rate being designated by B h , which depends on the

requency of bites on humans by mosquitoes. A very simple way

o take into account the frequency of bites is letting it to be pro-

ortional to oviposition rate φ, that is, B h = βh φ, where βh is the

ransmission coefficient from mosquito to human (dimensionless).

he infectious persons are removed to recovered (immune) class

fter an average recovery period 1/ σ h , where σ h is the recovery

ate. Neither loss of immunity nor induced mortality due to the

isease (a unique serotype infection) are considered. With respect

o the vector, the susceptible mosquitoes are infected at a rate

 m 

= βm 

φ, with βm 

being the transmission coefficient from hu-

an to mosquito (dimensionless). These infectious mosquitoes re-

ain infective until death. To incorporate the feature that a par-

icular human is bitten by a particular mosquito, the transmission

ates B h and B m 

must be divided by N . 

In the transovarial transmission route, it is assumed that a frac-

ion α of eggs laid by infected mosquitoes are indeed harboring

engue virus. It is assumed that uninfected ( l 1 ) and infected ( l 2 )

quatic forms have similar behavior. The infected aquatic forms

hat emerge as male mosquitoes are not considered here, in order

o simplify the model (see [20] for a model considering the mating

etween male and female mosquitoes) ( Table 2 ). 

Based on the foregoing descriptions of model parameters

nd dynamical states, the dengue transmission encompassing

ransovarial transmission is described by the system of differential
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d 

dt 
l 1 = q fφ[ m 1 + ( 1 − α) m 2 ] 

(
1 − l 1 + l 2 

C 

)
− ( σa + μa ) l 1 

d 

dt 
l 2 = q fφαm 2 

(
1 − l 1 + l 2 

C 

)
− ( σa + μa ) l 2 

d 

dt 
m 1 = σa l 1 −

(
βm 

φi + μ f 

)
m 1 

d 

dt 
m 2 = σa l 2 + βm 

φim 1 − μ f m 2 

d 

dt 
s = μh −

(
βh φ

N 

m 2 + μh 

)
s 

d 

dt 
i = 

βh φ

N 

m 2 s − ( σh + μh ) i, 

(1) 

here the decoupled fraction of immune persons is given by

 = 1 − s − i . Notice that the vector population is described by

otal numbers and the human population, by fractions. However,

quations describing the mosquito population can be divided by

he carrying capacity C , which result in densities (number of

osquitoes and larvae per carrying capacity). 

. Analysis of the model 

The system of Eq. (1) is dealt with determining the equilibrium

oints, and assessing the stability of these points. 

.1. Equilibrium points 

There are three equilibrium points. The first is the absence of

osquitoes, that is, the equilibrium 

 

abs = 

(
l̄ 1 = 0 , ̄l 2 = 0 , m̄ 1 = 0 , m̄ 2 = 0 , ̄s = 1 , ̄ı = 0 

)
, 

hich corresponds to the eradication of mosquito population. 

The second equilibrium is the trivial equilibrium P 0 , or disease

ree equilibrium (DFE), given by 

 

0 = 

(
l̄ 1 = l ∗, ̄l 2 = 0 , m̄ 1 = m 

∗, m̄ 2 = 0 , ̄s = 1 , ̄ı = 0 

)
, 

ith l ∗ and m 

∗ being given by 
 

 

 

 

 

l ∗ = C 

(
1 − 1 

Q 0 

)
m 

∗ = 

σa 

μ f 

C 

(
1 − 1 

Q 0 

)
, 

(2) 

here 

 0 = 

σa 

σa + μa 

q fφ

μ f 

(3) 

s the basic offspring number considering entire aquatic form as

ne compartment. Clearly the mosquito population exists if Q 0 > 1.

his equilibrium describes a mosquito population well established

n a region without dengue transmission. 

The basic offspring number Q 0 is interpreted as follows. One fe-

ale mosquito lay on average f φ/ μf eggs (female) during her en-

ire lifespan. These eggs must hatch ( q ) and survive the aquatic

hase (with probability σa / ( σa + μa ) ), and then emerge as adults.

ence Q 0 , given by Eq. (3) , is the average number of female

osquitoes generated by a single female mosquito. 

Finally, the non-trivial equilibrium P ∗, or endemic equilibrium

see Appendix A for details), which corresponds to the dengue in-

ection occurring in human and mosquito populations, is given by 

 

∗ = 

(
l̄ 1 = l ∗1 , ̄l 2 = l ∗2 , m̄ 1 = m 

∗
1 , m̄ 2 = m 

∗
2 , ̄s = s ∗, ̄ı = i ∗

)
, 
ith the coordinates being given by 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l ∗1 = ( 1 − α) 
βm 

φi ∗ + μ f 

βm 

φi ∗ + ( 1 − α) μ f 

C 

(
1 − 1 

Q 0 

)
l ∗2 = α

βm 

φi ∗

βm 

φi ∗ + ( 1 − α) μ f 

C 

(
1 − 1 

Q 0 

)
m 

∗
1 = ( 1 − α) 

μ f 

βm 

φi ∗ + ( 1 − α) μ f 

σa 

μ f 

C 

(
1 − 1 

Q 0 

)
m 

∗
2 = 

βm 

φi ∗

βm 

φi ∗ + ( 1 − α) μ f 

σa 

μ f 

C 

(
1 − 1 

Q 0 

)
s ∗ = 

βm 

φμh + μ f ( σh + μh ) ( 1 − α) 

βm 

φμh + μ f ( σh + μh ) R 0 

i ∗ = 

μh μ f ( R g − 1 ) 

βm 

φμh + μ f ( σh + μh ) R 0 

, 

(4) 

here the gross reproduction number R g is defined as 

 g = R 0 + R v , (5)

ncompassing horizontal and transovarial transmission routes. This

umber R g is the sum of the reproduction number R 0 due to the

orizontal transmission, given by 

 0 = 

βh φ

μ f 

βm 

φ

σh + μh 

m 

∗

N 

, (6) 

ith the size of mosquito population m 

∗ being given by Eq. (2) ,

nd the reproduction number R v due to the transovarial transmis-

ion, given by 

 v = α. 

With respect to R 0 , this can be written as the product of two

artial contributions R h 
0 

and R m 

0 
defined by 

 

 

 

 

 

R 

h 
0 = 

βh φ

μ f 

R 

m 

0 = 

βm 

φ

σh + μh 

m 

∗

N 

, 

(7) 

esulting in R 0 = R h 
0 
R m 

0 
. Notice that [( βh φ/ N ) N ]/ μf is the average

umber of humans (in a susceptible population of size N ) infected

y one infectious mosquito during her entire lifespan; hence R h 
0 

is

he average number of infectious humans produced by one infec-

ious mosquito introduced in a community free of dengue. Now,

 

(βm 

φ/N) m 

∗] / ( σh + μh ) is the average number of mosquitoes (in

 susceptible population of size m 

∗) infected by one infectious

uman during his/her infectious period; hence R m 

0 
is the average

umber of infectious mosquitoes produced by one infectious hu-

an introduced in a community free of dengue. 

The gross reproduction number R g is interpreted as follows.

 0 is the average number of secondary infectious humans (or

osquitoes) produced by one primary infectious human (or

osquito) introduced in a completely susceptible populations of

umans and mosquitoes. That is, R 0 gives the average number

f secondary infectious mosquitoes due to horizontal transmis-

ion. The term R v is the contribution of the transovarial transmis-

ion, which is not the average number of infectious mosquitoes

daughters) generated by a single infectious mosquito by transovar-

al transmission. Hence R g , given by Eq. (5) , is the overall number

f infectious mosquitoes generated by a single infectious mosquito

ue to horizontal plus a contribution due to transovarial transmis-

ions (see below for the role played by R 0 and R v in the dynamics

f dengue transmission). 

The combination of s ∗, m 

∗
1 and m 

∗ in the endemic steady state,

iven by Eqs. (2) and (4) , results in 

 

∗ m 

∗
1 

m 

∗ ≡ χ0 = 

1 

R 0 

− α

R 0 

= 

1 − R v 

R 0 

, (8) 

here χ0 is the product of the fractions in the steady state of

usceptible humans and mosquitoes encompassing the transovarial
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transmission. If R v = 1 , then m 

∗
1 = 0 and s ∗m 

∗
1 /m 

∗ = 0 . Notice that

it is not equal to the inverse of the gross reproduction number R g 
given by Eq. (5) . But, if the transovarially transmitted dengue virus

is neglected ( R v = 0 ), then we retrieve the well known relationship

χ0 = 1 /R 0 . 

However, χ0 brings implicitly the idea of the gross reproduc-

tion number, as expected. The equation relating susceptible frac-

tions, given by Eq. (8) , has clearly a biological interpretation. The

term 1/ R 0 is the decreasing in the fractions of susceptible popula-

tions due to the horizontal transmission, while the term R v / R 0 is

the additional decreasing due to transovarial transmission. The ap-

pearance of R 0 in latter term shows that the transovarial transmis-

sion is a consequence of horizontal transmission, in other words,

it is necessary that R 0 > 0. Additionally, this latter term is such

that the sum of denominator ( R 0 ) and numerator ( R v ) results in the

gross reproduction number, hence χ0 brings indirectly the concept

of R g . Further, as R g , χ0 must also be a threshold parameter. In this

particular modeling, the transovarial reproduction number R v does

not depend on the horizontal transmission coefficients βh and βm 

,

neither on entomological parameters. 

There are two routes of transmission. One is the horizontal

transmission, where dengue transmission occurs according to the

random encounter between densities of sub-populations (mass ac-

tion law). This route is assessed by the horizontal reproduction

number ( R 0 ). The transovarial transmission route, however, is not a

random event: whenever infectious mosquitoes exist, a fraction α
is certainly infected offsprings constituting of infections promoted

by feedback of infectious mosquitoes. Hence, the gross reproduc-

tion number R g is a sum of random event ( R 0 ) and a certain event

( R v ). For this reason, the horizontal reproduction number R 0 is also

the well known basic reproduction number. This is corroborated by

Eq. (8) : the denominator is R 0 . 

