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Abstract Mathematical modeling is an important tool to assessing quantitative con-
jectures and to answer specific questions. In themodeling, we assume that a competitor
represented by a lactic acid bacterium produces antimicrobial compounds (substances
that kill microorganisms or inhibit their growth), such as lactic acid and bacteriocins,
with some cost to its own growth. Bacteriocins are protein compounds with antimicro-
bial effect against related species and bacteria such as Listeria monocytogenes, which
is foodborne pathogen that cause listeriosis. From the analysis of the model, we found
the thresholds which determine the existence of multiple equilibria and we studied
their stability, in order to evaluate the interaction between lactic acid bacteria and L.
monocytogenes.

Keywords Mathematical model · Thresholds · Multiple equilibria · Bacteriocin ·
Stability analysis · Listeria

1 Introduction

Lactic acid bacteria (LAB) constitute a group of Gram-positive bacteria that have
morphological, metabolic and physiological similarities, which produce lactic acid as
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the end product of carbohydrate metabolism (Khalid 2011). Gram-positive bacteria
have a thick, relatively impermeable wall that resists decolorization and is composed
of peptidoglycan and secondary polymers (Beveridge 2001).

LAB have been used for centuries in the fermentation of food for flavor and texture
development, and also because of their ability to produce antimicrobial compounds
which prevent the growth of spoilage and pathogenic microorganisms (De Vuyst and
Vandamme 1994; Delves-Broughton et al. 1996). The antimicrobial activity of LAB
is related to factors such as the decrease in pH levels, production of lactic acid, com-
petition for substrates and production of substances with bactericidal action (lethal
action, including bacteriocins) or bacteriostatic (which inhibit the growth). In the non-
dissociated form, lactic acid passes through the cytoplasmicmembrane of pH-sensitive
bacteria, including Listeria monocytogenes, where the acid dissociates, acidifying the
intracellular environment, the cell functions are inhibited, and the membrane potential
(the difference in electric potential between the exterior and the interior of a biological
cell) is annulled (Paparella et al. 2013).

Bacteriocins produced by some strains of LAB are ribosomally synthesized antimi-
crobial peptides or proteins and may offer a competitive advantage to them. The lethal
action of the bacteriocin is a strategy to maintain the population of LAB by limit-
ing the growth of competitor foodborne pathogens and guaranteeing greater access
to nutrients and space. However, producer microorganisms are immune to their own
bacteriocin (Cotter et al. 2005).

Apparently, bacteriocin production is stimulated by less favorable growth condi-
tions, called stress factors, such as low temperatures, low specific growth rates and
competing microflora. Slow growth can make more energy available required for both
polymerization of building blocks (amino acids) and specific and coordinated control
of bacteriocin gene expression (De Vuyst et al. 1996).

Cells in the initial phase of the growth curve are better suited for the enterocin pro-
duction, a specific bacteriocin, and at later stages enterocin production drops to zero.
Leroy and Vuyst (2002) concluded that the switch-off of this bacteriocin production
could be related to cell density.

Listeria monocytogenes is an important foodborne pathogen due to its widespread
distribution in nature (Juneja 2003), being able to tolerate high concentrations of
salt and survive when exposed to a wide range of temperatures (1–45 ◦C) (Lewus and
Montville 1991). It is found in foodmanufacturing plants, in the hands ofmanipulators
and in the form of biofilm attached to the equipments (Moonchai et al. 2005). Listeria
is difficult to be properly removed from equipment surfaces, which can survive for
long periods and be responsible for outbreaks of listeriosis, which is caused by eating
food contaminated with Listeria monocytogenes (Ferreira et al. 2014).

Foodborne listeriosis is a serious disease with high fatality rates (20–30%) com-
pared to other foodborne pathogens. Listeria monocytogenes most often affects
those with a severe underlying disease or condition (immunosuppression, HIV/AIDS,
chronic conditions such as cirrhosis that impair the immune system); pregnant women;
fetuses or neonates (WHO 2004; Altuntas et al. 2012). The clinical syndromes asso-
ciated with listeriosis include mainly central nervous system infections and primary
bacteremia, but can also include endocarditis. Meningitis, a possible manifestation of
listeriosis, is seen mainly in the elderly and in immunocompromised patients (Farber
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and Peterkin 1991). The control of this microorganism is a big challenge, especially in
ready-to-eat foods which depend only on refrigeration for storage (Okada et al. 2013).

In last years, mathematical models to describe the growth of LAB (logistic, Gom-
pertz equation or Monod equation) and the production of lactic acid and bacteriocin
were developed. Due to complexity of the models, systems of ordinary differential
equations were solved using, for example, Euler integration technique, and then, the
models were validated using experimental results (Callewaert and Vuyst 2000; Char-
alampopoulos et al. 2009; Guerra et al. 2007; Liu et al. 2005; Luedeking and Piret
1959; Lv et al. 2005; Moonchai et al. 2005; Neysens et al. 2003; Pongtharangkul et al.
2008; Vázquez and Murado 2008). Due to numerical approach, these models have
limited predictive value, especially when the conditions in which they were built are
not satisfied.

Regulation of bacteriocin production, such as the nisin, is frequently mediated
through two-component regulatory systems (sensor kinase and response regulator),
often as part of a quorum sensing mechanism. The resulting nisin acts, besides the
antimicrobial function, as a protein pheromone in regulating its own synthesis (Kleere-
bezem 2004; Riley 2009; Zhou et al. 2006). Quorum sensing refers to the ability of
bacterial populations to coordinately regulate gene expression in response to changes
in the local population density (Anguige et al. 2005; Ward et al. 2004). A mathemat-
ical model was developed to assess the effects of quorum sensing in the dynamic of
Lactococcus lactis based on the regulatory system of the nisin biosynthesis (Delboni
and Yang 2012). By analyzing the model, it was possible to verify this mechanism:
when the nisin reaches a certain threshold concentration, the level of the phospho-
rylated response regulator increases significantly, showing that the regulatory system
becomes activated.

In this work, we include quorum sensing in the growth rate of lactic acid bacteria
and also in the rate of bacteriocin production. Considering that LAB also produce
lactic acid that has antimicrobial action, we study the interaction between LAB and
Listeria monocytogenes. The objective is to obtain the conditions for the existence
and local stability of boundary equilibria in the domain of biological interest and the
conditions for the existence of internal equilibrium points. The stability analysis yields
the thresholds, values at which bifurcations occur.

This paper is structured as follows. In Sect. 2, a model describing the interaction
between bacteriocin-producing lactic acid bacteria andListeria is developed. In Sect. 3,
the stability of the boundary equilibrium points is assessed, and some conditions for
the existence of internal equilibria are presented. Discussions and biological interpre-
tations are given in the same section, and conclusions are given in Sect. 4.

2 Mathematical Model

Wepresent amathematicalmodel considering ahomogeneous environment.Wedenote
by Ŝ and Ĉ the populations of, respectively, LAB and Listeria in a given time t̂ . The
concentrations of lactic acid and bacteriocin produced by LAB are represented by Â
and B̂, respectively.
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1640 R. R. Delboni, H. M. Yang

Firstly, we describe the effects of bacteriocin on the dynamics of LAB and Listeria.
Logistic curve is appropriate to describe the growth of LAB, since it takes into account
self-inhibition caused by the production of lactic acid and the depletion of nutrients
(Leroy and Vuyst 2002). By assumption, the growth factor for LAB is multiplied
by a function F̂(B̂), which mimics a cost for the bacteriocin production. This cost
function is such that, when the concentration of bacteriocin is small, the LAB grow
slowly, a feature that attempts to describe the adaptation to the environment, but, as the
concentration increases, also increases the growth rate of bacteria. Sufficiently large
quantity of bacteriocin demonstrates that bacteria are in sufficient number to establish
in the environment, and they can reproduce without the bacteriocin to protect them
from competitors. A function with these properties is given by

F̂(B̂) = 1 − σ̂

1 + ω̂ B̂
,

where ω̂ is a positive parameter and σ̂ represents the cost for bacteriocin production.
Notice that F̂(0) = 1− σ̂ , then we must have 0 < σ̂ < 1 because σ̂ > 1 would imply
F̂(0) < 0, which represents a negative growth rate.