Let the existence of the equilibrium points be summarized: 

1. The human population free of mosquitoes is described by the

equilibrium P abs , which always exists. 

2. The mosquito population well established in a region without

dengue transmission is described by the trivial equilibrium P 0 ,

which exists if Q 0 > 1. 

3. The dengue transmission occurring in human and mosquito

populations is described by the non-trivial equilibrium P ∗,

which exists if Q 0 > 1 and R g > 1. 

3.2. Stability analysis of DFE 

The stability analysis is restricted to the DFE by applying the

spectral radius theory. For this reason, the order of equations in

dynamical system ( 1 ) is reorganized according to vector 

x = ( m 2 , i, l 2 , l 1 , m 1 , s ) 
T 
, (9)

with T standing for the transposition of a matrix, and Eq. (1) can

be written in matrix form as 

d 
dt 

x p = f p (x ) − v p (x ) , p = 1 , . . . , 6 , (10)

where the coordinates of f p and v p are zeros or terms of the right

hand side of system (1) . The partial derivatives of f = ( f 1 , . . . , f 6 ) 
T 

and v = ( v 1 , . . . , v 6 ) T with respect to the state variables are evalu-

ated at the DFE. 

Preliminarily, the Jacobian matrix corresponding to Eq.

(10) evaluated at DFE, named J = J(P 0 ) , results in 

J = 

[
F 0 

J 1 J 2 

]
, 
here the matrices F and J 2 are 

 = 

⎡ 

⎢ ⎣ 

−μ f βm 

φm 

∗ σa 

βh 
φ
N 

−( σh + μh ) 0 

αq fφ 1 
Q 0 

0 −( σa + μa ) 

⎤ 

⎥ ⎦ 

(11)

nd 

 2 = 

[
M 0 

0 H 

]
, 

ith the matrices M and H being given by 

 = 

[ 

−q fφ m 

∗
C 

− ( σa + μa ) q fφ 1 
Q 0 

σa −μ f 

] 

, H = [ −μh ] . (12)

inally, the matrix J 1 is 

 1 = 

⎡ 

⎢ ⎣ 

( 1 − α) q fφ 1 
Q 0 

0 q fφ m 

∗
C 

0 −βm 

φm 

∗ 0 

−βh φ
N 

0 0 

⎤ 

⎥ ⎦ 

. (13)

otice that the stability of the DFE is assessed by the eigenval-

es of J (it is enough to evaluate eigenvalues of F and J 2 ). In

ppendix B , Routh–Hurwitz criteria and M -matrix theory are ap-

lied to matrix J in order to establish the stability of DFE. 

In the next generation matrix method [10,21] , the matrix F

iven by Eq. (11) is divided into two matrices F 1 and V and the

ext generation matrix F 1 V 
−1 is calculated, where F = F 1 − V (see

elow). The spectral radius corresponding to matrix F 1 V 
−1 , de-

oted by ρ
(
F 1 V 

−1 
)
, is evaluated, which is accepted as the basic

eproduction number. 

In the analysis of the stability of DFE by evaluating the spectral

adius, eigenvalues of matrix J 2 , or eigenvalues of matrices M and H

iven by Eq. (12) , are assumed to have negative real part. As shown

n Appendix B , three eigenvalues λ1, 2, 3 corresponding to matrix J 2 
ave negative real part if Q 0 > 1. 

The next generation matrix is constructed as a subsystem of

10) taking into account the state-at-infection ( l 2 ) and the states-

f-infectiousness ( m 2 , i ) [22] . Two cases are presented. Remember

hat exposed compartments of humans and mosquitoes were not

onsidered, which are states-at-infection. 

.2.1. Case 1 

Here, the procedure is given with some details. Eq. (1) re-

rdered according to Eq. (9) has vectors f and v given by 

f = 

(
βm 

φim 1 , 
βh φ

N 

m 2 s, 0 , 0 , 0 , 0 

)T 

, (14)

nd 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−σa l 2 + μ f m 2 

( σh + μh ) i 

−q fφαm 2 

(
1 − l 1 + l 2 

C 

)
+ ( σa + μa ) l 2 

−q fφ[ m 1 + ( 1 − α) m 2 ] 
(
1 − l 1 + l 2 

C 

)
+ ( σa + μa ) l 1 

−σa l 1 + 

(
βm 

φi + μ f 

)
m 1 

−μh + 

(
βh φ

N 
m 2 + μh 

)
s 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (15)

otice that the vector f comprises only horizontal transmission

erms. 

The partial derivatives of f and v evaluated at the DFE are par-

itioned as 

f = 

∂ f p 

∂x n 
= 

[
F 1 0 

0 0 

]
, D v = 

∂v p 
∂x n 

= 

[
V 0 

−J 1 −J 2 

]
, 1 ≤ p, n ≤ 6 ,
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here F 1 and V , which are the partial derivatives with respect to

 2 , i and l 2 , are 

 1 = 

⎡ 

⎢ ⎣ 

0 βm 

φm 

∗ 0 

βh φ
N 

0 0 

0 0 0 

⎤ 

⎥ ⎦ 

, 

V = 

⎡ 

⎢ ⎣ 

μ f 0 −σa 

0 σh + μh 0 

− jq fφ 1 
Q 0 

0 σa + μa 

⎤ 

⎥ ⎦ 

, 

nd J 2 and J 1 are given by Eqs. (11) and (13) . The eigenvalues λ1, 2, 3 

f matrix J 2 , det ( J 2 − λI ) ≡ det ( M − λI ) det ( H − λI ) = 0 , with ma-

rices M and H given by Eq. (11) , were discussed above. 

First, the case α < 1 is studied. The inverse of the matrix V

xists and is 

 

−1 = 

⎡ 

⎢ ⎣ 

1 
( 1 −α) μ f 

0 

σa 

( 1 −α) μ f ( σa + μa ) 

0 

1 
σh + μh 

0 

1 
( 1 −α) σa 

0 

1 
( 1 −α) ( σa + μa ) 

⎤ 

⎥ ⎦ 

, 

nd the next generation matrix F 1 V 
−1 is 

 1 V 

−1 = 

⎡ 

⎢ ⎣ 

0 NR 

m 

0 0 

1 
1 −α

1 
N 

R 

h 
0 0 

1 
1 −α

σa 

σa + μa 

1 
N 

R 

h 
0 

0 0 0 

⎤ 

⎥ ⎦ 

, 

here the partial reproduction numbers R h 
0 

and R m 

0 
are given by

q. (7) . 

The characteristic equation corresponding to F 1 V 
−1 is 

3 − χ−1 
0 λ = 0 , (16) 

ith the eigenvalues being λ4 = 0 and λ5 , 6 = ±
√ 

χ−1 
0 

, where χ0 

s given by (8) , and the spectral radius is ρ
(
F 1 V 

−1 
)

= 

√ 

χ−1 
0 

. If(
F 1 V 

−1 
)

< 1 , then all eigenvalues corresponding to matrix F 1 − V 

ave negative real part, and DFE is locally asymptotically stable

10] , assuming that all eigenvalues corresponding to J 2 have neg-

tive real part (in fact, this is true whenever Q 0 > 1). Hence, the

eproduction number, denoted by R ng , is 

 

ng ≡ ρ
(
F 1 V 

−1 
)

= 

√ 

χ−1 
0 

. (17) 

For α = 1 , det (V ) = 0 and V is not invertible. Hence, the next

eneration matrix is not defined. 

For R ng < 1, DFE is locally asymptotically stable, and unstable

or R ng > 1. Therefore, the threshold occurs at χ0 = 1 , and DFE is

nstable for χ0 < 1. 

.2.2. Case 2 

The vector f , given by Eq. (14) , can be constructed in a differ-

nt way. From vector v , the terms corresponding to the emerging

f infectious mosquitoes from infectious aquatic phase ( σ a l 2 ) and

he increasing in the infected aquatic phase due to eggs laid by

nfectious mosquitoes ( q fφαm 2 ( 1 − ( l 1 + l 2 ) /C ) ) are transferred to

ector f . Hence, the vector f is constructed as 

f = 

(
βm 

φim 1 + σa l 2 , 
βh φ

N 

m 2 s, q fφαm 2 

(
1 − l 1 + l 2 

C 

)
, 0 , 0 , 0 

)T 

, 

(18) 

n which case, matrix V is diagonal. 

i  
In this case, the next generation matrix F 1 V 
−1 is 

 1 V 

−1 = 

⎡ 

⎢ ⎣ 

0 NR 

m 

0 
σa 

σa + μa 

1 
N 

R 

h 
0 0 0 

α σa + μa 

σa 
0 0 

⎤ 

⎥ ⎦ 

, 

nd the corresponding characteristic equation is 

3 − R g λ = 0 , (19) 

ith the eigenvalues being λ4 = 0 and λ5 , 6 = ±
√ 

R g , where R g =
 0 + R v is given by Eq. (5) . Then, the spectral radius is ρ̄

(
F 1 V 

−1 
)

=
 

R g . Hence, the reproduction number R̄ ng is 

¯
 

ng ≡ ρ̄
(
F 1 V 

−1 
)

= 

√ 

R g . (20) 

For R̄ ng < 1 , DFE is locally asymptotically stable, and unstable

or R̄ ng > 1 . Therefore, the threshold occurs at R g = 1 , and DFE is

nstable for R g > 1. Notice that R̄ ng is not the same quantitative

alue of R g , but both have the same threshold value [23] . 

From cases 1 and 2, a well established mosquito population in a

egion without dengue transmission, described by the trivial equi-

ibrium P 0 , is locally asymptotically stable if Q 0 > 1 and R g < 1 (or,

quivalently, χ0 < 1). 

In Appendix C , other constructions of f are shown, resulting in

ore one expression for the reproduction number. 

. Discussion 

Actually, during a year, mosquito population varies broadly

ue to seasonality, but human population varies smoothly. Non-

utonomous modeling deals with varying mosquito and human

opulations, from which the time dependent effective reproduc-

ion number can be obtained (see, for instance, [2] ). In this paper,

 model considering constant sizes of human and mosquito pop-

lations was developed in order to obtain and analyze the steady

tates. Based on this autonomous model, epidemiological implica-

ions of the incorporation of the transovarial transmission besides

he horizontal transmission are discussed. Also, the appearance of

wo thresholds is addressed. 

.1. Non-trivial equilibrium point 

In the mosquito population, the dependency of the non-trivial

quilibrium point P ∗ on the transovarial transmission parameter α
hows two features. One is the practically linear dependency of

usceptible and infectious classes of aquatic and adult mosquitoes,

nd the other is the displacement of the susceptible mosquitoes by

he infectious mosquitoes. 

When α = 0 , there is dengue transmission due only to the hor-

zontal transmission. All results can be obtained from the model

resented in [2] dropping out the latent classes of mosquito and

uman populations. As α increases, susceptible aquatic and adult

orms practically decrease linearly, while the infectious forms in-

rease linearly. 

When α = 1 (and, necessarily, R 0 > 0), the infectious forms

isplace completely the susceptible forms of the vector, that is,

usceptible subpopulations are zero ( l ∗
1 

= m 

∗
1 

= 0 ), while infectious

ubpopulations reach l ∗
2 

= l ∗ and m 

∗
2 

= m 

∗, where l ∗ and m 

∗ are

iven by equation (2) . For this reason, the fractions of susceptible

quatic forms and mosquitoes are zero ( l ∗
1 
/l ∗ = 0 and m 

∗
1 
/m 

∗ = 0 ).

n this situation, dengue virus can be maintained indefinitely by

he transovarial transmission even when R 0 < 1. 

By analyzing the equilibrium values, the transovarial transmis-

ion is really important if the fraction of infected eggs α tends to

ne. Moreover, if the transmission of dengue among mosquitoes

s intense, then the transovarial transmission is irrelevant in the
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overall dengue transmission (a higher number of mosquitoes be-

come infectious due to intense horizontal transmission; and all

mosquitoes are infectious if βm 

→ ∞ ). However, the infectious hu-

mans reach the highest value asymptotically. 

Next, the effects of transovarial transmission are assessed by

considering susceptible and infectious humans. 

4.2. Assessing the contributions of the transovarial transmission 

Let the effects of transovarial transmission be analyzed through

s ∗ and i ∗ ( Eq. (4) ), remembering that the biologically feasible con-

ditions for s ∗ and i ∗ are satisfied for R g ≥ 1. 

The fraction of infectious humans i ∗, rewritten as 

i ∗α = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 ; R g ≤ 1 

μ f ( R g − 1 ) 

βm 

φ + 

μ f ( σh + μh ) 

μh 
R 0 

; R g > 1 , 
(21)

increases from i ∗
0 

to i ∗
1 
, when α goes from 0 to 1, where ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

i ∗0 = 

⎧ ⎨ 

⎩ 

0 ; R 0 ≤ 1 

μh μ f ( R 0 − 1 ) 

βm 

φμh + μ f ( σh + μh ) R 0 

; R 0 > 1 

i ∗1 = 

μh μ f R 0 

βm 

φμh + μ f ( σh + μh ) R 0 

; ∀ R 0 . 

(22)

Notice that i ∗
1 

is Hill function of order 1 [24] . The fraction of sus-

ceptible humans s ∗, rewritten as 

s ∗α = 

⎧ ⎨ 

⎩ 

1 ; R 0 ≤ 1 

βm 

φμh + μ f ( σh + μh ) ( 1 − α) 

βm 

φμh + μ f ( σh + μh ) R 0 

; R 0 > 1 , 
(23)

decreases from s ∗
0 

to s ∗
1 
, when α goes from 0 to 1, where ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

s ∗0 = 

⎧ ⎨ 

⎩ 

1 ; R 0 ≤ 1 

βm 

φμh + μ f ( σh + μh ) 

βm 

φμh + μ f ( σh + μh ) R 0 

; R 0 > 1 

s ∗1 = 

βm 

φμh 

βm 

φμh + μ f ( σh + μh ) R 0 

; ∀ R 0 . 

(24)

The difference and quotient between i ∗α and i ∗0 and also s ∗α and s ∗0 
are determined. 

The fractions of infectious humans with (index α) and without

(index 0, from α = 0 ) transovarial transmission are compared con-

sidering the difference ( d i ) and the relative contribution, or quo-

tient ( q i ), between them. From Eqs. (21) and (22) , d i = i ∗α − i ∗
0 

and

q i = i ∗α/i ∗
0 

are given by 

d i = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

0 ; R 0 ≤ 1 − R v 

μh μ f [ R 0 − ( 1 − α) ] 

βm 

φμh + μ f ( σh + μh ) R 0 

; 1 − R v < R 0 ≤ 1 

μh μ f α

βm 

φμh + μ f ( σh + μh ) R 0 

; R 0 > 1 , 

which is continuous for all R 0 , and 

q i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

� ; R 0 ≤ 1 − R v 

∞; 1 − R v < R 0 ≤ 1 

1 + 

α
R 0 −1 

; R 0 > 1 , 

which is continuous for R 0 > 1. The difference d i increases mono-

tonically from 0 (at R 0 = 1 − R v ) to A α (at R 0 = 1 ), where A α is 

A α = 

μh μ f α

βm 

φμh + μ f ( σh + μh ) 
;

and, then, decreases monotonically to 0 (for R 0 → ∞ ). In its turn,

the quotient q i is undefined for R 0 ≤ 1 − R v ( i ∗α = i ∗ = 0 ), infinity

0 
or 1 − R v < R 0 ≤ 1 ( i ∗α > 0 and i ∗0 = 0 ), and decreases from infinity

o asymptote q i = 1 , when R 0 goes from 1 to ∞ . 

The difference ( d i ) and the quotient ( q i ) between the fractions

f infectious humans show two major features: 

( i ) Higher values of d i and q i situate around R 0 near 1 (the

aximum at R 0 = 1 , given by A α) showing that the contribution

f transovarial transmission is mensurable and important near bi-

urcation value. However, for higher R 0 , the contribution of transo-

arial transmission is negligible. 

( ii ) Higher the transovarial transmission parameter R v , higher

he value of A α , and the effects of transovarial transmission is

trongly enhanced, that is, there is an increase in the number of

nfectious individuals in comparison with the number of infectious

ndividuals resulted by considering only the horizontal transmis-

ion of dengue. 

Therefore, when horizontal transmission is higher, the transo-

arial transmission does not matter. However, for lower horizontal

ransmission, or even below the threshold value, the contribution

f the transovarial transmission surpasses the horizontal transmis-

ion, and the relative contribution ( q i ) can approach infinity for

 

R 0 − 1 | < ε, for small ε. In temperate regions, the transovarial

ransmission can be neglected in favorable (summer) seasons, but

n unfavorable (winter) seasons, the contribution of transovarial

ransmission could be important in order to maintain the dengue

ransmission even for R 0 < 1. 

The fractions of susceptible humans with (index α) and with-

ut (index 0) transovarial transmission are compared consider-

ng the difference ( d s ) and the relative contribution, or quo-

ient ( q s ), between them. From Eqs. (23) and (24) , d s = s ∗α − s ∗
0 

=
d i ( σh + μh ) /μh and q s = s ∗α/s ∗

0 
are given by 

 s = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

0 ; R 0 ≤ 1 − R v 

−σh + μh 

μh 

μh μ f [ R 0 − ( 1 − α) ] 

βm 

φμh + μ f ( σh + μh ) R 0 

; 1 − R v < R 0 ≤ 1 

−σh + μh 

μh 

μh μ f α

βm 

φμh + μ f ( σh + μh ) R 0 

; R 0 > 1 , 

howing that s ∗α ≤ s ∗0 , which is continuous for all R 0 , and 

 s = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 ; R 0 ≤ 1 − R v 

βm 

φμh + μ f ( σh + μh ) ( 1 − α) 

βm 

φμh + μ f ( σh + μh ) R 0 

; 1 − R v < R 0 ≤ 1 

βm 

φμh + μ f ( σh + μh ) ( 1 − α) 

βm 

φμh + μ f ( σh + μh ) 
= C α; R 0 > 1 , 

hich is continuous for all R 0 , and clearly C α ≤ 1. The difference d s 
ecreases monotonically from 0 (at R 0 = 1 − R v ) to −B α (at R 0 = 1 ),

here B α is 

 α = 

σh + μh 

μh 

A α = 

σh + μh 

μh 

μh μ f α

βm 

φμh + μ f ( σh + μh ) 
;

nd, then, increases monotonically to 0 (for R 0 → ∞ ). In its turn,

he quotient q s is unity for R 0 ≤ 1 − R v ( s ∗α = s ∗
0 

= 1 ), decreases

rom 1 (at R 0 = 1 − R v ) to C α = 1 − B α (at R 0 = 1 ), and assumes

xed value C α , when R 0 goes from 1 to ∞ . 