The equation that describes the growth of LAB approaches the logistic equation
when bacteria are better adapted. Then,

d Ŝ

dt̂
= φ̂

(
1 − σ̂

1 + ω̂ B̂

) (
1 − Ŝ

K1

)
Ŝ − μ̂1 Ŝ,

where φ̂ is the intrinsic growth rate, K1 is the carrying capacity and μ̂1 is the mortality
rate of LAB.

The bacteriocin production is influenced by the concentration of LAB; hence, the
term corresponding to bacteriocin production is multiplied by a function Ĝ(Ŝ). From
a metabolic point of view, bacteriocins are usually considered as primary metabolites,
that is, products that are formed at a rate that depends only on the growth rate of
the producing bacteria. However, few studies have considered LAB producing bac-
teriocins (secondary metabolites), such as pediocin AcH produced by Pediococcus
acidilactici H, E, F and M, and propionicin produced by Propionibacterium ihoenii
(Cabo et al. 2001). The production of primary and secondary metabolites has been
described for the same species and peptide (De Vuyst et al. 1996).

The function Ĝ(Ŝ) must be such that, if the concentration of LAB is too small,
the bacteriocin production rate is maximum, for instance, Ĝ(Ŝ) ≈ 1. However, as
the bacteria multiply and the population increases, they become more adapted to
the environment. Consequently, the need for production of protective metabolites
decreases, and Ĝ(Ŝ) becomes small. A function showing such behavior is given
by

Ĝ(Ŝ) = 1 − γ̂ Ŝ

1 + γ̂ Ŝ
,

where γ̂ is a positive parameter.
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Luedeking and Piret (1959) concluded that the instantaneous rate of lactic acid
formation is related to the instantaneous rate ofLABgrowth and the amount of bacteria.
We also considered a degradation rate, proportional to the lactic acid concentration.

In the model, α̂1 is the specific bacteriocin production rate related to the growth of
LAB (primary), and α̂2 is the number of molecules of bacteriocin produced by a lactic
acid bacterium (secondary). Similarly, α̂3 is the specific lactic acid production rate
(primary) and α̂4 is the number of molecules of bacteriocin produced by a lactic acid
bacterium (secondary). The deactivation rates of these metabolites are represented
by μ̂2 for bacteriocin and μ̂3 for the lactic acid. The activity of bacteriocin probably
decreases due to the proteolytic degradation, aggregation or adsorption to cells (Leroy
and Vuyst 2002).

Suppose that LAB and Listeria compete for the same limited nutrients.We consider
an indirect competition model with antimicrobials produced by LAB, being lethal to
the other species. The bacteriocin is produced with a certain cost to the LAB growth.
Each species, in the absence of the other, has logistic growth (Listeria) or nearly
logistic (LAB). Besides the logistic growth, we include the mortality terms−μ̂1 Ŝ and
−μ̂4Ĉ .

The interaction between Listeria and the antimicrobial is directly proportional to
this population and the metabolites involved in the interaction. It is assumed that
the interaction is lethal for Listeria and decreases the metabolites concentration. The
parameters δ̂1 and δ̂2 correspond to these interaction rates. The action of these metabo-
lites produced by LAB occurs on the cytoplasmic membrane of Listeria. Thus, we
assume that both lactic acid and the bacteriocin are “consumed” in the interaction
with the Listeria, and they are reduced by −δ̂1 ÂĈ and −δ̂2 B̂Ĉ , respectively, at each
time. The parameter 1/η̂1 is the number of lactic acid molecules binded to Listeria to
disable it, as well as 1/η̂2 is the number of bacteriocin molecules binded to Listeria
to disable it. Thus, the Listeria population is reduced by η̂1δ̂1 ÂĈ and η̂2δ̂2 B̂Ĉ when
the interaction occurs. The growth of Listeria population is limited by the carrying
capacity K4.

Based on above descriptions, the dynamic of the interaction between LAB and Lis-
teria is described by the following system of non-linear ordinary differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Ŝ

dt̂
= φ̂

(
1 − σ̂

1 + ω̂ B̂

) (
1 − Ŝ

K1

)
Ŝ − μ̂1 Ŝ

d B̂

dt̂
=

(
1 − γ̂ Ŝ

1 + γ̂ Ŝ

)(
α̂1

d Ŝ

dt̂
+ α̂2 Ŝ

)
− μ̂2 B̂ − δ̂2 B̂Ĉ

d Â

dt̂
= α̂3

d Ŝ

dt̂
+ α̂4 Ŝ − μ̂3 Â − δ̂1 ÂĈ

dĈ

dt̂
= φ̂

(
1 − Ĉ

K4

)
Ĉ − μ̂4Ĉ − η̂1δ̂1 ÂĈ − η̂2δ̂2 B̂Ĉ .

(1)
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Table 1 Dimensionless
variables and meanings (2)

Variable Transformation Meaning

S Ŝ/K1 Proportion of population of LAB

B B̂ω̂ Relative concentration of bacteriocin

A Âφ̂/K1 Relative concentration of lactic acid

C Ĉ/K4 Proportion of population of Listeria

Table 2 Dimensionless parameters and meanings (2)

Parameter Transformation Meaning

μ1 μ̂1/φ̂ Relative mortality of LAB

μ4 μ̂4/φ̂ Relative mortality of Listeria

α1 α̂1ω̂K1 Relative production of bacteriocin related to the growth of LAB

α2 α̂2ω̂K1/φ̂ Relative number of bacteriocin molecules produced by LAB

α3 α̂3φ̂ Relative production of lactic acid related to the growth of LAB

α4 α̂4 Relative number of lactic acid molecules produced by LAB

δ1 δ̂1K4/φ̂ Relative number of interactions between lactic acid and Listeria

δ2 δ̂2K4/φ̂ Relative number of interactions between bacteriocin and Listeria

1/η1 φK4/η̂1K1 Relative number of lactic acid molecules binded to Listeria to disable it

1/η2 φK4ω̂/η̂2 Relative number of bacteriocin molecules binded to Listeria to disable it

μ2 μ̂2/φ̂ Relative deactivation of bacteriocin

μ3 μ̂3/φ̂ Relative deactivation of lactic acid

σ σ̂ Cost for bacteriocin production

We apply a suitable transformation of variables of the model (1) to deal with
dimensionless system of equations. The non-dimensional variables and parameters are
defined in Tables1 and 2. Hence, dimensionless dynamics of the interaction between
bacteriocin-producing lactic acid bacteria and Listeria is described by the following
system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
=

(
1 − σ

1 + B

)
(1 − S)S − μ1S

dB

dt
=

(
1 − γ S

1 + γ S

) (
α1

dS

dt
+ α2S

)
− μ2B − δ2BC

dA

dt
= α3

dS

dt
+ α4S − μ3A − δ1AC

dC

dt
= (1 − C)C − μ4C − η1δ1AC − η2δ2BC.

(2)
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Proposition 1 (Positively invariant domain) The set:

Ω =
{
(S, B, A,C) ∈ R

4 / 0 ≤ S ≤ 1, 0 ≤ B ≤ Bth, 0 ≤ A ≤ Ath, 0 ≤ C ≤ 1
}

,

such that: 0 < σ < 1, α2 > α1μ1 and α4 > α3μ1, where

Bth = α1 + α2

μ2
and Ath = α3 + α4

μ3

represents the region of biological interest, where all variables are non-negative. This
domain is positively invariant under the induced flow by the system (2).

In fact by analyzing the vector field, all points in Ω remain within this region or in
the boundary (for details see Delboni (2015)).

The hypotheses α2 > α1μ1 and α4 > α3μ1 are necessary to the domain Ω be
positively invariant. Then, we are considering that these conditions are being always
satisfied hereafter, except when explicitly cited.

3 Analysis of the Model

The equations in the steady state are obtained letting the time derivatives in the system
(2) equal to zero. We obtain the equilibrium points denoted by (S̄, B̄, Ā, C̄), but it is
necessary to determine the conditions under which these equilibria are biologically
feasible (i.e., non-negative values).