The difference ( d s ) and the quotient ( q s ) between the fractions

f susceptible humans show practically the same features pre-

ented in the above analysis regarded to infectious individuals:

aximum at R 0 near 1. However, the quotient q s assumes finite

alue at R 0 = 1 , differently of q i . Notice that, for R 0 ≥ 1, the rela-

ion 

 

∗
α = C αs ∗0 = 

βm 

φμh + μ f ( σh + μh ) ( 1 − α) 

βm 

φμh + μ f ( σh + μh ) 
s ∗0 , 

ith C α ≤ 1, shows that the transovarial transmission decreases

he fraction of susceptible individuals in comparison with the case

here only horizontal transmission is occurring ( d s < 0), and the
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Fig. 1. χ−1 
0 

(a) and i ∗ (b) varying α, using values given in Table 3 : Curves labeled 

by 1 correspond to summer season, and 2, to winter season, except βm = 0 . 06 and 

βh = 0 . 09 . 
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Table 3 

Values of the model parameters. Values of the entomological param- 

eters φ, μf , μa and σ a are at 28 o C (summer) and 17 o C (winter). Pa- 

rameters βh and βm are arbitrary. For real world, the values of C and 

N must be multiplied by the corresponding size of populations. 

Parameter Value ( 28 o C ) Value ( 17 o C ) Unit 

βm 0 .006 0 .006 –

βh 0 .009 0 .009 –

σ a 0 .116117 0 .036597 days 
−1 

μa 0 .060 0 07 0 .013578 days 
−1 

μf 0 .028773 0 .035859 days 
−1 

φ 8 .294997 1 .060327 days 
−1 

q 0 .5 0 .5 –

f 0 .5 0 .5 –

μh ( 70 × 365 ) 
−1 

( 70 × 365 ) 
−1 days 

−1 

σ h ( 7 ) 
−1 

( 7 ) 
−1 days 

−1 

C 1 1 –

N 1 1 –

4

 

d  

t  

(

g  

b  

i  

s  

t  

s  

o

w  

c  
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p  
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s  
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u  
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a  
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s  

s  

t  
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t  
ighest decreasing occurs at α = 1 . Remember that, in this case,

 

∗
1 

> 0 but m 

∗
1 

= 0 and m 

∗
2 

= m 

∗, resulting in m 

∗
1 
/m 

∗ = 0 , hence

0 = 0 . 

Summarizing, the transovarial transmission increases the frac-

ions of infectious humans and mosquitoes, but decreases the sus-

eptible populations. Additionally, for higher values of the trans-

ission coefficients, the corresponding values of d i , q i and q s show

hat the transovarial transmission is irrelevant. However, from

 i > 0 and d s < 0, the epidemics occurring with transovarial trans-

ission is more severe than epidemics occurring with horizontal

ransmission only, especially in the range | R 0 − 1 | < R v . In a sea-

onal environment, the effective reproduction number will at some

oint always be in this range (see [2] ), showing the importance of

ransovarial transmission in dengue epidemics. 

Finally, the product of the fractions of susceptible populations

f humans and mosquitoes enhances the above discussion. The

quation for the fraction of infectious humans i ∗ was written in

erms of the gross reproduction number R g , according to Eq. (4) .

owever, this fraction can be written in terms of the product of

ractions of susceptible populations χ0 as, for α 	 = 1, 

 

∗ = 

μh μ f ( 1 − α) 
(
χ−1 

0 
− 1 

)
βm 

φμh + μ f ( σh + μh ) R 0 

, 

here χ0 is given by Eq. (8) , that is, χ0 = 1 /R 0 − R v /R 0 . The term

 v / R 0 is negligible for higher R 0 , but considerable for lower R 0 ,

ence the decrease in the product of fractions of susceptible pop-

lations χ0 is very sensitive for lower R 0 . 

Fig. 1 illustrates the dependency of χ−1 
0 

(a) and i ∗ (b) as a

unction of α, using values of parameters given in Table 3 , ex-

ept βm 

= 0 . 06 and βh = 0 . 09 for low temperature 17 o C . High tem-

erature is labeled by 1, and for low temperature, the label is 2.

or high temperature ( R 0 = 3 . 57 ), χ−1 
0 

varies broadly, and i ∗ varies

ittle as α increases. For lower temperature ( R 0 = 0 . 98 ), i ∗ varies

roadly as α increases. 
.3. Dynamical trajectories 

When α = 1 , dynamical system (1) does not clearly show the

isplacement of the susceptible by infectious mosquitoes, while

he asymptotic values of the equilibrium point P ∗ given by Eq.

4) clearly do. But, inspecting Eq. (1) , infectious mosquitoes m 2 

enerate always infectious mosquitoes, which number is increased

y the flow of newly infected mosquitoes. Horizontal transmission

s well understood, hence the focus is on the transovarial transmis-

ion (parameter α is varied broadly), and the relative influence of

he transovarial transmission is evaluated numerically. Numerical

olutions of the system of ordinary differential equations (1) are

btained by the 4 th order Runge–Kutta method [25] . 

The initial conditions supplied to the system of Eq. (1) are 

( l 1 (0) = l ∗, l 2 (0) = 0 , m 1 (0) = m 

∗, m 2 (0) = 0 , s (0) 

= 1 − i 0 , i (0) = i 0 ) , 

here i 0 is the fraction of infectious individual introduced in a

ommunity free of dengue, hence l ∗ and m 

∗ are given by Eq. (2) .

he initial introduction of infectious individuals is i 0 = 1 × 10 −5 ,

hich describes, for instance, 1 infectious individual in a popu-

ation of size 10 5 . According to foregoing results, the equilibrium

oint before the introduction of infectious case is given by P 0 .

epending on the value of the gross reproduction number, the

engue disease fades out after a small epidemics ( R g < 1), or at-

ains an endemic level ( R g > 1). 

The model parameters used in numerical simulations are given

n Table 3 , considering two temperatures aiming to portrait two

xtreme conditions: 28 o C (summer season) and 17 o C (winter sea-

on). The entomological parameters values are those obtained by

ang et al. [18] , α is allowed to vary, βm 

and βh are arbitrary val-

es being equal in both seasons (in winter, they must be smaller),

nd C = 1 and N = 1 . For real world, however, the values of C and

 must be multiplied by the corresponding size of population. 

Using values given in Table 3 , the steady state equilibrium val-

es of aquatic forms l ∗, adult mosquitoes m 

∗, the basic offspring

umber Q 0 and the basic (or horizontal) reproduction number R 0 
re given in Table 4 . In winter, Q 0 is decreased in 8.8-fold and R 0 ,

n 364-fold in comparison with summer season. 

The dynamical trajectories corresponding to summer season are

hown in Fig. 2 : short term (a) and long term (b) for α = 0 ; and

hort term (c) and long term (d) for α = 1 . At α = 1 , there is only

he first peak of epidemics, and the subsequent damped oscilla-

ions disappear, see Fig. 2 (c). Indeed, as α increases damped oscil-

ations is weakened due to the increasing in the number of infec-

ious mosquitoes (figure not shown), resulting in decreased frac-
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Fig. 2. The dynamical trajectories corresponding to summer season: short term (a) and long term (b) for α = 0 ; and short term (c) and long term (d) for α = 1 . 

Table 4 

Mosquito population at free of dengue equilibrium. 

The values of the model parameters are those given 

in Table 3 . 

Variables Value ( 28 o C ) Value ( 17 o C ) 

l ∗ 0 .97895 0 .81454 

m 

∗ 3 .95069 0 .83130 

Q 0 47 .5169 5 .39187 

R 0 3 .57021 0 .0098494 
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tion of susceptible individuals. In Fig. 2 (d), the prevailing of m 2 is

clearly seen as time increases. 

The dynamical trajectories corresponding to winter season are

shown in Fig. 3 : short term (a) and long term (b) for α = 0 ; and

short term (c) and long term (d) for α = 1 . In Fig. 3 (a) and (b)

the disease fades out, but in Fig. 3 (c) and (d), the disease is main-

tained at endemic level ( R g = 1 . 0099 ) due to transovarial transmis-

sion. When α = 1 , the behavior is the same that observed in sum-

mer season. 

The displacement of the susceptible by infectious mosquitoes

for α = 1 occurs for all values of the horizontal reproduction num-

ber R 0 . This behavior is shown in Fig. 4 : (a) for summer season

( R 0 = 3 . 57 ), and (b) for winter season ( R 0 = 0 . 0099 ). 

To illustrate the epidemiological situation corresponding to

quasi endemicity, the model parameters are those given in

Table 3 corresponding to winter season, but the transmission co-

efficients βm 

and βh are 10-fold higher: βm 

= 0 . 06 and βh = 0 . 09 .

(10 -fold higher βm 

and βh correspond to a region where there

are 10-fold higher number of humans and mosquitoes.) The corre-
ponding horizontal reproduction number is R 0 = 0 . 9849448 . The

ynamical behavior for α = 0 is similar to that shown in Fig. 3 (in

his case, R g = R 0 < 1 ), and for α = 1 , similar to Fig. 2 . Fig. 5 shows

he behavior when α = 0 . 02 (remember that transovarial trans-

ission has been observed at a relatively low rate [3,8] ): short

erm (a) and long term (b). This is epidemiological situation in

hich dengue is endemic due to the transovarial transmission

 R g = R 0 + R v = 1 . 004 944 8 ). 

Suppose that α = 0 , but R g = R 0 = 1 . 004 944 8 . This is possible if

m 

= 0 . 06072749 and βh = 0 . 09072749 , and other parameters are

hose given in Table 3 (winter season). The dynamical behavior is

imilar than that observed in Fig. 5 . However, after initial 11.1 ×
0 3 days , the infectious humans and mosquitoes are higher when

ransovarial transmission occurs. The highest relative differences

etween infectious humans ( ( i α=0 . 02 − i α=0 ) /i α=0 ) and mosquitoes

 

(
m 2 α=0 . 02 

− m 2 α=0 

)
/m 2 α=0 . 02 

) with and without transovarial trans-

ission are 12.95% and 13.88%, respectively. These highest differ-

nces occur at the peak of the first epidemics (24.6 × 10 3 days ).

he increase in almost 13% in the cases of dengue due to the

ransovarial transmission of low intensity (2%) among humans is

ot negligible. Asymptotically, they reach 2.02% and 2.86%, respec-

ively. 