In this section, we will present the conditions for the existence and stability of
trivial, and boundary equilibria, and the existence of internal equilibrium points, which
depend on myriad of conditions.

The local stability of the equilibrium points is determined by the eigenvalues of the
characteristic equation Ψ (λ) = det(J− λI) = 0, where J is Jacobian evaluated at the
equilibrium point under analysis.

3.1 Trivial Equilibrium

It corresponds to the equilibrium without microorganisms and metabolites, E0 =
(0, 0, 0, 0). It always exists and, if σ1 = 1 − μ1 < 0 and σ4 = 1 − μ4 < 0, is
the only equilibrium biologically feasible, i.e., with non-negative coordinates. The
interpretation of the condition σ4 < 0 is obvious, since the threshold is the difference
between intrinsic growth rate and mortality for Listeria. If the net reproduction rate
σ4 is negative, Listeria is extinguished. Similarly, it is concluded that for σ1 < 0, the
LAB cannot be established in the environment.

The trivial equilibrium represents the extinction of both bacteria, and obviously,
the absence of the antimicrobial compounds (lactic acid and bacteriocin) that depend
on lactic acid bacteria to produce them.

Theorem 1 (Local stability ofE0) If σ4 < 0 and σ > σ1,E0 is locally asymptotically
stable in Ω . If σ < σ1 and/or σ4 > 0, the point E0 is unstable in Ω .
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1644 R. R. Delboni, H. M. Yang

Proof Analyzing the eigenvalues λ1 = σ1 − σ , λ2 = −μ2, λ3 = −μ3 and λ4 = σ4,
we conclude this theorem. ��

As expected, if the growth conditions for these bacteria are inadequate, the point
E0 is locally asymptotically stable, i.e., Listeria and LAB become extinct.

3.2 Boundary Equilibria

3.2.1 Only Listeria

This corresponds to the equilibrium Ec = (0, 0, 0, σ4), which is biologically feasible
if σ4 > 0. In order to the population of Listeria to prevail, there must be good growth
condition for them (σ4 > 0), and inadequate condition for lactic bacteria (σ > σ1), as
we shall see in the following theorem.

Theorem 2 (Local stability of Ec) If σ4 > 0 and σ > σ1, the point Ec = (0, 0, 0, σ4)
is locally asymptotically stable in Ω . If σ < σ1, it is unstable.

Proof We concluded by analyzing the eigenvalues λ1 = σ1 −σ , λ2 = −(μ2 + δ2σ4),
λ3 = −(μ3 + δ1σ4) and λ4 = −σ4. ��

3.2.2 Only Lactic Acid Bacterium

This corresponds to equilibrium Es = (Ss, Bs, As, 0). Assuming that σ1 > 0, the
non-null coordinates are given by

Ss = σ1 − σ + σ1Bs

1 − σ + Bs
, As = α4(σ1 − σ + σ1Bs)

μ3(1 − σ + Bs)
(3)

and Bs is the positive solution of

h1(B) = c21B
2 + c11B + c01 = 0, (4)

where
⎧⎨
⎩
c21 = −μ2(1 + σ1γ )

c11 = −μ2[(1 − σ) + γ (σ1 − σ)] + α2σ1
c01 = α2(σ1 − σ).

(5)

In order to discuss thresholds and critical parameters, we divide the discussion in
two cases: σ < σ1 (low cost for bacteriocin production) and σ > σ1 (high cost for
bacteriocin production).

Remark 1 After analyzing h1(B), it is concluded that:

(i) if σ < σ1, there is an equilibrium point Es = (Ss, B22, As, 0), where B22 is the
only positive solution of h1(B) = 0;
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(ii) for σ ∈ (σ1, 1), if α2 > α+
2 (σ ), where α+

2 is the greater solution that annuls the
discriminant �(α2) = c211 − 4c21c01, then h1(B) has two positive roots, with
B12 < B22, and there are two equilibria Es, denoted by E+

s = (S+
s , B22, A+

s , 0)
and E−

s = (S−
s , B12, A−

s , 0), where

α+
2 = 2μ2[(1 + σ1γ )(σ − σ1) + σ(1 − σ1)] +

√
�̃

2σ 2
1

, (6)

and �̃ = 16σ(1 − σ1)(1 + σ1γ )(σ − σ1)μ
2
2 > 0.

(iii) if σ > σ1, but α2 < α+
2 , there is not positive equilibrium Es.

For successful use of LAB in food biopreservation, we must assess the conditions
that enable the elimination of foodborne pathogens, such as Listeria. Mathematically
speaking, we need to determine the conditions for the stability of the equilibrium
without Listeria (Es). Such conditions are provided in Theorem 3 (for σ < σ1) and
Theorem 4 (for σ > σ1). However, it is important to highlight that, in these theorems,
weguaranteed only the local stability of the equilibriumpointEs. If there are conditions
for the existence ofmultiple internal equilibria (see Sect. 3.3), the extinction of Listeria
depends also on the initial contamination, since some internal equilibrium E∗ can be
locally asymptotically stable.

Detailed analysis of cases (i) and (ii) are presented.
In the next theorem, we consider case (i), that is, low cost for the bacteriocin

production (0 < σ < σ1).

Theorem 3 (Local stability of Es for σ < σ1) Supposing that σ < σ1 and σ4 <

0, the unique equilibrium point without Listeria, Es = (Ss, Bs, As, 0), is locally
asymptotically stable in Ω . If σ4 > 0, and one of the following additional conditions
to the parameters α2 and/or α4 is satisfied:

(i) α2 ≥ max {α1μ1, α24}, or
(ii) α1μ1 < α24, α1μ1 < α2 < α24 and α4 > max {α3μ1, α41}, or
(iii) α2 > α1μ1 and α4 → +∞,

then Es is locally asymptotically stable in Ω . However, if α1μ1 < α24, α1μ1 < α2 <

α24, α3μ1 < α41 and α3μ1 < α4 < α41, then Es is unstable, where:

α24 = σ4μ2 {σ4(1 + σ1γ ) + η2δ2[(1 − σ) − γ (σ − σ1)]}
η2δ2[σ4σ1 + η2δ2(σ1 − σ)] , (7)

α41 = μ3η2δ2(B11 − B22)(1 − σ + B22)

η1δ1(σ1 − σ + σ1B22)
and B11 = σ4

η2δ2
. (8)

Proof If α2 < α24, it is possible to show that B11 > B22 and, then, α41 > 0 (for
details and demonstration see Delboni (2015)).

Evaluating the Jacobian J in Es = (Ss, Bs, As, 0), we obtain
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1646 R. R. Delboni, H. M. Yang

Js = J(Ss, Bs, As, 0) =

⎡
⎢⎢⎢⎢⎣

−
(
1 − σ

1 + Bs

)
Ss

σ(1 − Ss)Ss
(1 + Bs)2

0 0

J21 J22 0 −δ2Bs

J31 J32 −μ3 −δ1As

0 0 0 J44

⎤
⎥⎥⎥⎥⎦ ,

where:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J21 = −γα2Ss
(1 + γ Ss)2

+
(

1

1 + γ Ss

)[
α2 − α1Ss

(
1 − σ

1 + Bs

)]

J22 =
(

1

1 + γ Ss

) [
σ

(1 + Bs)2
(1 − Ss)

]
α1Ss − μ2

J31 = −α3Ss

(
1 − σ

1 + Bs

)
+ α4

J32 = α3σ

(1 + Bs)2
(1 − Ss)Ss

J44 = σ4 − η1δ1As − η2δ2Bs .

The eigenvalues are determined by the characteristic equation

Ψ (λ) = (−μ3 − λ) × Ψ 1(λ) × Ψ 2(λ) = 0,

where

Ψ 1(λ) = (σ4 − η1δ1As − η2δ2Bs) − λ and Ψ 2(λ) = λ2 + a1λ + a0,

with a1 and a0 being given by

a1 =
(
1 − σ + Bs

1 + Bs

)
Ss + α1Ss(1 − Ss)[(1 − σ)(1 + 2Bs) + B2

s ]
Bs(1 + γ Ss)(1 + Bs)2

+ Ss(α2 − α1μ1)

Bs(1 + γ Ss)
,

and

a0 = μ2[(σ1 − σ) + Bs Ss]
1 + Bs

+ α2γ S2s (σ1 − Ss)

(1 + Bs)(1 + γ Ss)2
.