In last two examples, the gross reproduction number R g encom-

assing transovarial transmission ( R 0 = 0 . 9849448 and R v = 0 . 02 )

s equal to the basic reproduction number R 0 without transovar-

al transmission ( R 0 = 1 . 004 944 8 and R v = 0 ). As pointed out, af-

er t = 11 . 1 × 10 3 days transovarial transmission influences dynam-

cs, resulting in i α=0 . 02 > i α=0 and m 2 α=0 . 02 
> m 2 α=0 

. But, from the

eginning of the epidemics up to t = 11 . 1 × 10 3 days the influence
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Fig. 3. The dynamical trajectories corresponding to winter season: short term (a) and long term (b) for α = 0 ; and short term (c) and long term (d) for α = 1 . 

Fig. 4. The displacement of the susceptible by infectious mosquitoes for α = 1 : (a) 

for summer season, and (b) for winter season. 
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i

Fig. 5. The dynamical trajectories corresponding to winter season using values of 

parameters given in Table 3 , but with higher transmission coefficients βm and βh : 

short term (a) and long term (b) for α = 0 . 02 . 
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of transovarial transmission in the dynamical trajectories is neg-

ligible, and dengue infection is higher for higher basic reproduc-

tion number, that is, i α=0 . 02 < i α=0 and m 2 α=0 . 02 
< m 2 α=0 

. Hence,

two main features are stated: (1) the horizontal transmission dic-

tates the course of the epidemics in the initial phase, and (2) the

effects of transovarial transmission become detectable after some

periods of time. In other words, transovarial transmission can be

characterized as a slow dynamics (see Fig. 4 ). This is another rea-

son why R v = α (very small contribution in the beginning of epi-

demics), instead of higher value α × Q 0 × R 0 , which is R 0 sec-

ondary mosquitoes producing Q 0 offsprings from which a fraction

α is infected. 

Now, consider winter season ( R 0 = 0 . 0099 ), but α = 0 . 99 , re-

sulting in R v = 0 . 9999 . Dynamical trajectories are similar to those

shown in Fig. 3 (a) and (b) which describe the case R 0 = 0 . 0099 and

α = 0 , except that infectious mosquitoes ( m 2 ) are reduced to zero

in approximately 10 6 days . In Fig. 3 (b), infectious mosquitoes ( m 2 )

are reduced to zero in approximately 10 2 days . 

Dynamical trajectories of dengue transmission presented here

come from a model taking into account a unique serotype of

dengue virus. If this restriction is eliminated by incorporating

infections by other serotypes, the transovarial transmission will

change the dynamics of the interactions between serotypes, espe-

cially in seasonal environments. 

4.4. The thresholds R g and χ0 

Many authors identified the spectral radius as the basic repro-

duction number [10,21,22] , which is a unique threshold parameter

for simple directly transmitted infections or vector-borne diseases

both restricted to horizontal transmission (here denoted by R 0 , the

contribution of the horizontal transmission). However, due to the

transovarial transmission in dengue infection, another threshold

appeared, which is the product of the fractions of susceptible pop-

ulations χ0 . 

Let spectral radius given by Eqs. (17) and (20) be discussed. The

spectral radius ( Eq. (17) ) obtained using only horizontal transmis-

sion terms in the vector f resulted as the square root of the inverse

of product of the fractions of susceptible mosquitoes and humans

χ−1 
0 

, given by Eq. (8) . However, including transovarial transmission

terms and the flow from exposed to infectious class in the vector

f , the spectral radius ( Eq. (20) ) was obtained as the square root of

the gross reproduction number R g , given by Eq. (5) . 

Hence, the calculation of the spectral radius of the next gener-

ation matrix depends on the construction of vector f . In two fur-

ther ways of construction of f , the same spectral radius was found,

given by Eq. (C.2) from Appendix C . However, in these cases, and

the case considered in Section 3.2.2 , the reproduction number is

the same, given by R g = R 0 + R v , with R v = α, if conjecture pre-

sented in [26] and proved in [27] (a brief explanation is presented

in Appendix D ) is applied in Eqs. (19), (C.1) , and (C.4) . Applying the

same conjecture to Eq. (16) , the product of the fractions of sus-

ceptible populations is χ0 = 1 /R 0 − R v /R 0 . Hence, the forms of the

construction of the vectors f and v do not matter. In Appendix C an

example of misconstruction of the next generation matrix is given.

The appearance of the square root in the spectral radius de-

serves some explanations (see [26] for details). Let the spectral ra-

dius be written as the square root of two parameters (in dengue

transmission encompassing only horizontal transmission, the pa-

rameters are the partial reproduction numbers, given by Eq. (7) ).

Then, the spectral radius is the geometric mean of two param-

eters [28] . Instead of accepting the geometric mean or the spec-

tral radius as the reproduction number, it is possible to define the

product of two parameters as the reproduction number. In other

words, the reproduction number is the square of the spectral ra-

dius. By accepting the latter definition, the above results show
hat χ−1 
0 

= ρ
(
F 1 V 

−1 
)2 

and R g = ρ̄
(
F 1 V 

−1 
)2 

, where ρ
(
F 1 V 

−1 
)

and

¯
(
F 1 V 

−1 
)

are the spectral radii given by Eqs. (17) and (20) , respec-

ively. Therefore, all three approaches (Routh–Hurwitz criteria, M -

atrix and the next generation matrix) provide the same expres-

ions for the thresholds R g and χ0 . 

Summarizing, two distinct thresholds appear when two routes

f flow occur in an infection: the infection of susceptibles by in-

ectious by random encounter (parameter β , the horizontal trans-

ission), and the influx to infectious class originated directly from

nfectious individuals (parameter α, the transovarial transmission).

n this case, a second reproduction number arises, the transovar-

al reproduction number R v , playing the following role: (1) it is

ummed in the net reproduction number ( R g = R 0 + R v ), and (2) it

s subtracted in the product of the susceptible populations ( χ0 =
 /R 0 − R v /R 0 ). 

To test results summarized above, a directly transmitted infec-

ion is considered. Driessche and Watmough [10] analyzed a tuber-

ulosis transmission including treatment and concluded that the

asic reproduction number must be 

 0 = 

νβ1 

( d + ν + r 1 ) ( d + r 2 ) − pνr 2 
, 

hich is R 1 given by Eq. (E.1) in Appendix E . They also found

ther ways of writing the basic reproduction number, listed in

q. (E.4) except the last equation, but argued that they are wrong

orms. 

The thresholds R 1 and R 1 1 are discussed following the same

easonings evoked to interpret and to understand the transovarial

ransmission in dengue transmission. 

With respect to R 1 , Eq. (E.1) , or Eq. (E.7) , can be rewritten as 

 

∗ = 

1 

R 1 

= 

1 

R 0 

− R f 

R 0 

, 

here the basic reproduction number R 0 is 

 0 = 

νβ1 

( d + ν + r 1 ) ( d + r 2 ) 
(25)

nd the contribution due to the failure of treatment is 

 f = 

pνr 2 

( d + ν + r 1 ) ( d + r 2 ) 
, (26)

hich is called failure reproduction number. The interpretation fol-

ows next. 

The term ν/ ( d + ν + r 1 ) is the probability of a infected per-

on surviving exposed class and entering into infectious class, and

1 / ( d + r 2 ) is the average number of secondary infections pro-

uced during the infectious period 1 / ( d + r 2 ) . Hence, R 0 is the av-

rage number of secondary cases produced by one infectious indi-

iduals introduced in a completely susceptible population in the

bsence of any constraints. However, when p > 0, a constraint

iven by failure of treatment arises. A fraction p of infectious in-

ividuals under treatment fails, and returns to exposed class by

pr 2 / ( d + r 2 ) , with r 2 / ( d + r 2 ) being the probability of surviving the

nfectious class and returning to exposed class. Surviving the ex-

osed class with probability ν/ ( d + ν + r 1 ) , these previously in-

ected but treatment failed individuals return again to infectious

lass. Then R f accounts for the number of not newly infected but

y “feedback” of infectious individuals originated from a failure of

reatment. 

The failure reproduction number R f plays a similar role played

y the transovarial reproduction number R v in dengue transmis-

ion. In both cases, R f and R v account for the increase in the num-

er of infectious individuals due to “internal infection”, not new

nfection. For this reason, there is a diminishing in the fraction of

usceptible individuals, which is proportional to the infection pro-

uced by “feedback” of infectious individuals due to the failure of

reatment. 
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Now, R 1 
1 

given by Eq. (E.1) is discussed. This threshold is written

s 

 

1 
1 = R g = R 0 + R f , 

here the basic reproduction number R 0 and the failure reproduc-

ion number R f are given by Eqs. (25) and (26) , respectively. No-

ice that R f < 1. Similarly to the dengue infection with transovarial

ransmission, the gross reproduction number is sum of infections

romoted by the random encounter between susceptible and infec-

ious individuals ( R 0 ) and by the infectious individuals who failed

o the treatment and ‘infect’ again ( R f ). 

It is worth stressing the fact that there is a particular form

f constructing the vector f in order to result the product of the

ractions of susceptible populations χ0 or the fraction of the sus-

eptible population s ∗: taking the infection by random encounter

erms and also all other flows from exposed class to infectious

lass (hence V −1 is obtained easily). In all other constructions of

 , the reproduction number is retrieved if the conjecture in [26] is

pplied. But, the construction of f taking only the terms of the in-

ection by random encounter that results in a non-diagonal matrix

 (becoming the evaluation of V −1 hard) yields the square root of

he gross reproduction number. However, this could not be valid

or complex routes of transmission, such as vector transmission to-

ether with direct infection. 

. Conclusions 

Dengue transmission modeling incorporating transovarial trans-

ission was analyzed. Qualitative analysis showed that the hori-

ontal (or basic) reproduction number R 0 plays the major role in

he dynamics of dengue propagation. However, when this number

s small, especially near 1, the transovarial transmission (assessed

y the transovarial reproduction number R v = α) enhances strongly

he dynamics of dengue infection. 

One of the effects is the outbreak of dengue epidemics even for

 0 < 1, if the gross reproduction number R g is higher than 1. The

ther is the increasing in the fraction of infectious humans due to

ransovarial transmission R 0 near 1: the difference d i may be small,

ut the relative contribution q i is very high, due to the fact that the

orizontal transmission produces very lower number of infectious

ndividuals. 

The gross reproduction number is compounded by two routes

f transmission. The horizontal transmission accounted for the ran-

om encounter between densities of sub-populations (mass ac-

ion law), while the transovarial transmission accounted for the

bsolutely certain infection of a fraction α of offsprings from in-

ected mosquitoes. Numerical simulations of the dynamical system

howed that the horizontal transmission prevails during the initial

hase of epidemics, while the transovarial transmission affects on

ts long run. 

Besides the gross reproduction number R g , another thresh-

ld parameter appeared due to the transovarial transmission. The

roduct of the fractions of susceptible human and mosquito pop-

lations is given by χ0 , which is not 1/ R g as found in vector-

orne infections where only horizontal transmission occurs. No-

ably, when R v = 1 , all the mosquitoes are infectious, and χ0 must

e zero, which is true (see Eq. (8) ). However, R g = R 0 + 1 (see Eq.

5) ), with R 0 > 0 to have dengue transmission, and dengue disease

ever can be eliminated ( R g > 1) due to the displacement of sus-

eptible by infectious mosquitoes. This behavior corroborates the

rising of two thresholds R g and χ0 . 

DFE was analyzed by three different approaches. These meth-

ds, the spectral radius of the next generation matrix, Routh–

urwitz criteria and M -matrix theory, provided two threshold pa-

ameters: the gross reproduction number R g = R 0 + R v , with R v =
, and the product of the fractions of susceptible populations χ =
0 
 /R 0 − R v /R 0 . Especially in the next generation matrix method, a

hird threshold was obtained. However, if the conjecture proved

n [27] is applied, then only two thresholds R g and χ0 are re-

rieved. These arguments had been applied to the model analyzed

y Driessche and Watmough [10] , and a misinterpretation of R 1 
iven by Eq. (E.1) as the basic reproduction was pointed out. In-

eed, R 1 is the inverse of the fraction of susceptible individuals,

hile the actual basic (gross) reproduction number is R 1 1 given by

q. (E.1) . 

Summarizing above results, a procedure can be stated – among

everal ways of constructing vector f , there are two special con-

tructions: (1) choosing f such that matrix V is diagonal ( Eq. (18)

nd f 3 in Eq. (E.2) ), resulting in R g ; and (2) choosing f taking into

ccount only infection terms by random encounter such that ma-

rix V is non-diagonal ( Eq. (14) and f 1 in Eq. (E.2) ), resulting in χ−1 
0 

.

f both constructions of f result in the same expression (applying

he conjecture in [27] ), then there is only one threshold parameter

 R 0 = χ−1 
0 

). 

From the epidemiologic point of view, according to Fig. 5 in

18] , the basic reproduction number due to horizontal transmis-

ion R 0 is very high at elevate temperatures, and very low for

ower temperatures (see Table 4 ). Let the influence of transovarial

ransmission be assessed along the years in subtropical and tem-

erate regions. In these regions, summer seasons are characterized

y high temperatures, while winter seasons present low temper-

tures. In hot seasons, the basic reproduction number R 0 is high,

nd the contribution of the transovarial transmission is really neg-

igible in the course of dengue epidemics. However, at cold sea-

ons, when R 0 is even lower than 1, dengue must fade out in the

ext summer if horizontal transmission is the only route of trans-

ission. Notwithstanding, this is not what happens, and a pos-

ible reason behind it is the additional transovarial transmission

oute. During winter seasons the additional transovarial transmis-

ion can sustain the dengue infection (the gross reproduction num-

er R g could be slightly above the threshold), and as soon as sum-

er seasons begin, the horizontal transmission prevails and main-

ains the epidemics at high level. In tropical regions, the outbreak

f dengue epidemics as soon as the first rainfalls occur in the be-

inning of rainy season after dry season could also be explained by

he transovarial transmission. 

Another important aspect of dengue transmission not consid-

red here is the capacity of stored eggs assuming quiescence stage:

ggs stored around four months showed increased capacity of fit-

ess, that is, the basic offspring number Q 0 is the highest [19] .

ence, the existence of four serotypes, transovarial transmission,

uiescence stage of eggs and variation in temperature and precip-

tation [2] become quite unpredictable the occurrence of dengue

pidemics. In a future work, evaluation of transovarial transmis-

ion can be done in a real world, instead of illustrative examples

iven in Section 4.3 . 
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ppendix A. Non-trivial equilibrium point 

Letting the derivatives with respect to time equal to zero in Eq.

1) , the coordinates of the non-trivial equilibrium point are given

y the positive and non-zero solution of the algebraic system of
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equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 = q fφ[ m 1 + ( 1 − α) m 2 ] 
(
1 − l 1 + l 2 

C 

)
− ( σa + μa ) l 1 (a) 

0 = q fφαm 2 

(
1 − l 1 + l 2 

C 

)
− ( σa + μa ) l 2 (b) 

0 = σa l 1 −
(
βm 

φi + μ f 

)
m 1 (c) 

0 = σa l 2 + βm 

φim 1 − μ f m 2 (d)

0 = μh −
(

βh φ
N 

m 2 + μh 

)
s (e) 

0 = 

βh φ
N 

m 2 s − ( σh + μh ) i. (f) 

The sum of (a) and (b) results in 

q fφα( m 1 + m 2 ) 

(
1 − l 1 + l 2 

C 

)
− ( σa + μa ) ( l 1 + l 2 ) = 0 , 

and the sum of (c) and (d) results in 

σa ( l 1 + l 2 ) − μ f ( m 1 + m 2 ) = 0 , 

and the solution for both equations is l̄ 1 + ̄l 2 = l ∗ and m̄ 1 + m̄ 2 =
m 

∗, with l ∗ and m 

∗ being given by Eq. (2) . 

From (b), l̄ 2 is 

l̄ 2 = 

q fφα

σa + μa 

(
1 − l ∗

C 

)
m̄ 2 , 

and substituting in (d), and using the fact that ( 1 − l ∗/C ) = 1 /Q 0 ,

m̄ 2 is 

m̄ 2 = 

βm 

φm 

∗ ı̄ 

βm 

φ ı̄ + ( 1 − α) μ f 

. 

Substituting m̄ 2 back to l̄ 2 , and using m 

∗ = σa C ( 1 − 1 /Q 0 ) /μ f , the

compartments of mosquito population l̄ 1 = l ∗ − l̄ 2 , l̄ 2 , m̄ 1 = m 

∗ −
m̄ 2 and m̄ 2 are obtained as a function of ı̄ , and they correspond

to first four equations of Eq. (4) . Clearly, if βm 

= 0 , then m̄ 2 = 0 ,

and the non-trivial equilibrium is possible if βm 

> 0. 

From (e), s̄ is 

s̄ = 

μh 

βh φ
N 

m 2 + μh 

, 

and substituting in (f), ı̄ is 

ı̄ = 

βh φ
N 

μh m̄ 2 

( σh + μh ) 
(

βh φ
N 

m̄ 2 + μh 

) . 

Clearly, if βh = 0 , then ı̄ = 0 , and the non-trivial equilibrium is

possible if βh > 0. Finally substituting m̄ 2 , and solving for ı̄ , the

last two compartments of human population in Eq. (4) are ob-

tained. 

Appendix B. Jacobian matrix 

There are well known techniques to assess the stability of equi-

librium points. One is the application of Routh–Hurwitz criteria,

and other, the M -matrix theory. The results are presented briefly. 

B1. Routh–Hurwitz criteria 

The local stability of DFE is assessed by the eigenvalues of the

characteristic equation det ( J − λI ) = 0 , which can be written as 

det ( J − λI ) ≡ det ( F − λI ) det ( M − λI ) det ( H − λI ) = 0 , 

where matrix F is given by Eq. (11) , and matrices M and H , by Eq.

(12) . 

The eigenvalue corresponding to vital dynamics matrix of hu-

mans H is λ = −μ . 
1 h 
The characteristic equation corresponding to vital dynamics

atrix of mosquitoes M is λ2 + 

[
q fφm 

∗/C + σa + μa + μ f 

]
λ +

( σa + μa ) μ f ( Q 0 − 1 ) 
]

= 0 , with Q 0 being given by Eq. (3) . The

igenvalues λ2, 3 have negative real part since all the Routh–

urwitz criteria [29] are satisfied when Q 0 > 1. 

The characteristic equation corresponding to dengue transmis-

ion matrix F is λ3 + b 2 λ
2 + b 1 λ + b 0 = 0 , where b 2 > 0, b 1 > 0 for

 0 < 1, and 

b 0 = ( σh + μh ) ( σa + μa ) μ f ( 1 − R g ) > 0 , (B.1)

or R g < 1, with R g and R 0 , R g ≥ R 0 , being given by Eqs. (5) and (6) ,

espectively. By the fact that b 2 b 1 − b 0 > 0 for R g < 1, the eigen-

alues λ4, 5, 6 have negative real part since all the Routh–Hurwitz

riteria are satisfied, and DFE is locally asymptotically stable. For

= 1 , b 0 = −( σh + μh ) ( σa + μa ) μ f R 0 < 0 and DFE is always un-

table for all R 0 > 0. 