One eigenvalue is λ1 = −μ3 < 0. The coefficient a1, considering that σ < 1,
0 < Ss < 1 and α2 > α1μ1, is positive. The coefficient a0 is positive, considering
Bs > 0, Ss < σ1 and σ < σ1. Thus, using the Routh–Hurwitz criteria (Murray
2001), the eigenvalues λ3 and λ4 are negative or have negative real part (if complex).
If σ4 ≤ 0, then λ2 < 0. If σ4 > 0, substituting As in Eq. (3) in λ2, we obtain:

λ2 = σ4 − η1δ1As − η2δ2Bs = η1δ1(σ1 − σ + σ1Bs)(α41 − α4)

μ3(1 − σ + Bs)
.

For σ < σ1, and knowing that under above conditions the only positive solution of
h1(B) = 0 is Bs = B22, we prove this theorem. ��
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Theorem 3 deals with low cost for bacteriocin production by LAB and that LAB
are in an adequate environment, with favorable conditions for growth and bacte-
riocin production, as pH and temperature. Listeria cannot survive if σ4 < 0, and
the unique locally asymptotically stable equilibrium is Es = (Ss, Bs, As, 0). When
σ4 > 0, there are good conditions for the proliferation of Listeria. However, as we
have proved, if the bacteriocin production is high enough (α2 ≥ max {α1μ1, α24},
with α24 given by expression (7)), the equilibrium Es is locally asymptotically stable.
With low bacteriocin production (α1μ1 < α2 < α24), but high lactic acid produc-
tion (α4 > max {α3μ1, α41}, with α41 given by expression (8)), it is also possible to
guarantee the local stability of the equilibrium without Listeria.

Let us consider case (ii). With high cost for bacteriocin production (σ > σ1),
as we presented in Remark 1, if α2 > max

{
α+
2 , α1μ1

}
(with α+

2 given by (6))
there are two equilibrium points without Listeria. One of them with low bacteri-
ocin concentration (E−

s = (S−
s , B12, A−

s , 0)) and another with higher concentration
(E+

s = (S+
s , B22, A+

s , 0)). This means that a satisfactory production of bacteriocin
is required, since it also interferes with the growth of LAB. In Theorem 4, threshold
conditions are presented for the parameters α2 and α4, just as in Theorem 3, and also
conditions for the parameter δ2, which indicates the interaction between bacteriocin
and Listeria.Wewill prove that, if the bacteriocin activity is high, i.e., if the interaction
rate between bacteriocin and Listeria is high (δ2 > δ2d ), it does not matter the pro-
ductivity of lactic acid and bacteriocin, provided, of course, α2 > max

{
α+
2 , α1μ1

}
.

The threshold δ2d is given by

δ2d = σ4σ1(1 + σ1γ )

η2(σ − σ1)(1 + σ1γ ) + η2
√

�3
, �3 = σ(1 − σ1)(σ − σ1)(1 + σ1γ ), (9)

which is obtained by comparing thresholds for α2, which come from α+
2 and α24

(details and demonstrations can be seen in Delboni (2015)). With low bacteriocin
activity (δ2 < δ2d ), high production of lactic acid (α4 > max {α3μ1, α41}), or high
production of bacteriocin (α2 > α24), is required as an additional condition to ensure
the local stability of E+

s .

Theorem 4 (Local stability of Es for σ > σ1) Suppose that σ > σ1 and α2 >

max
{
α+
2 , α1μ1

}
, with α+

2 given by (6). Then, there are two equilibrium points without
Listeria:E+

s = (S+
s , B22, A+

s , 0) andE−
s = (S−

s , B12, A−
s , 0). The pointE−

s is always
unstable. If σ4 < 0, then E+

s is locally asymptotically stable in Ω . For σ4 > 0,
considering the threshold for δ2 in (9), and if one of the following additional conditions
to the parameters δ2, α2 and/or α4 is satisfied:

(i) δ2 < δ2d , max
{
α1μ1, α

+
2

}
< α2 < α24 and α4 > max {α3μ1, α41}, or

(ii) δ2 < δ2d , α2 > α24 and α4 > α3μ1, or
(iii) δ2 > δ2d , α2 > max

{
α1μ1, α

+
2

}
and α4 > α3μ1,

then E+
s is locally asymptotically stable in Ω . But if

δ2 < δ2d , max
{
α1μ1, α

+
2

}
< α2 < α24 and α3μ1 < α4 < α41,

then E+
s is unstable.
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Proof The conditions for the existence of the points E−
s and E+

s have already been
discussed in Remark 1. The Jacobian matrix was determined in Theorem 3. From the
equation Ψ 2(λ) = 0, by analyzing the coefficient a1, it follows that, if 0 < σ < 1,
Ss < 1 and α2 > α1μ1, then a1 > 0 for both B12 and B22. In order to apply Routh–
Hurwitz criteria, the signal of a0 must be evaluated. Calculating the coefficient a0(B)

and replacing the equilibrium condition C = 0 and S = Ss , we obtain an expression
in terms of B given by

a0(B) = σ1(B − B13) × q(B)

(1 + B)[(1 + B)(1 + γ σ1) − σ(1 + γ )]2 , (10)

where

q(B) = −α2σ(1 − σ1) + μ2[(1 + B)(1 + γ σ1) − σ(1 + γ )]2. (11)

Supposing α2 > max
{
α1μ1, α

+
2

}
, there are two equilibrium points containing only

LAB: E+
s = (S+

s , B22, A+
s , 0) and E−

s = (S−
s , B12, A−

s , 0), where B12 and B22 are
the solutions of h1(B) = 0 such that 0 < B13 < B12 < B22. Thus, to study the signal
of a0 given by (10), it is enough to study the signal of q(B) given by (11), because
other terms are positive. Calculating q(B22) and considering

�(α2) = α2
2σ

2
1 + μ2

2[(1 − σ) − γ (σ − σ1)]2
−2α2μ2[(σ − σ1)(1 + γ σ1) + σ(1 − σ1)],

we have:

q(B22) = �(α2) + (α2σ1 + μ2k1)
√

�(α2)

2μ2
,

where k1 = [(1 − σ) − γ (σ − σ1)]. Supposing σ > σ1 and α2 > α+
2 , it fol-

lows that �(α2) > 0. If k1 > 0, we can see that q(B22) > 0 and therefore
a0(B22) > 0. When k1 < 0, we observe that if α2 > −μ2k1/σ1, then q(B22) > 0.
Calculating �(−μ2k1/σ1), we have α+

2 > −μ2k1/σ1. Considering that the func-
tion �(α2) is represented by a second-degree polynomial with roots α−

2 and α+
2 , and

�(−μ2k1/σ1) < 0, it follows that α−
2 <

−μ2k1
σ1

< α+
2 . With the hypothesis α2 > α+

2 ,

we conclude that q(B22) > 0. Therefore a0(B22) > 0 for σ > σ1 and α2 > α+
2 .

Calculating q(B12), we have

q(B12) = �(α2) − (α2σ1 + μ2k1)
√

�(α2)

2μ2
< 0.

It follows that a0(B12) < 0 and E−
s = (S−

s , B12, A−
s , 0) is unstable.