Notice that the independent term in Eq. (B.1) , which is b 0 =
et (F ) , satisfies the procedure proposed in [26] : (1) write a pos-

tive K 1 in terms of the model parameters, excluding all transmis-

ion parameters, in order to write b 0 in the form K 1 (1 − K 2 /K 1 ) ;

nd (2) define the ratio K 2 / K 1 as the gross reproduction number

 g . 

The parameter χ0 can also be obtained from the independent

erm b 0 following the procedure proposed in [26] : (1) write a

ositive K 3 in terms of the model parameters, including transo-

arial transmission parameters, in order to write b 0 in the form

 3 (1 − R 0 /K 4 ) ; and (2) define the ratio R 0 / K 4 as the inverse of the

roduct of fractions χ−1 
0 

. Hence, 

 0 = ( σh + μh ) ( σa + μa ) μ f ( 1 − α) 
(
1 − χ−1 

0 

)
, 

here χ−1 
0 

= R 0 / ( 1 − α) , with χ0 being given by Eq. (8) . ( K 3 >

 implies that α < 1, and for α = 1 , χ0 = 0 .) Notice that DFE is

table if χ−1 
0 

< 1 , and bifurcates at χ−1 
0 

= 1 , and above this value

 unique non-trivial (endemic) equilibrium appears ( χ−1 
0 

< 1 is

quivalent to R g < 1). 

2. M -Matrix theory 

Matrices F and M , given by Eqs. (11) and (12) , respectively,

ultiplied by −1 could be M -matrix under certain conditions

12,13,30,31] . 

Definition . An n × n matrix A = 

[
a i j 

]
is a non-singular M -

atrix if a ij ≤ 0, i 	 = j , and there exists a matrix B ≥ 0 and a real

umber u > 0 such that A = uI − B and u > ρ( B ), where I is the

dentity matrix and ρ is the spectral radius [30] . 

Or, equivalently: 

roposition 1. A is a non-singular M -matrix if and only if the real

art of its eigenvalues is greater than zero. 

roposition 2. A (elements a ij ) is a non-singular M -matrix if and

nly if the diagonal entries are positive, and there exists a positive

iagonal matrix D (diagonal elements d i > 0 ), such that AD is strictly

iagonal dominant, that is, a ii d i > 

∑ 

j 	 = i 
∣∣a i j 

∣∣d j , for i = 1 , 2 , . . . , n . 

Matrix −M given by Eq. (12) has positive diagonal elements in

ccordance with the first part of Proposition 2. The second part of

roposition 2, by defining d 1 = 1 and d 2 = ξ + σa /μ f , is satisfied if

> 0. After some calculations, the result is 

 < ξ < m 

∗Q 0 ≡ σa 

μ f 

C ( Q 0 − 1 ) , 

sing Eq. (2) for m 

∗. Hence, whenever Q 0 > 1 there exists a posi-

ive number ξ , and −M is a non-singular M -matrix. 

Matrix −F given by Eq. (11) has positive diagonal elements in

ccordance with the first part of Proposition 2. The second part of

roposition 2, by defining d = 1 , d = ξ + β φ/ [ N ( σ + μ ) ] and
1 2 h h h 
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 2 = ξ + αq fφ/ [ Q 0 ( σa + μa , ) ] is satisfied if ξ > 0. After some cal-

ulations, the results is 

 < ξ < 

μ f 

βm 

φm 

∗ + σa 
( 1 − R g ) , 

here R g = R 0 + α, according to Eq. (5) . Hence, whenever R g <

 there exists a positive number ξ , and −F is a non-singular M -

atrix. 

For α < 1, the last inequality can also be written as 

 < ξ < 

μ f 

βm 

φm 

∗ + σa 
( 1 − α) 

(
1 − χ−1 

0 

)
, 

here χ0 is given by Eq. (8) . If χ−1 
0 

< 1 there exists a positive

umber ξ , and matrix F has the real part of its eigenvalues lower

han zero. 

ppendix C. Spectral radius theory 

As pointed out in the main text, there are other two ways in

onstructing the vector f , given by Eq. (18) : (a) transfer the term

fφαm 2 ( 1 − ( l 1 + l 2 ) /C ) from vector f to v ; and (b) transfer the

erm σ a l 2 from vector f to v . 

1. Case a 

The vector f is constructed as 

f = 

(
βm 

φim 1 + σa l 2 , 
βh φ

N 

m 2 s, 0 , 0 , 0 , 0 

)T 

, 

ith T standing for the transposition of a matrix. In this case, the

ext generation matrix F 1 V 
−1 is 

 1 V 

−1 = 

⎡ 

⎢ ⎣ 

α NR 

m 

0 
σa 

σa + μa 

1 
N 

R 

h 
0 0 0 

0 0 0 

⎤ 

⎥ ⎦ 

, 

nd the corresponding characteristic equation is 

3 − R v λ
2 − R 0 λ = 0 . (C.1)

he eigenvalues are λ4 = 0 and λ5 , 6 = 

(
R v ±

√ 

R 2 v + 4 R 0 

)
/ 2 , where

 0 is given by (6) . Then, the spectral radius is ˆ ρ
(
F 1 V 

−1 
)

=
R v + 

√ 

R 2 v + 4 R 0 

)
/ 2 and the reproduction number ˆ R ng is 

ˆ 
 

ng ≡ ˆ ρ
(
F 1 V 

−1 
)

= 

(
R v + 

√ 

R 

2 
v + 4 R 0 

)
/ 2 . (C.2) 

For ˆ R ng < 1 , DFE is locally asymptotically stable, and unstable

or ˆ R ng > 1 . Therefore, the threshold occurs at R 0 + R v = 1 , and DFE

s unstable for R 0 + R v > 1 . 

2. Case b 

The vector f is constructed as 

f = 

(
βm 

φim 1 , 
βh φ

N 

m 2 s, q fφαm 2 

(
1 − l 1 + l 2 

C 

)
, 0 , 0 , 0 

)T 

. 

n this case, the next generation matrix F 1 V 
−1 is 

 1 V 

−1 = 

⎡ 

⎢ ⎣ 

0 NR 

m 

0 0 

1 
N 

R 

h 
0 0 

1 
N 

R 

h 
0 

σa 

σa + μa 

σa + μa 

σa 
α 0 α

⎤ 

⎥ ⎦ 

, 

nd the corresponding characteristic equation is 

3 − R v λ
2 − R 0 λ = 0 , 

hich is equal to Eq. (C.1) obtained in the previous case. 

Next, a special construction of f is presented. 
3. Considering only states-of-infectiousness 

The next generation matrix is constructed taking into account

nly the states-of-infectiousness ( m 2 , i ). In this case, vector f is

iven by 

f = 

(
βm 

φim 1 , 
βh φ

N 

m 2 s, 0 , 0 , 0 , 0 

)T 

, 

hich is equal to Eq. (14) , and vector v is given by Eq. (15) . The

artial derivatives of f and v with respect to m 2 and i evaluated at

he DFE are 

F 1 = 

[ 

0 βm 

φm 

∗

βh φ
N 

0 

] 

, V = 

[
μ f 0 

0 σh + μh 

]
, (C.3) 

nd the next generation matrix F 1 V 
−1 is 

 1 V 

−1 = 

[ 

0 NR 

m 

0 

1 
N 

R 

h 
0 0 

] 

, 

here the partial reproduction numbers R h 
0 

and R m 

0 
are given by

q. (7) . 

The characteristic equation corresponding to F 1 V 
−1 is 

2 − R 0 = 0 , (C.4) 

ith the eigenvalues being λ4 , 5 = 

√ 

R 0 , where R 0 is given by (6) ,

nd the spectral radius is 

˜ 
(
F 1 V 

−1 
)

= 

√ 

R 0 . (C.5) 

n this case, the transovarial transmission does not appear in the

hreshold parameter, hence the gross reproduction number R g ,

iven by Eq. (5) , is not retrieved. 

To understand this mistake, let the partial derivatives of f and v

e evaluated at the DFE. They are partitioned as 

f = 

∂ f p 

∂x n 
= 

[
F 1 0 2 ×4 

0 4 ×2 0 4 ×4 

]
, 

D v = 

∂v p 
∂x n 

= 

[
V −J 1 

−J 2 −J 3 

]
, 1 ≤ p, n ≤ 6 , 

here F 1 and V , which are the partial derivatives with respect to

 2 and i , are given by Eq. (C.3) . The other matrices are 

J 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

σa 0 

0 0 

0 0 

0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

T 

, J 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

αq fφ 1 
Q 0 

0 

( 1 − α) q fφ 1 
Q 0 

0 

0 −βm 

φm 

∗

−βh φ
N 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

nd 

 3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−( σa + μa ) 0 0 0 

−q fφ m 

∗
C 

−q fφ m 

∗
C 

− ( σa + μa ) q fφ 1 
Q 0 

0 

0 σa −μ f 0 

0 0 0 −μh 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

otice that matrix J 1 is not a null matrix. Hence, F 1 V 
−1 is not a

ext generation matrix. 

ppendix D. Conjecture 

Two conjectures were presented in [26] , one dealing with sin-

le infection, and other, with coinfections. The idea behind these

onjectures is obtaining a threshold from the characteristic equa-

ion corresponding to the next generation matrix F V −1 , instead of
1 
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calculating the spectral radius ρ
(
F 1 V 

−1 
)
: the absolute sum of the

negative coefficients is the threshold. Here, conjecture related to

single infection is stated. 

Conjecture 1. Let the characteristic polynomial of order n corre-

sponding to the next generation matrix F 1 V 
−1 be written as 

�( λ) = λn − a n −1 λ
n −1 − · · · − a 1 λ − a 0 , 

with a i ≥ 0, for i = 0 , 1 , 2 , . . . , n − 1 . Let R 0 denote the spectral radius

of the next generation matrix, that is, R 0 = ρ(F 1 V 
−1 ) , and 

R 

∗
0 = a n −1 + · · · + a 1 + a 0 . 

Then R ∗
0 

is a threshold value for the disease to take off or die

out in the sense that: ⎧ ⎪ ⎨ 

⎪ ⎩ 

(i) R 

∗
0 > 1 if and only if R 0 > 1 

(ii) R 

∗
0 = 1 if and only if R 0 = 1 

(iii) R 

∗
0 < 1 if and only if R 0 < 1 . 

Proof. If all a i = 0 , the result is obvious. Otherwise the elements of

the next generation matrix F 1 V 
−1 are non-negative as they corre-

spond to expected numbers of different types of infected individu-

als. Hence, by the Perron Frobenius Theorem it has a non-negative

right eigenvector whose eigenvalue is R 0 , and R 0 is the largest real

eigenvalue. Additionally, the characteristic polynomial is such that

the number of sign differences between consecutive nonzero coef-

ficients is one. Hence, according to Descartes rule of signs, there is

exactly one positive root. However, writing 

�(∞ ) = lim 

λ→∞ 

�(λ) , 

(i) if R ∗
0 

> 1 , then �(1) < 0 and �( ∞ ) = ∞ , so �( λ) has a root

in (1, ∞ ). Hence, the unique largest real eigenvalue R 0 cor-

responding to the characteristic polynomial is R 0 > 1. 

(ii) if R ∗
0 

= 1 , then �( 0 ) < 0 , �( 1 ) = 0 and �( ∞ ) = ∞ , so the

unique positive root of �( λ) = 0 is λ = 1 , and R 0 = 1 . 

(iii) if R ∗0 < 1 , then �(0) < 0 and �(1) > 0, so �( λ) has a root

in (0, 1). Hence, the unique largest real eigenvalue R 0 corre-

sponding to the characteristic polynomial is R 0 < 1. 

Therefore R ∗0 is a valid threshold parameter that crosses the

value one exactly when R 0 does and determines the disease be-

havior in the same way that R 0 does. �

Appendix E. Tuberculosis model with treatment 

Driessche and Watmough [10] proposed and analyzed a tuber-

culosis transmission including treatment aiming to exemplify the

use of the next generation matrix method. The model is ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

dτ
s = d − ds − β1 is 

d 

dτ
e = β1 is + β2 it + pr 2 i − ( d + ν + r 1 ) e 

d 

dτ
i = νe − ( d + r 2 ) i 

d 

dτ
t = r 1 e + ( 1 − p ) r 2 i − β2 it − dt, 

where are s, e, i , and t the fractions of, respectively, susceptible,

exposed, infectious, and treated individuals at time τ . Susceptible

and treated individuals are infected at rates β1 and β2 , respec-

tively. All newborns are susceptible, with birth rate equal to mor-

tality rate d ; the treatment rates for exposed and infectious indi-

viduals are r 1 and r 2 , respectively, with a fraction 1 − p of infec-

tious individuals being successful; and ν is the incubation rate. 

The disease free equilibrium (DFE) P 0 has the coordinates given

by 

P 0 = 

(
s̄ = 1 , ̄e = 0 , ̄ı = 0 , ̄t = 0 

)
. 
he eigenvalues of Jacobian, evaluated at DFE, are λ1 = λ2 = −d,

nd λ3, 4 are given by the roots of 

2 + ( 2 d + ν + r 1 +r 2 ) λ + ( d + ν + r 1 ) ( d + r 2 ) − ν( β1 + pr 2 ) = 0 . 

his equation will have negative real part if the independent term

 0 is positive, which can be written in two different forms 
 

a 0 = [ ( d + ν + r 1 ) ( d + r 2 ) − pνr 2 ] ( 1 − R 1 ) 

a 0 = ( d + ν + r 1 ) ( d + r 2 ) 
(
1 − R 

1 
1 

)
, 

here the thresholds R 1 and R 1 
1 

are 
 

R 1 = 

νβ1 

( d+ ν+ r 1 ) ( d+ r 2 ) −pνr 2 

R 

1 
1 = 

νβ1 + pνr 2 
( d+ ν+ r 1 ) ( d+ r 2 ) . 

(E.1)

herefore, DFE is locally asymptotically stable if R 1 < 1 or R 1 1 < 1 .

bove two different forms of writing a 0 followed the procedures

resented in [26] . 

Now, the next generation method is considered taking into ac-

ount the state-at-infection ( e ) and the states-of-infectiousness ( i )

22] . There are four ways to construct the vector f , which are 
 

 

 

 

 

 

 

 

 

 

 

f 1 = ( β1 is + β2 it, 0 , 0 , 0 ) 
T 

f 2 = ( β1 is + β2 it + pr 2 i, 0 , 0 , 0 ) 
T 

f 3 = ( β1 is + β2 it + pr 2 i, νe, 0 , 0 ) 
T 

f 4 = ( β1 is + β2 it, νe, 0 , 0 ) 
T 
, 

(E.2)

ith T standing for the transposition of a matrix. Notice that vector

 1 has only horizontal transmissions (infection β1 and secondary

nfection β2 ), and matrix V for f 3 is diagonal. From each choice of f ,

he next generation matrix F V −1 is calculated, and the correspond-

ng characteristic equation is obtained. The characteristic equation

or f j , j = 1 to 4, are, respectively, 
 

 

 

 

 

 

 

 

 

 

 

λ2 − R 1 λ = 0 

λ2 − R 

1 
1 λ = 0 

λ2 − R 

1 
1 = 0 

λ2 − aλ − b = 0 , 

(E.3)

here R 1 and R 1 
1 

are given by Eq. (E.1) , and a =
pνr 2 / [ ( d + ν + r 1 ) ( d + r 2 ) ] and b = νβ1 / [ ( d + ν + r 1 ) ( d + r 2 ) ] .

otice that the spectral radius corresponding to above equations

re 
 

 

 

 

 

 

 

 

 

 

 

ρ1 

(
F V 

−1 
)

= R 1 

ρ2 

(
F V 

−1 
)

= R 

1 
1 

ρ3 

(
F V 

−1 
)

= 

√ 

R 

1 
1 

ρ4 

(
F V 

−1 
)

= 

1 
2 

(
a + 

√ 

a 2 + 4 ab 
)
, 

(E.4)

ence, there are four thresholds. 

However, if the conjecture presented in [26] and proved in

27] is applied to characteristic equation given in Eq. (E.3) , then

here are only two thresholds R 1 and R 1 1 given by Eq. (E.1) , because

 + b = R 1 
1 
. Especially, the threshold R 1 can be understood by de-

ermining the steady state fraction of susceptible individuals s ∗. 

The endemic equilibrium P ∗ has the coordinates given by 

 

0 = 

(
s̄ = s ∗, ̄e = e ∗, ̄ı = i ∗, ̄t = t ∗

)
, 

here 
 

 

 

 

 

 

 

s ∗ = 

1 

1+ β1 
d 

i ∗

e ∗ = 

d+ r 2 
ν i ∗

t ∗ = 

r 1 ( d+ r 2 ) + ( 1 −p ) νr 2 
ν( d+ β2 i ∗) 

i ∗, 

(E.5)
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ith i ∗ being the positive solution of second degree equation 

i 2 + Bi + C = 0 , (E.6)

here the coefficients are 
 

 

 

 

 

A = d ( d + ν + r 2 ) β1 β2 

B = d 2 ( d + ν + r 2 ) β2 +d [ ( d + ν + r 1 ) ( d + r 2 ) − pνr 2 ] ( 1 − R 2 ) β1 

C = d 2 [ ( d + ν + r 1 ) ( d + r 2 ) − pνr 2 ] ( 1 − R 1 ) , 

ith R 1 being given by Eq. (E.1) , and R 2 is obtained by substituting

1 in R 1 by β2 , that is, 

 2 = 

νβ2 

( d + ν + r 1 ) ( d + r 2 ) − pνr 2 
. 

Eq. (E.6) does not have a simple expression for positive root,

ecause the discriminant � = 

√ 

B 2 − 4 AC is given by 

= d 4 ( d + ν + r 2 ) 
2 β2 

2 

+ d 2 [ ( d + ν + r 1 ) ( d + r 2 ) − pνr 2 ] 
2 
( 1 − R 2 ) 

2 β2 
1 

− 2 d 3 ( d + ν + r 2 ) [ ( d + ν + r 1 ) ( d + r 2 ) − pνr 2 ] 

× ( 1 + 2 R 1 − R 2 ) β1 β2 , 

hich can not be simplified. Depending on the values let to β1 in

2 , there is a possibility of two positive roots (see [16] for back-

ard bifurcation). 

Let the special case β2 = 0 (absence of secondary infections) be

tudied. In this situation, R 2 = 0 and the source for the appearance

f backward bifurcation is eliminated. In this case, A = 0 and other

oefficients are 
 

B = d [ ( d + ν + r 1 ) ( d + r 2 ) − pνr 2 ] β1 

C = d 2 [ ( d + ν + r 1 ) ( d + r 2 ) − pνr 2 ] ( 1 − R 1 ) , 

ith another way of writing the coefficient C is C =
 

2 ( d + ν + r 1 ) ( d + r 2 ) 
(
1 − R 1 

1 

)
. The fraction of infectious indi-

iduals is 

 

∗ = 

d 

β1 
( R 1 − 1 ) . 

ubstituting in Eq. (E.5) , the fraction of susceptible individuals, in-

ependently of the form assumed by C , is 

 

∗ = 

1 

R 1 

= 

( d + ν + r 1 ) ( d + r 2 ) − pνr 2 
νβ1 

, (E.7) 

nd, clearly, s ∗ can not be written as s ∗ = 1 /R 1 
1 
. Notably, the thresh-

lds R 1 and R 1 
1 

given by Eq. (E.1) are not changed by letting β2 = 0 .
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