For the equilibrium E+
s = (S+

s , B22, A+
s , 0), we conclude that a1(B22) > 0 and

a0(B22) > 0, and therefore, λ3 and λ4 are negative, or have negative real part if
complex. If σ4 ≤ 0, then λ2 = σ4 − η1δ1As − η2δ2B22 < 0, when we replace Eq. (3)
in λ2, as done in Theorem 3, considering σ > σ1 and knowing that B22 > B13, As > 0
and B22 > 0. ��
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3.3 Internal Equilibria

The coordinates of the equilibrium E∗ = (S∗, B∗, A∗,C∗), where LAB and Listeria
coexist (all positive variables), are:

S∗ = σ1 − σ + σ1B∗
1 − σ + B∗

, C∗ = c21B2∗ + c11B∗ + c01
c22B2∗ + c12B∗

, A∗ = α4S∗
μ3 + δ1C∗

,

where c21, c11 and c01 are given by (4), and

{
c22 = δ2(1 + σ1γ )

c12 = δ2[(1 − σ) + γ (σ1 − σ)]. (12)

The coordinate B∗ is the solution of the equation

h(B) = f (B) − g(B) = 0, with f (B) = [ f1(B) − h1(B)] × f2(B). (13)

The functions f1(B), f2(B) and g(B) are

⎧⎨
⎩

f1(B) = η2δ2(B11 − B) × (c22B + c12) × B = η2δ2(B11 − B) × h5(B) × B
f2(B) = (B − B41) × (d2B2 + d1B + d0) = (B − B41) × h2(B)

g(B) = η1δ1α4 × σ1(B − B13) × [h5(B)]2 × B2,

h1(B) is given by Eq. (4), with the coefficients c′
i j s being defined in (5), h5(B) =

c22B + c12, with coefficients given by (12), and

h2(B) = d2B
2 + d1B + d0, (14)

with coefficients given by

⎧⎨
⎩
d2 = (μ3δ2 − μ2δ1)(1 + σ1γ )

d1 = (μ3δ2 − μ2δ1)[(1 − σ) + γ (σ1 − σ)] + δ1α2σ1
d0 = δ1α2(σ1 − σ).

The roots of Eq. (13) are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bi2, i = 1, 2, are solutions of h1(Bi2) = 0,
Bj1, j = 5, 6, are solutions of h2(Bj1) = 0,

f1(B) = 0 ⇒ B = B11 = σ4

η2δ2
, and B = B21 = −c12

c22
,

f2(B) = 0 ⇒ B = B41 = −(1 − σ), and h2(B) = 0,

g(B)=0 ⇒ B=B13= (σ−σ1)

σ1
, B=B21= − c12

c22
(multiplicity 2), and B=0.

(15)

Remark 2 We consider two cases:
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1650 R. R. Delboni, H. M. Yang

(i) σ ∈ (0, σ1). Denoting B22 as the positive root of h1(B) = 0, if 0 < B < B22,
then the coordinates of the internal equilibrium satisfy S∗ > 0, C∗ > 0 and
A∗ > 0. With respect to the equation h2(B) = 0, by analyzing the signs of the
coefficients d2, d1 and d0, we verified that: (a) if δ2/μ2 < δ1/μ3, then B51 < 0
and B61 > 0, and (b) if δ2/μ2 > δ1/μ3, then B51 < 0 and B61 < 0, because
�2 = d21 − 4d2d0 > 0.

(ii) σ ∈ (σ1, 1). In order to obtain S∗ > 0, C∗ > 0 and A∗ > 0, it is necessary
α2 > α+

2 and B∗ > 0, such that B21 < B13 < B12 < B∗ < B22. With respect to
the equation h2(B) = 0: (a) if δ2/μ2 > δ1/μ3, then B51 < 0 and B61 > 0, and
(b) if δ2/μ2 < δ1/μ3, we conclude that h2(B) = 0 has two positive solutions
with B51 < B61.

Corollary 1 follows from Remark 2:

Corollary 1 (Absence of feasible solutions) Ifσ1 < 0 andσ4 < 0, there is not positive
internal equilibrium for the system (2). There is not biologically feasible solution if
σ1 > 0, σ4 > 0, but α2 < α+

2 , α
+
2 given by (6), and σ1 < σ < 1.

If the bacteriocin production rate is small (α2 < α+
2 ), Corollary 1 states that there

is not the equilibrium E∗. This fact arises due to the variation of the bacteriocin
concentration at time, dB/dt , which becomes negative in these conditions. In fact,
using S > 0 in equilibrium from dS/dt = 0 and replacing it in the dynamic equation
for B, we get:

dB

dt
= h1(B)

(1 + γ S)(1 − σ + B)
− δ2BC < 0, for α2 < α+

2 .

The discriminant �(α2) of h1(B) = 0 has positive roots α−
2 < α+

2 . For 0 <

α2 < α−
2 , the discriminant is positive, but h1(B) has only negative solutions. For

α−
2 < α2 < α+

2 , we have �(α2) < 0, and h1(B) = 0 does not have real solutions.
Anyway, we can check that if B > 0, then h1(B) < 0.

After the study of the functions f4(B) = f1(B) − h1(B) and f (B) for σ < σ1
(Delboni 2015), we summarize results related to two cases in next two sections.

3.3.1 σ < σ1. Viable Solutions Are Such that 0 < B < B22.

The relative position of the roots of h(B), given by Eq. (13) for σ < σ1, is such that
B41 < B21 < B12 < B13 < 0 < B22, and the position of B61 depends on the signal
of (μ3δ2 − μ2δ1), as discussed in Remark 2. In Table3, we present the sign of the
function h(B) in each intervals constructed with these roots.

Using intermediate value theorem, and taking into account the signals in Table3,
we conclude that there is at least one root to the equation h(B) = 0 in following
intervals: (i) if (μ3δ2 − μ2δ1) < 0, then in (B41, B21), (B21, B12), (B12, B13) and
(B61,+∞), and (ii) if (μ3δ2 −μ2δ1) > 0, then in (−∞, B41), (B41, B21), (B21, B12)

and (B61, 0). Therefore, when σ < σ1 and regardless of the signal of (μ3δ2 − μ2δ1),
there are at most two viable solutions.

Proposition 2 with the hypothesis B22 < B11 (α2 < α24) is stated.
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Table 3 Signal for the functionh(B) consideringσ < σ1, (i) (μ3δ2−μ2δ1) < 0 and (ii) (μ3δ2−μ2δ1) > 0

(i) h(−∞) h(B41) h(B21) h(B12) h(B13) h(0) h(B22) h(B61) h(+∞)

Signal + + − + − − +/− − +
(ii) h(−∞) h(B41) h(B21) h(B12) h(B13) h(B61) h(0) h(B22) h(+∞)

Signal − + − + + + − +/− −

Proposition 2 (One solution of h(B) = 0 in (0, B22)) Suppose that α1μ1 < α24,
α3μ1 < α41, α1μ1 < α2 < α24 and α3μ1 < α4 < α41, where α24 is given by Eq. (7)
and α41 is defined in (8). Then, h(B) = 0 has only one solution in (0, B22) when
σ < σ1.

Proof We know that if α2 < α24, then B11 > B22 (for details and demonstration see
Delboni (2015)). Besides that, the function (13) evaluated in B22 gives us

h(B22) > 0 ⇔ α4 <
μ3η2δ2(B11 − B22)(1 − σ + B22)

η1δ1(σ1 − σ + σ1B22)
,

noticing that B22 depends only on the parameters μ1, μ2, γ, σ and α2.
From Table3, case (i), we verified that if α2 < α24 and α4 < α41, then h(B22) > 0

and one signal variation occurs in the interval (0, B22), other in (B22, B61), and four
additional signal variations. Thus, there is only one viable solution when σ < σ1 and
(μ3δ2 − μ2δ1) < 0. Similarly, it can be seen in the case (ii) that there is only one
viable solution when (μ3δ2 − μ2δ1) > 0. ��

The case σ = 0 and γ = 0 represents the existence of optimal conditions of
pH, temperature, etc., for a strain of LAB, which is very well suited to the food. A
modeling with these hypotheses has been considered in a previous study (Delboni
and Yang 2008). Considering in the model (2), we have the equilibrium points E0
and Ec (both always unstable), Es (conditions for the stability in Theorem 3), and
the internal equilibrium which exists if the roots of h(B) is positive and B < B22,
where B22 = α2σ1/μ2. The conditions for the existence of only one viable internal
equilibrium are given in Proposition 2. If these assumptions are not satisfied, zero or
two biological viable internal equilibria are possible, according to the conditions for
δ1 and δ2 presented before.

When the assumptions of Proposition 2 are not satisfied (α2 > α24 and/or α4 >

α41), in order to determine the number of viable solutions of h(B) = 0, we must
study how many times the curves of functions f (B) and g(B) intersect in the interval
(0, B22). Therefore, diagrams are drawn in the parameters space α2 × α4, which are
shown in Fig. 1.

For each α2 fixed, (α4, B) = (α4t (α2), B4t (α2)) is the tangent point of the curves
f (B) and g(B), i.e., it is the solution of the non-linear system:

{
f (B) = g(B)

d f (B)

dB
= dg(B)

dB
.

(16)

123

Author's personal copy



1652 R. R. Delboni, H. M. Yang

0
0

α2

α 4

1 solution

α4t (α2)
α41 (α2)

α24 α2t

0 solution0   solution

(a) δ2 < δ+
2 and δ1 < δ th

1

0
0

α2

α 4

α4t ( α2)

α41 ( α2)

2 solutions

1 solution

0 solution

α24 α2t

(α2
c, δ1

c) ⇒ α41 = α4t

0 solution

(b) δ2 < δ+
2 and δ1 > δ th

1

0
0

α2

α 4

0 solution

α41 ( α2)

α24 α2t

(α2
c, δ1

c) ⇒ α41 = α4t

2 solutions

0 solution

1 solution

α4t ( α2)

(c) δ2 > δ+
2 and δ1 < δ th

1

0

α2

α 4
α4t ( α2 )

α41 ( α2 )

α24 α2t

1 solution

0 solution
2

(d) δ2 > δ+
2 and δ1 > δ th

1

Fig. 1 Diagrams showing in the regions of the graph α2 × α4 the quantity of solutions of h(B) = 0 in the
interval (0, B22), when σ < σ1. For α2 = αc2 and δ1 = δc1, the curves α41 and α4t are tangent. The value
αc2 divides the region between the curves α41 and α4t with 0 or 2 viable solutions (b, c)

From the behavior of the functions f (B) and g(B), we notice that it is not possible
that both curves tangency when B > 0 and f (B22) > g(B22) (which must imply
α4 < α41), simultaneously. That is, it is not possible that the Eq. (16) has solution
such that α4t < α41.

If α2 < α24 and α4 = α41, then f (B22) = g(B22). We analyze the equation
f ′(B22) − g′(B22) = 0 in those conditions. Therefore, we determine conditions for
which the curve α4t (α2) is tangent to the curve α41(α2), that is, under which circum-
stances α41 = α4t .

Substituting α4 by α41, and calculating the derivative of f (B) − g(B) at B22, we
have

f ′(B22) − g′(B22) = (σ1 − σ + σ1B22)
−1 × h5(B22)B22 × Γ2(δ1),

with h5(B22) = c22B22 + c12 and Γ2(δ1) = Γn − δ1Γd . The equation f ′(B22) −
g′(B22) = 0 is satisfied if Γ2(δ1) = 0, that is, if δ1 = δc1 = Γn/Γd , where:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γn = μ3h5(B22)(σ4 − η2δ2B22)(σ1 − σ + σ1B22)B22

−μ3h5(B22)(1 − σ + B22)[σ4σ1 + η2δ2(σ1 − σ)]B22

−μ3(1 − σ + B22)(σ1 − σ + σ1B22)h′
1(B22)

Γd = −(σ4 − η2δ2B22)(σ1 − σ + σ1B22)(1 − σ + B22)h′
1(B22).

Notice that Γd > 0 due to h′
1(B22) = 2c21B22 + c11 < 0 and α2 < α24, resulting

that the signal of δc1 depends only on the signal ofΓn .Whenα2 → 0,we have B22 → 0,
and

lim
α2→0

δc1 = lim
α2→0

Γn

Γd
= μ3

σ4
= δth1 .

If α2 → α24, we have B22 → B11, and

lim
α2→α24

Γn = μ3(1 − σ + B11)

η22δ
2
2

× Γ̃ (δ2) and lim
α2→α24

Γd = 0.

By analyzing the function Γ̃ (δ2) = m32δ
3
2 + m22δ

2
2 + m12δ2 + m02, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m32 = −η22σ4(σ1 − σ)k1
m22 = η2k1[μ2η2(σ1 − σ) − σ 2

4 σ1] − σ 2
4 η2(σ1 − σ)(1 + σ1γ )

m12 = σ4(1 + σ1γ )[2μ2η2(σ1 − σ) − σ 2
4 σ1]

m02 = σ 2
4 σ1μ2(1 + σ1γ ),

and k1 = [(1−σ)−γ (σ −σ1)], it is not possible to impose conditions so thatm22 > 0
and m12 < 0, simultaneously. Therefore, the positive solution δ+

2 of Γ̃ (δ2) = 0 is
unique. We conclude that (a) if 0 < δ2 < δ+

2 , then lim
α2→α24

δc1 = +∞, and (b) if

δ2 > δ+
2 , then lim

α2→α24
δc1 = −∞.

Summarizing, considering the interval for α2 given by (0, α24), we have that:

(i) Suppose that δ2 < δ+
2 . If δ1 < δth1 , the curves α41(α2) and α4t (α2) are not tangent.

If δ1 > δth1 , the curves are tangent at (αc
2, δ

c
1(α

c
2)) and, moreover, δc1 → +∞when

α2 → α24.
(ii) Suppose that δ2 > δ+

2 . If δ1 < δth1 the curves α41(α2) and α4t (α2) are tangent
at (αc

2, δ
c
1(α

c
2)) and, moreover, δc1 → −∞ for when α2 → α24. Therefore, αc

2 <

α2L < α24, where α2L is such that δc1 = 0, and ∀ δ1 > 0 and α2L < α2 < α24,
the curves are not tangent. For δ1 > δth1 , the curves are not tangent.

Using the analysis given so far for the case σ < σ1, it is possible to determine regions,
in the parameters space α2 ×α4, where h(B) = 0 has 0, 1 or 2 solutions in the interval
(0, B22) (Fig. 1). Denoting by Ba , Bb, Bc, Bd , Be and B f the solutions of f (B) = 0,
we have that: (a) if (μ3δ2 − μ2δ1) < 0, then the negative solutions are Ba = B41,
Bb ∈ (B21, 0), Bc = B51, and the positives are Bd = B61 > B22 and Be = B22,
and (b) if (μ3δ2 − μ2δ1) > 0, the negative solutions are Ba = B41, Bb ∈ (B21, B12),
Bc = B51, Bd = B61, and the positive is Be = B22. Thus:
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(i) Assuming δ2 > δ+
2 , then B f ∈ (0, B22) and consequently f (B) and g(B) inter-

sect twice in (0, B22) for α4 < α4t , being tangent at α4 = α4t , and do not intersect
for α4 > α4t .

(ii) Assuming δ2 < δ+
2 , then B f ∈ (B22,+∞). In this case, as f (0) < 0, there is not

solution in (0, B22), and we have f (B) < 0, while g(B) > 0 in this interval.

For α24 < α2 < α2t , the above considerations follow except that Be > B22 if
δ2 < δ+

2 , and Be < B22 if δ2 > δ+
2 . If α2 > α2t , then f (B) < 0, while g(B) > 0 in

(0, B22).
For σ < σ1, from the dynamic behavior of the system (2), we will analyze and

interpret biologically the four different situations represented in the graphs of Fig. 1.
Listeria interacting weakly with lactic acid and bacteriocin (δ1 < δth1 and δ2 < δ+

2 )
Notice that the threshold α41 as a function of α2 is inversely proportional to δ1,

and α24(δ2) is a decreasing function with respect to δ2. Therefore, smaller the values
of δ1 and δ2, greater the area under the curve α41(α2), where Listeria coexists with
LAB. Then, α4 > α41 represents a very high lactic acid and/or bacteriocin production.
Weak interaction means lower reduction of lactic acid and bacteriocin by Listeria due
to the terms −δ1AC and −δ2BC , respectively. Consequently, there will be too high
concentration of these metabolites available to eliminate Listeria, which explains the
extinction if α4 > α41.

Hereafter, we consider (αc
2, δ

c
1(α

c
2)) fixed, such that at this point α41 = α4t .

Listeria interacting weakly with bacteriocin, but strongly with lactic acid (δ2 < δ+
2

and δ1 > δth1 )

(a) If α2 < αc
2, there is a region between the curves α41(α2) and α4t (α2) such that

there are two internal equilibria. In this case, we have low bacteriocin production
rate proportional to the LAB.As the concentration of lactic acid also decreases due
to the term−δ1AC , it is necessary sufficiently large acid production to completely
eliminate Listeria, i.e., α4 > α4t .

(b) If α2 > αc
2, due to increased production rate of bacteriocin, it is possible to

eliminate C even with lower production rate of lactic acid α4. This is because
high production rate of bacteriocin and low interaction rate between Listeria
and bacteriocin represent high bacteriocin concentration available to interact and
eliminate Listeria.

Listeria interacting strongly with bacteriocin, but weakly with lactic acid (δ2 > δ+
2

and δ1 < δth1 )

(a) If α2 < αc
2, as δ1 is small, it follows that α4 > α41 represents a very high rate of

acid production, which is able to extinguish the population of Listeria.
(b) If α2 > αc

2, the effect of lactic acid on the bacteria C is negligible, because of low
values of α4 and δ1. Although α2 > αc

2 represents higher bacteriocin production
rate, the availability in the environment is decreased because of the term −δ2BC .
Therefore, in the region between the curvesα41(α2) andα4t (α2) still coexistC and
S. The complete elimination is possible by increasing the bacteriocin production
rate above α2 > α2t , or lactic acid production rate above α4 > α4t , increasing
the availability of antimicrobial metabolites.

Listeria interacting strongly with bacteriocin and lactic acid (δ1 > δth1 and δ2 > δ+
2 )
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As the interaction rates δ1 and δ2 are high, although the concentrationofC decreases,
also decreases the concentration of lactic acid and bacteriocin available due to terms
−δ1AC and −δ2BC . Thus, we must increase the lactic acid production rate above
α4 > α4t , or increase the bacteriocin production rate above α2 > α2t , in order to
completely eliminate Listeria.

From Proposition 2 and discussions done so far about roots of h(B) = 0, we
summarize all the information in Remark 3.

Remark 3 When σ < σ1, the sixth-degree polynomial equation h(B) = 0 has 0, 1 or
2 solutions in (0, B22), according to conditions for the parameters δ1, δ2, α2 and α4
already established.

3.3.2 σ > σ1. Viable Solutions Are Such that B ∈ (B12, B22), for α2 > α+
2 .

For σ > σ1, it is possible to determine conditions for the thresholds related to bac-
teriocin in order to establish the coexistence equilibrium points. Assuming σ4 > 0
and σ1 > 0, internal equilibria can be determined taking into account bacteriocin
production rate α2 and the interaction rate with Listeria, given by δ2.

By comparing above thresholds for α2 (given by (6) and (7)), one threshold for δ2
is given by

δ2a = σ4 × 1

η2
× σ1

(σ − σ1)
. (17)

Details and demonstrations can be seen in Delboni (2015).
If, from the equation dS/dt = 0, we isolate B and replace it into the equation for

C , we get for δ2 > δ2a ,

dC

dt
= [η2(σ − σ1)(δ2a − δ2) − η2δ2(1 − σ)S]C

(σ1 − S)
− C2 − δ1AC < 0.

For the threshold δ2a , given by Eq. (17), σ4 is the net reproductive rate of Listeria,
1/η2 is the average number of bacteriocin molecules necessary for disable a cell C ,
σ1/(σ − σ1) = 1/B13 can be understood as the effective action of the bacteriocin,
because B13 is the threshold condition for the equilibrium point be biologically fea-
sible, then the number 1/η2B13 represents how many cells of Listeria are effectively
disabled by bacteriocin at equilibrium. Concluding, δ2a measures the proliferation risk
of C in the presence of bacteriocin.

Remark 4 Suppose that σ1 < σ < 1. The relative position of the roots of h1(B),
f1(B) and g(B) (given by (15)) is presented in Table4.

In Lemma 1, we present conditions that guarantee the absence of biologically
feasible internal equilibrium points.

Lemma 1 (Absence of viable solutions) Suppose that one of the following conditions
is satisfied:
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Table 4 Relative position of the roots of h1(B), f1(B) and g(B) (given by (15)), considering σ1 < σ < 1
in each interval for the parameters δ2 and α2

Hypothesis Interval for δ2 Interval for α2 Relative position for Bi j

(1) 0 < δ2 < δ2d α+
2 < α2 < α24 B13 < B12 < B22 < B11

(2) α2 > α24 B13 < B12 < B11 < B22

(3) δ2d < δ2 < δ2a α+
2 < α2 < α24 B13 < B11 < B12 < B22

(4) α2 > α24 B13 < B12 < B11 < B22

(5) δ2 > δ2a α2 > α+
2 B11 < B13 < B12 < B22

(i) δ2d < δ2 < δ2a and α+
2 < α2 < α24; or

(ii) δ2 > δ2a and α2 > α+
2 ,

with thresholds presented in Eqs. (6), (7), (9) and (17). Then, h(B) = 0 does not have
solutions in (B12, B22).

Proof In Table4 ,we can see that if one of the assumptions is satisfied, then B11 <

B12 < B22 and f2(B) > 0 in the interval (B12, B22). The function f1(B) has dominant
term −η2δ

2
2(1 + σ1γ )B3, then: limB→−∞ f1(B) = +∞, limB→+∞ f1(B) = −∞,

and the solutions of f1(B) = 0 are B21, 0 and B11, all smaller than B12. Therefore,
f1(B) < 0 in the interval (B12, B22). Consequently, the curves f1(B) and f2(B) do
not intersect in this interval and it follows that f4(B) = f1(B) − h1(B) < 0.

Consider the equation

f2(B) = (μ3δ1 − μ2δ2)(1 + σ1γ )(B − B41)(B − B51)(B − B61) = 0,

with solutions B41 < 0, B51 and B61. The dominant term is given by (μ3δ1−μ2δ2)(1+
σ1γ )B3, such that f2(0) = −α2δ1(1 − σ)(σ − σ1) < 0. We know that:

(i) If (μ3δ1 − μ2δ2) > 0, then limB→−∞ f2(B) = −∞ and limB→+∞ f2(B) =
+∞. In this case, we conclude that f2(B) > 0 for all B > B61, and consequently,
as B61 < B12, it applies for the interval (B12, B22).

(ii) Assuming (μ3δ1−μ2δ2) < 0, then limB→−∞ f2(B) = +∞ and limB→+∞ f2(B)

= −∞. We conclude that f2(B) > 0 for all B ∈ (B51, B61) ⊃ (B12, B22).

Considering that f4(B) < 0 and f2(B) > 0, we conclude that f (B) = f4(B) ×
f2(B) < 0 for all B ∈ (B12, B22). The function

g(B) = η1δ1α4 × (σ1 − σ + σ1B) × [h5(B)]2 × B2

is positive when σ > σ1 and B > B13. As B13 < B12, it follows that g(B) > 0, and
as f (B) < 0, the graphs of these functions do not intercept when B ∈ (B12, B22). ��

In Lemma 1, we established the conditions that control the growth of C , which
were δ2d < δ2 < δ2a and α+

2 < α2 < α24. As interactions between bacteriocin and
Listeria occur, both concentrations decrease. So δ2 is high enough to eliminate C , but
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α2 should also be high enough so that the production of B exceeds elimination due
to term −δ2BC . The threshold α24 is positive and increasing for δ2 ∈ (δ2d , δ2a) and
tends to infinity when δ2 → δ2a . The threshold α+

2 does not depend on δ2 and is an
increasing function for σ ∈ (σ1, 1).

Studying the signals of h(B12) and h(B22), we determine conditions for the exis-
tence of even number or odd number of internal equilibria in the interval (B12, B22).
This analysis is presented in the next proposition.

Proposition 3 (Signal of h(B12) and h(B22)) Using the thresholds for δ2 and α2
presented in Eqs. (6), (7), (9) and (17), plus Remark 4 and the thresholds for α4
defined as

α41=μ3η2δ2(B11−B22)(B22−B41)

η1δ1σ1(B22−B13)
and α42 = μ3η2δ2(B11−B12)(B12−B41)

η1δ1σ1(B12 − B13)
,

we conclude that h(B) = 0 has at least one biologically feasible solution, if one of
the following conditions is satisfied:

(i) δ2 < δ2a, α2 > max {α1μ1, α24}, α3μ1 < α42 with α3μ1 < α4 < α42; or
(ii) δ2 < δ2d , α1μ1 < α24 with max

{
α1μ1, α

+
2

}
< α2 < α24, α3μ1 < α42, and

max {α3μ1, α41} < α4 < α42.

However, if one of the following conditions is satisfied, the equation h(B) = 0 does
not have solution or has an even number of solutions in the interval (B12, B22):

(iii) δ2 < δ2d , α1μ1 < α24 with max
{
α1μ1, α

+
2

}
< α2 < α24, and: (a) α4 >

max {α3μ1, α42}, or (b) α3μ1 < α41 with α3μ1 < α4 < α41; or
(iv) δ2 < δ2a, α2 > max {α24, α1μ1} with α4 > max {α3μ1, α42}.

Proof The expression h(B12) is

h(B12) = σ1η1δ1 × (B12 − B13) × (α42 − α4) × [h5(B12)]2 × [B12]2,

with [h5(B12)]2 × [B12]2 > 0. Notice that if B11 < B12, then h(B12) < 0 because
α42 < 0. If B11 > B12 and α4 < α42, then h(B12) > 0, and if α4 > α42, then
h(B12) < 0.

Now the signal for h(B22),

h(B22) = σ1η1δ1 × (B22 − B13) × (α41 − α4) × [h5(B22)]2 × [B22]2,

is studied. If B11 < B22, then h(B22) < 0 for all positive α4. If B11 > B22 and
α4 < α41, then h(B22) > 0, and h(B22) < 0 if α4 > α41.

Under above assumptions and using Remark 4, we conclude that h(B12) and h(B22)

have opposite signs, ensuring at least one biologically feasible solution for h(B) = 0.
With the hypotheses (i i i) and (iv), it follows that h(B12) and h(B22) have the same

sign. We conclude that if there is biologically feasible solution for h(B) = 0, then
there will be an even number of solutions. ��
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Table 5 Signal of the function h(B), when σ > σ1 and (μ3δ2 − μ2δ1) > 0, for roots of h1(B), f1(B),
f2(B) and g(B) (given by (15)), and number of solutions of h(B) = 0 in (B12, B22), for different conditions
of the parameters δ2 (given by (9) and (17)) and α2 (given by (6) and (7)) and hypotheses for α4 (see
Proposition 3)

Hypothesis h(−∞) h(B41) h(0) h(B61) h(B12) h(B22) h(+∞) Solutions

Condition (i): δ2 < δ2a and α2 > max {α1μ1, α24}
(a) α3μ1 < α4 < α42 − + − + + − − 1 or 3

(b) α4 > α42 − + − + − − − 0 or 2

Condition (ii): δ2 < δ2d and α1μ1 < α24 with max
{
α1μ1, α

+
2

}
< α2 < α24

(a) α3μ1 < α4 < α41 − + − + + + − 0 or 2

(b) α41 < α4 < α42 − + − + + − − 1 or 3

(c) α4 > α42 − + − + − − − 0 or 2

Table 6 Signal of the function h(B), when σ > σ1 and (μ3δ2 − μ2δ1) < 0, for roots of h1(B), f1(B),
f2(B) and g(B) (given by (15)), and number of solutions of h(B) = 0 in (B12, B22), for different conditions
of the parameters δ2 (given by (9) and (17)) and α2 (given by (6) and (7)) and hypotheses for α4 (see
Proposition 3)

Hypothesis h(−∞) h(B41) h(0) h(B12) h(B22) h(B61) h(+∞) Solutions

Condition (i): δ2 < δ2a and α2 > max {α1μ1, α24}
(a) α3μ1 < α4 < α42 + + − + − − + 1 or 3

(b) α4 > α42 + + − − − − + 0, 2 or 4

Condition (ii): δ2 < δ2d and α1μ1 < α24 with max
{
α1μ1, α

+
2

}
< α2 < α24

(a) α3μ1 < α4 < α41 + + − + + − + 0 or 2

(b) α41 < α4 < α42 + + − + − − + 1 or 3

(c) α4 > α42 + + − − − − + 0, 2 or 4

Using the results of Proposition 3, we present in the following corollaries the
conditions that determine the number of solutions in the interval (B12, B22) for
(μ3δ2 − μ2δ1) > 0 and (μ3δ2 − μ2δ1) < 0, respectively.

Corollary 2 (Solutions in (B12, B22)when (μ3δ2−μ2δ1) > 0) Suppose that (μ3δ2−
μ2δ1) > 0. Using thresholds for δ2 andα2 fromRemark 4, plus the thresholds ofα4 and
the sign of h(B12) and h(B22) determined in Proposition 3, the number of biologically
feasible solutions (in the interval (B12, B22)) is presented in Table5.

Corollary 3 (Solutions in (B12, B22)when (μ3δ2−μ2δ1) < 0) Suppose that (μ3δ2−
μ2δ1) < 0. Using thresholds for δ2 and α2 from Remark 4, plus the thresholds of α4
and the sign of h(B12) and h(B22) determined in Proposition 3, the number of solutions
in (B12, B22) is presented in Table6.

FromCorollaries 2 and 3, andwith the analysis done so far about roots of h(B) = 0,
we summarize all the information in Remark 5.
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Remark 5 When σ1 < σ < 1, the sixth-degree equation h(B) = 0 can have a
maximumof three solutions in (B12, B22)when (μ3δ2−μ2δ1) > 0, and amaximumof
four viable solutions if (μ3δ2 −μ2δ1) < 0, according to conditions for the parameters
δ1, δ2, α2 and α4 already established.

4 Conclusions

Aiming to study quantitatively the biological control as a technique of food con-
servation, we developed a mathematical model to describe the interaction between
bacteriocin-producing lactic acid bacteria and Listeria in the food. The differential of
the proposed model is the inclusion of quorum sensing in the growth rate of lactic acid
bacteria and also in the bacteriocin production rate. The goal was to find the thresholds
which determine the existence of multiple equilibria and analyze their stability.

Explanation of the coexistence of competing species is amajor challenge in ecology
of communities (Riley 2011). The use of theoretical models is important to obtain
information about the study at the community level, helping to identify interface
regions between growth and no growth, for example. Thus, theoretical modeling can
provide general explanations for specific observed results.

Suppose σ < σ1. Thismeans that the cost to bacteriocin production is low, probably
due to fact that LAB are in an adequate environment, with favorable conditions for
growth and bacteriocin production, as pH and temperature. In this case, we emphasize
the importance of Proposition 2, where we found conditions for the existence of only
one internal equilibrium point E∗ with both bacteria coexisting. In Theorems 1, 2 and
3, hypotheses were presented, and when those conditions were satisfied, we proved
the local stability of the trivial equilibrium E0 and of the boundary equilibria Ec and
Es. It is of practical importance the conditions for the stability of the point Es, where
there is no Listeria. However, it is also fundamental the analysis of the existence of
internal equilibria, because even when the conditions of Theorem 3 are satisfied (and
Theorem 4 when σ > σ1), we guaranteed only the local stability of equilibrium point
Es. Due to the possibility of multiple internal equilibria, the extinction of Listeria also
depends on the initial contamination in these cases [see companion paper (Delboni
and Yang, submitted)].

For σ > σ1, we concluded that the conditions given by Corollary 1 and by Lemma
1 really bear biological sense and explain the non-existence of E∗. It was not possible
to study in detail the functions f (B) and g(B) as we did for the case σ < σ1, because
when σ exceeds the threshold σ1, these functions may have many different behaviors.
Then, we did not obtain restrictive conditions for the parameters for each number
of viable solutions of h(B) = 0 and, consequently, for each number of biologically
feasible coexistence equilibria. The possibilities are presented in Tables5 and 6, and
a further paper (see companion paper (Delboni and Yang, submitted)) will present a
numerical analysis exploring all these possibilities.

In a companion paper (Delboni and Yang, submitted), we deal with bifurcation
diagrams and attracting basins. By doing numerical simulations, we discuss the local
stability of multiple equilibria, with particular interest in the internal equilibria. Thus,
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we present the importance and usefulness of application of bacteriocin-producing
lactic acid bacteria as biological control in food preservation.
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